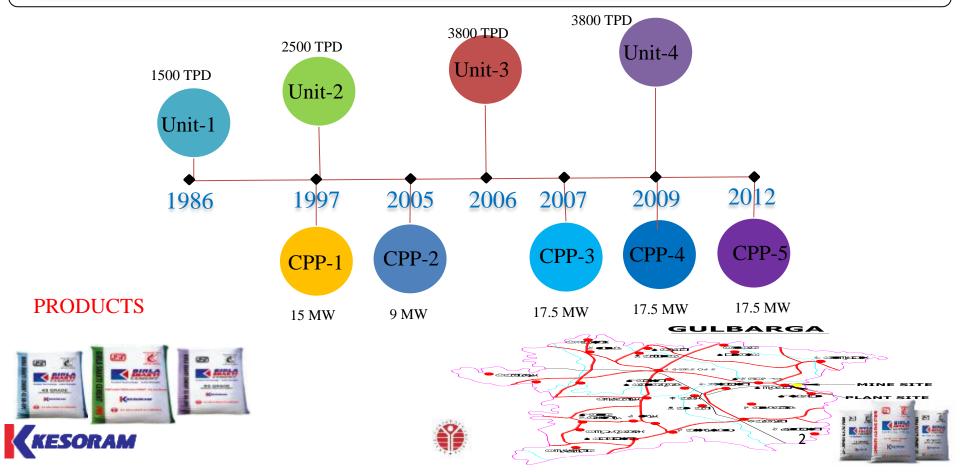
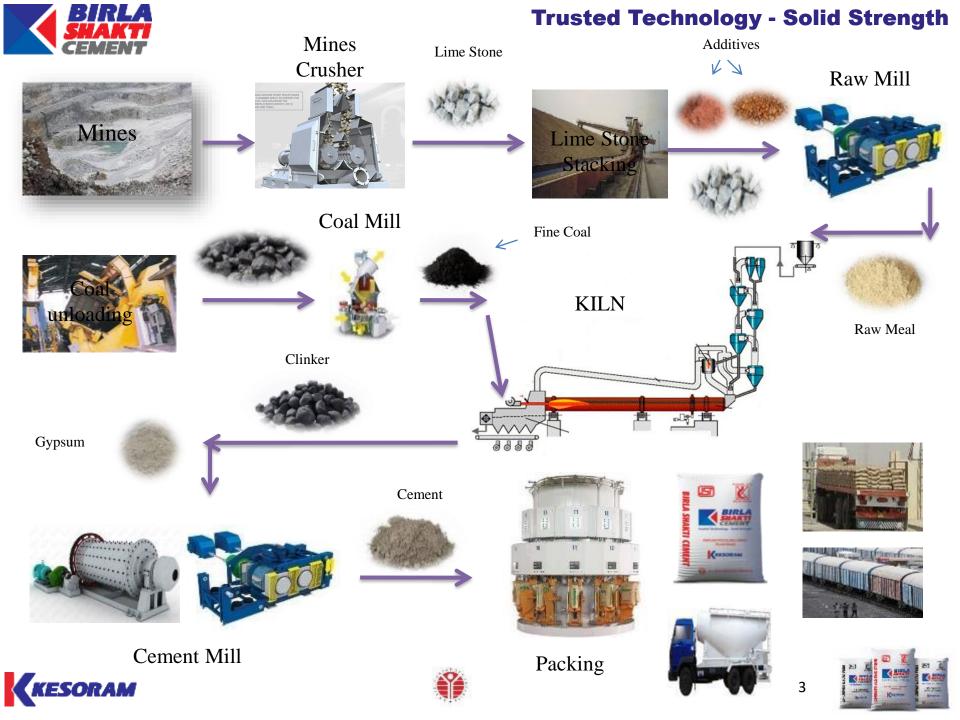


KESORAM INDUSTRIES

Cement Division, Unit: Vasavadatta Cement

An IS/ISO 9001:2015, 14001:2015


ISO / 45001:2018 / 50001 Company


1

Mr. Kundan Singh Mr. Md Saud Salman Mr. Sunil Singh GM Mechanical Manager PQC Energy Manager

New Lime Stone Crusher •Capacity: 1400 TPH

•Type: Double Rotor Hammer

•OEM: TKIL

Old Lime Stone Crusher

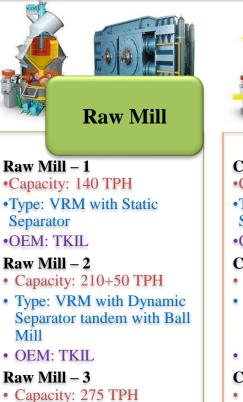
•Capacity: 800 TPH

•Type: Single Rotor Impact

•OEM: Hazemage

Additive Crusher

•Capacity: 200 TPH


•Type: Swing hammer

•OEM: Elecon

Secondary Crusher

•Capacity: 300 TPH •Type: Reversable hammer •OEM: TKIL

Major Equipment Technical Details

- Type: Roller Press
- OEM: TKIL

Raw mill – 4

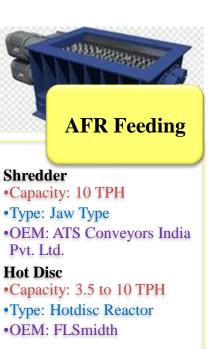
- Capacity: 275 TPH
- Type: Roller Press
- OEM: TKIL

Coal Mill

- Coal Mill 1 •Capacity: 19 TPH
- •Type: VRM with Static Separator

•OEM: TKIL

Coal Mill – 2


- Capacity: 25 TPH
- Type: VRM with Dynamic Separator tandem with Ball Mill
- OEM: TKIL

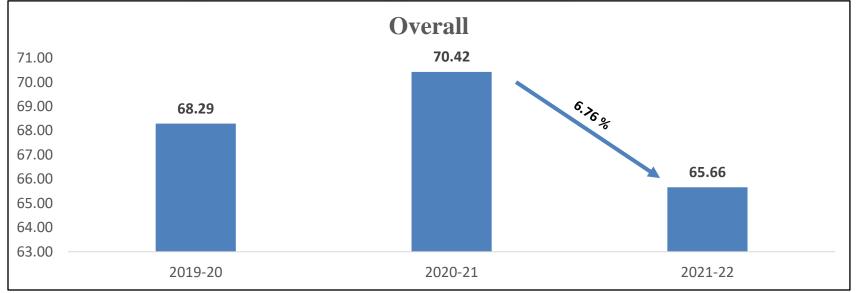
Coal Mill - 3

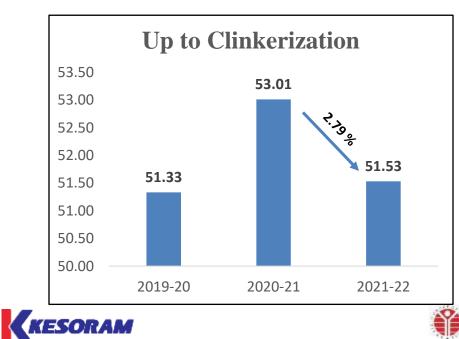
- Capacity: 35 TPH
- Type: VRM with Dynamic separator
- OEM: Pfeiffer

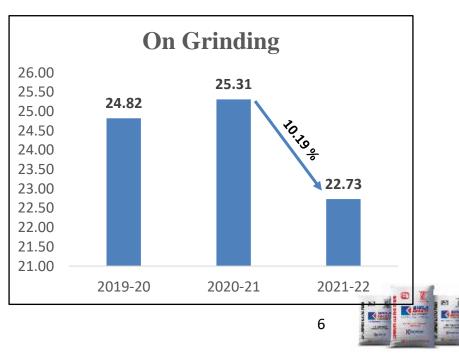
Coal mill - 4

- Capacity: 40 TPH
- Type: VRM with Dynamic separator
- OEM: Pfeiffer

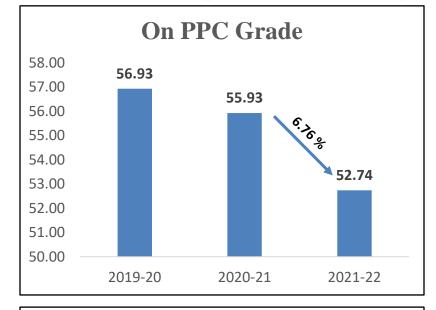
Major Equipment Technical Details

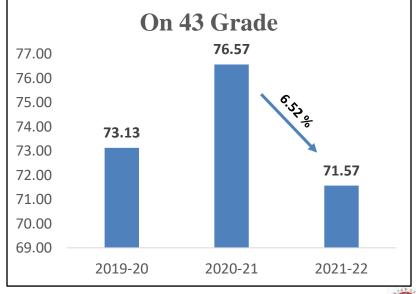


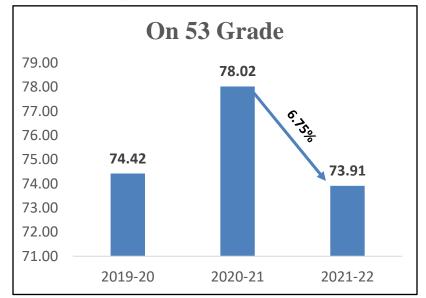


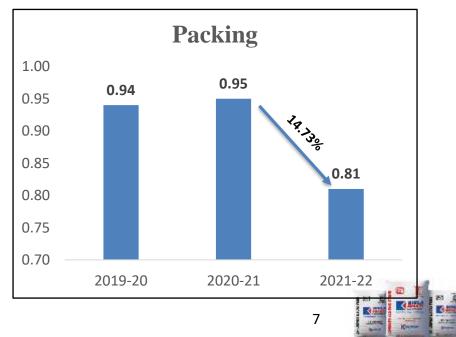


Trusted Technology - Solid Strength Specific Energy Consumption kWh/MT



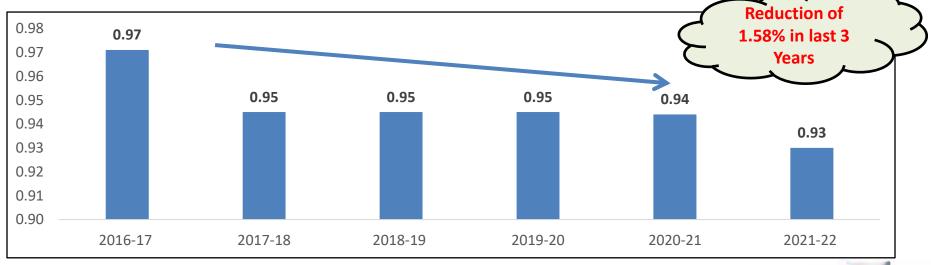






Trusted Technology - Solid Strength Specific Energy Consumption kWh/MT





Trusted Technology - Solid Strength Specific Thermal Energy Consumption

Clinker Factor for OPC cement

Trusted Technology - Solid Strength Bench Mark Comparison with other Industry

S.No	Energy	Unit	National best	International best	VC Value
1	Thermal energy	Kcal / kg clinker	684 (6 stage PH)	667 (Japan)	697.64 (Avg of all four units)
2	Electrical energy	KWH /MT Cement	63.91	65 (Japan)	65.66

Source – CII Energy Benchmarking V: 4.0

Internal Short Term & Long Term Targets for Thermal Energy

Road Map for achieving Benchmark value :

- ▶ Upgradation from conventional cooler to new generation cooler in Unit 1 & 2.
- ➢ Increasing AFR consumption.
- Increasing market share of PPC by continuous awareness & training programs to end users.
- ➤ Replacement of low-efficiency process HT fans & motors with high-efficiency fans.
- ➤ Installation of WHR system, a feasibility study has been conducted.
- Solar plant execution of 5MWp capacity is under the planning stage.

Major EnCon Projects Planned from FY 22-23 to FY 24-25

		Investment	Date of	Life	Annual Savings		
Sl. No	Energy Efficiency improvement measures	Million	completion	Cycle	Coal,	Electricity,	
		Rupees	of measure	years ¹	toe	MWh	
1	Improve the heat transfer in Line 2 preheater cyclones by conducting a CFD study	6.0	2023-24	15	1108		
2	Replacement of high efficiency fan for Cement mill 3 - HR separator	5.0	2023-24	15		924	
ΎΥ	Replacement of high efficiency pumps for Kiln 1,2 GCT	2.0	2023-24	15		452	
4	Replacement of high efficiency pumps for Mine pit B – dewatering	1.0	2023-24	15		182	
5	Optimizing compressor unloading for Line 3,4 pyro compressor by installing VFD	0	2022-23	15		218	
6	Installation of VFD to avoid unloading power in Units 1,2,3 Cement mill compressor	0.5	2022-23	15		211	
7	Reducing pressure drop across line 3 Raw mill cyclones by conducting CFD study	2.0	2022-23	10		504	
X	Replacement of high efficiency fan for Cement mill 4 - HR separator	5.0	2024-25	15		1272	
9	Improving line 3 PH fan efficiency by reducing "cut off" clearance	3.0	2024-25	15		370	

SHAKTI CEMENT

Trusted Technology - Solid Strength

Major EnCon Projects Planned from FY 22-23 to FY 24-25

		Investment	Date of	Life	Annual Savings		
Sl. No	Energy Efficiency improvement measures	Million Rupees	completion of measure	Cycle years	Coal, toe	Electricity, MWh	
	Improving line 4 Raw mill HR fan efficiency by reducing "cut off" clearance	3.0	2024-25	15		191	
11	Improving mill ventilation and reducing <3 micron size particles in cement mills 3 & 4 by increasing mill vent fan speed	0	2022-23	5		1303	
12	Avoiding over grinding in Cement mill 4 by reducing grinding media loading.	0	2022-23	2		337	
13	Reducing fines in the cement mill separator and improving output by changing the separator in the cement mill 3	50.0	2024-25	15		1540	
14	Increasing the phase density of coal firing blower by reducing the speed of the blower-Line1	1.0	2022-23	5	157		
15	Improving the fan efficiency of cooler fans (FN2 &FN7)-Line1	1.5	2022-23	15		200	
16	Installation of high-efficiency impeller for Coal mill 1 Booster Fan-Line1	2.0	2024-25	15		1267	
17	Improving the fan efficiency of cooler fan No 5- Line4	1.0	2024-25	15		211	

11

	Energy Saving Projects for last 3 years								
Year			o. of Energy ving projects			ctrical savings illion kWh)	Total savings (INR million)	Impact on SEC , kWh/MT cement	
FY 2	019-20		13	0.89		2.22	10.91	0.46	
FY 2	020-21		19	0.85		1.75	7.90	0.41	
FY 2	021-22		20	17.69		3.21	16.49	0.53	
Sl. No	Year Proi		Projec	ct description	Investment in INR Lakhs		Energy Savings, kWł	Cost Savings, INR Lakhs/ Annum	
1	2019 - 2	0	Optimization 50Hz to 49.8 I	of frequency form Hz.	l	00 1111295		54.56	
2	2019 - 2	0	U- 3 Cement 1 optimization l grinding medi	oy optimizing		00	618777	30.38	
3	2019 - 2	0	-	of conventional blac ficient FRP fan blac		5.43	236610	11.61	
4	4 2019 - 2		to be shut off c	BH RALs and MF luring normal cleaning of chamb		00	71280	3.50	
5	with IE.		-	of conventional mot rs at Kiln 3 & 4.	ors	0.55	15840		

Energy saving projects for the year FY 2020 - 21

SI. No	Vear Project description		Investment in INR Lakhs	Energy Savings, kWh	Cost Savings, INR Lakhs/ Annum
1	2020 - 21	Optimization of TG frequency from 49.80 Hz to 49.60 Hz.	0	1304546	58.70
2	2020 - 21	U-3 fly ash re circulation system power optimization	0	169468	7.63
3	2020 - 21	Conversion of TPP-4 Fine Ash silo Bag filter into Vent filter.	0	39420	1.77
4	2020 - 21	Derating of Raw Mill - 3 Bag filter fan motor from 22 kw to 11 kw.	0.3	36600	1.65
5	2020 - 21	Replacement with double flap in place of RAL-1 & 2 at Raw mill - 3 HR separator discharge.	2.24	48312	2.17
6	2020 - 21	Interlock made for Packing Plant - 1,2,3 and 4 Bag filter fans RALs with fan running signal in timer mode.	0	22572	1.02
7	2020 - 21	Optimization of Unit-4 Cement Mill Baghouse RALs running hours.	0	18667	0.84

Energy saving projects for the year FY 2021 - 22

SI. No	Year	Project description	Investment in INR Lakhs	Energy Savings, kWh	Cost Savings, INR Lakhs/ Annum
01	2021 - 22	Removal of grit separator from Mill Bag House circuit of Cement Mill-1 and 2.	1.7	1254000	37.08
02	2021 - 22	Modification of PH Cyclone-1 High Pressure to low Pressure to reduce PH fan power in Kiln-1.	95	349272	18.87
03	2021 - 22	Installation of SPRS for Raw mill Fan in Raw mill-2.	20	720000	37.08
04	2021 - 22	Installing VFD for Kiln-1 PC firing conveying blower.	3	79200	4.28
05	2021 - 22	Optimisation of ash Handling system cycle gap timings.	0	139400	6.97
06	2021-22	Kiln-2 Cooler ESP chimney height increased by 5 mtrs.	15	128850	6.63
07	2021-22	Replacing cast iron blades for shell cooling Fan-9 to 16 with FRP blade fan in Kiln-4	1.92	78370	4.32
	ESORAM			1	4

Trusted Technology - Solid Strength Projects with high cost benefits

Sl .No	Project Description	Saving Rs Lac/Annum
1	Optimization of TG frequency from 49.80 Hz to 49.60 Hz.	58.70
2	Optimisation of frequency form 50Hz to 49.8 Hz.	54.56
3	Cement mill – 3 optimisation by Polycom roller profiling & grinding media loading.	30.38
4	Raw Mill Fan suction box modification in line - 2	21.24
5	Cooler stack extension of Line - 2	16.04
6	Reduction in radiation loss by application of Heat resistant paint to Pre – Heater of line - 2	13.30
7	Avoiding operation of higher capacity compressor for Raw mill 1&2 hopper top bag filters.	5.52
8	Installation of VFD drives for Packer bag filters.	4.90
9	Replacement of Kiln shell Cooling Fan Metal blade with FRP Blades	1.97

Trusted Technology - Solid Strength Innovative Project - 1

Removal of grits separator from mill bag house

Challenge:

High-pressure drop across Grid separator resulted in high power consumption due to higher fan speed.

Counter Measures:

1346

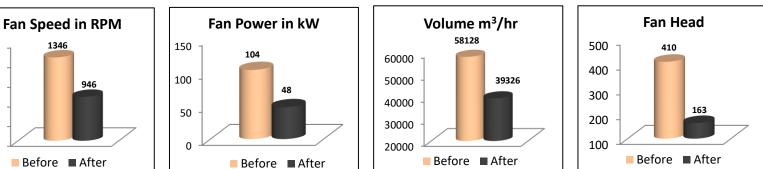
Before After

946

1500

1300

1100


900

700

500

- Static separator removed
- Installation of In-house fabrication and erection of duct

Mill	Power saved, kW	Run Hours/Annum	Unit cost, Rs/unit	Savings/Annum, Rs Lakhs
Cement Mill - 1	56	2882.76	5.10	8.23
Cement Mill - 2	32	5535.24	5.10	8.47

Before

Innovative Project - 2

In-House installation of SPRS system for Raw mill fan - 2

Challenge:

- > RM fan running on GRR
- Rotor power loss due to GRR
- Speed regulation of motor in steps

Counter Measures:

- Spare SPRS panel was utilized
- HT Isolator panel, DC Reactor, and feedback transformer are installed
- Cable laid for DCS interface and termination did on both panel & IO side
- Calibration & settings of all components done

Implementation Cost:

Cost of cable, DC reactor, and feedback transformer
 = ₹ 20.00 lakhs

Recurring Savings:

- > Power saving = 80 kWh at 93 % RPM.
- Annual Saving = 80 kWh x 21 hrs x 235 days x ₹
 5.48 = ₹ 21.64 lakhs

One time savings:

- > New SPRS panel cost approx. = ₹ 50.00 lakhs
- Commissioning cost (Done in-house) = ₹ 3.00 lakhs

Before

17

Innovative Project - 3

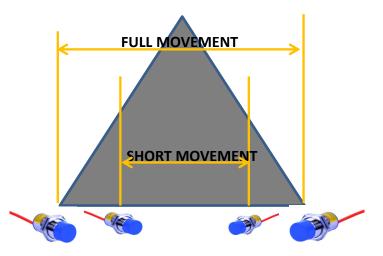
Coal reclaimer harrow drive movement

Challenge:

- Coal conveying TPH reduced due to pile height in the reclaimer
- Manual intervention to change from short movement to long movement on the reclaimer control desk.

Counter Measures:

Toggle for changing from short movement to long movement taken in DCS


Savings:

> Total No of drive running in reclaimer with belt conveyor -15 drives

- ➢ Sum of 15 drives running load is − 216.66 kWh
- > Total No of idle hours saved -3 hours

Annual saving = 216.66 kWh x 3 hrs x 300 days x ₹ 5.48 = **₹ 10.69 lakhs**

Renewable Energy

Significant potential for renewable energy is not available.

•20.5% of captive consumption is the RPO obligation for FY 2022-23.

•Under RPO obligation, 26.95 Lakhs kWh green energy purchased in July-2022

•Planning to purchase 100 lakhs kWh every month from August-2022 onwards

•5MWp capacity solar plant execution is under planning stage

Waste utilization & management

AFR Consumed		2019-20		2020-21			2021-22		
МТ	Consumed, MT	Coal Saved	Annual TSR %	Consumed, MT	Coal Saved	Annual TSR %	Consumed, MT	Coal Saved	Annual TSR %
Tyre Chips	12.3	19.7		15.61	12.7		**	**	
Carbon Black	17350	21669	11995 16176	16176		30920.4	39219		
RDF	**	**	4.2	**	**		**	**	4.5
Stalk (Agri Waste)	**	**	4.2	**	**	2.6	45.75	15	4.5
Plastic Waste	17438	6986		6835	3136		12655.05	6328	
Total	34800.3	28675		18846	19325		34077.3	35322	

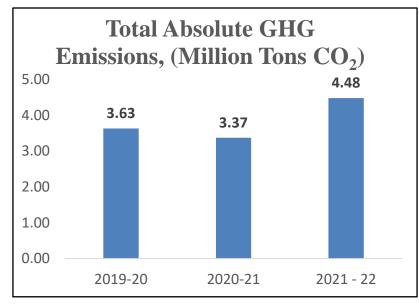
Infrastructure for AFR co - processing

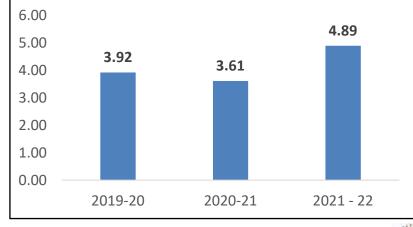
- Presently permissions from PCB for Liquid AFR are taken and trials are conducted
- Installation of Shredder for co-processing of AFR
- Carbon black feeding arrangements in PC in all lines
- HOT DISC Reactor for co-processing MSW, plastic waste, tyres, and tyre chips
- Sheds & feeding arrangements in place to co-process hazardous waste

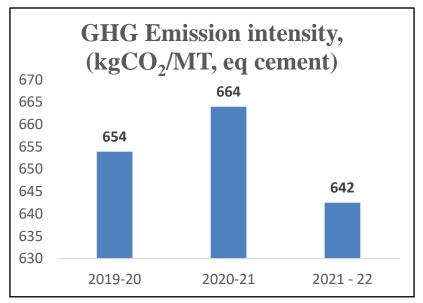
Carbon black feeding

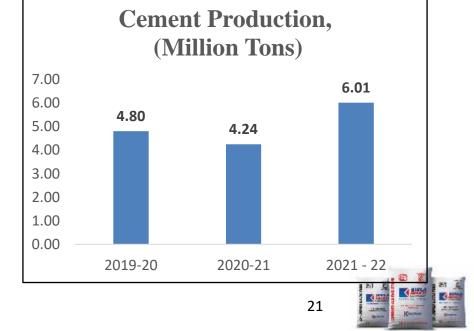
Co-process of hazardous waste

Shredder for co-processing of AFR 20








Trusted Technology - Solid Strength GHG Inventorization

Clinker Production, (Million Tons)



Net Zero Path way

Short Term way foreword for reduction in CO₂ emission

- 1. Improvement in Clinker factor by increasing PPC Production
- 2. Increase of "ConQUerete" cement (26% fly ash) in place of OPC
- 3. Increased Power contract demand from 2 MVA to 35 MVA
- 4. Production of belite clinker against alite clinker
- 5. Introduction of blended cement (Clinker + Fly ash + Slag)
- 6. Increase in use of renewable energy by the installation of a solar power plant of 5 MW

Best Practices implemented in Green Supply chain:

<u>Cement</u>: Focus on rail dispatch has increased w.r.t to road movement.

Started NAVKAR bulk cement rake loading.

Rail – 44% **Road** – 56%

Laterite

- Procurement of laterite from the nearest source, resulting in a reduction of CO₂ emission from vehicles.
- The procurement ratio is 54% from the nearest source i.e., Thatepally (90 km), and 46% from the range of 110kms (Vikarabad Area)
- Road movement has been reduced and initiated Rail movement for laterite

Gypsum

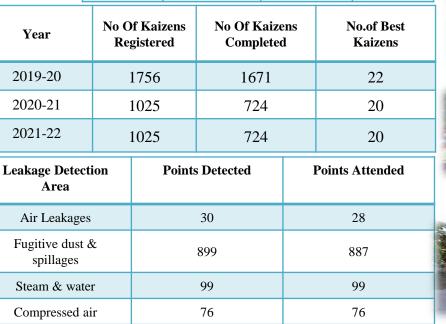
- Utilization of Gypsum (By-product from fertilizer companies) in the Cement Industry.
- Road movement has been reduced and initiated Rail movement.

Rail – 74% **Road** – 26%

Fly Ash

- Utilization of Fly Ash (By-product from Power plants) in the Cement Industry.
- Transportation of fly ash by Rail through closed wagons.

Rail – 93%	Road – 7%



- **1.** Suggestion Scheme
- 2. Brain Storming
- 3. 5s Activity
- 4. Kaizen
- 5. Leakage Detection

Ye	ear	Total Suggestions	Suggestions Implemented	Suggestions Rejected
201	9-20	852	710	89
202	0-21	285	143	76
202	1-22	285	143	76

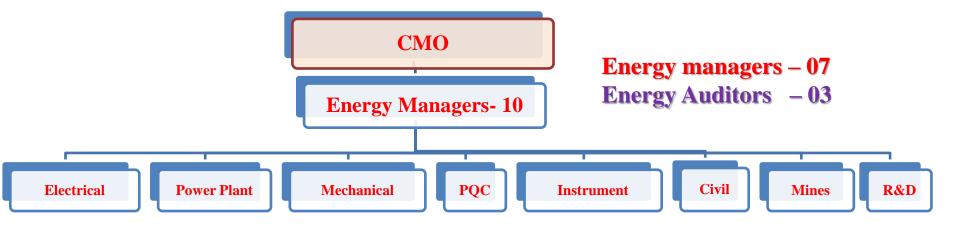
Employees and team work

Energy Conservation Week celebration

Awareness programs

Energy Saver Rath

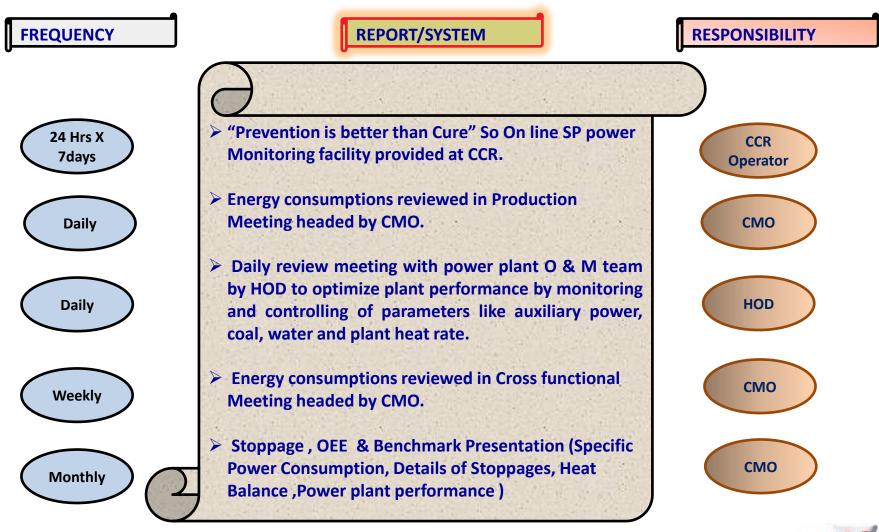
No Vehicle Day Celebration, Safety Gate Meeting, Internal/External Trainings, Organizing Competitions, Training class to nearby villages, Street Plays



Trusted Technology - Solid Strength Energy management cell & energy manager

List of Energy Conservation Committees

Water management committee	Packing plant- power consumption reduction committee	Cement mills-power consumption reduction committee	Idle running equipment detecting committee	Steam leakages detection committee at thermal power plants
Team Leader : Mr. L Vegi	Team Leader: Mr. Gangadhar	Team Leader: Mr. LB Yadav	Team Leader: Mr. KVR Murthy	Team Leader: Mr. Chandrashekhar Ujja
Team Members : 1) Mr. Ravindra L 2) Mr. Rajarao 3) Mr. Shankar Rao Patil	 Team Members : 1) Mr. Mishra 2) Mr. Shashikanth 3) Mr. Venkatesh Marla 4) Mr. Harish K 	 Team Members : 1) Mr. B. Praneeth 2) Mr. D. Pramod 3) Mr. Sanket K 4) Mr. Ganapati 5) Mr. Deepak 6) Mr. Vishwanath 	Team Members :1) Mr. Sriram Arsid2) Mr. Vishwanath3) Mr. V. Madhukrishna	 Team Members : 1) Mr. Vishveshwarayya Hiremath 2) Mr. K.V. Ramana 3) Mr. R.D.B. Patil



Review pertaining to energy efficiency

Trusted Technology - Solid Strength Review pertaining to energy efficiency

Sample Comparison Statement for daily power monitoring:

	i 1	Unit-1				Unit-2				1	I I	Unit-3			Unit-4			
Section	Name	Yesterday' s Production & Running Hrs	Monthly (Day) Best Achiered Power in kWh/T of Clinker	Yesterday's Power in kWh/T of Clinker	MTD Power is kWb/T of Clisker		Monthly (Day) Best Achiered Power in kWh/T of Clinker	Yesterday's Power in kWh/T of Clinker	MTD Power in kWh/T of Clinker	Name	Yesterday' S Production & Running Hrs	Monthly (Day) Best Achiered Power in EWh/T of Clinker	Yesterday's P. in EWh/T of Cl		Yesterday's Production & Running Hrs	Monthly (Day) Best Achieved Power in kWh/T of Clinker	Yesterday's Power in kWh/T of Clinker	MTD Power in kWh/T of Clinker
Ra v mill	R.M MD R.M.Fan Ball Mill RM Aux Misc	3600 MT 24 Hrs 150 TPH	10.40 (9.61) 11.42 (11.09) 3.37 (2.23) 0.22 (0.18)	12.30 12.47 2.61 0.50	11.51 13.07 2.58 0.51	3880 MT 16.5 Hrs 235.15 TPH	11.04 (10.11) 11.70 (10.45) 3.86 (3.10) 0.47 (0.30)	12.47 11.17 0.00 4.20 0.42	12.63 11.06 0.00 3.58 0.49	BM Poly-1 BM Poly-2 B.M Fan BM Aux Misc	7070 MT 22.08 Hrs 320.2 TPH	5.58 (4.98) 5.30 (4.53) 3.85 (3.51) 4.00 (3.21) 0.22 (0.20)	5.53 4.72 4.16 3.86 0.30	5.50 4.82 4.16 3.88 0.33	. 7680 MT 24 Hrs 320 TPH	5.29 (4.53) 5.23 (4.53) 4.01 (3.59) 4.37 (3.57) 0.51 (0.41)	6.29 6.38 3.79 4.23 0.59	6.32 6.35 3.82 4.06 0.66
	Sub Total	Jan-20 (16-06-21)	25.41 (24.72)	27.89	27.67	JAH-19 (20-09-19)	27.08 (25.80)	28.25	27.77	Sub Total	JAH-20 (15-01-22)	18.96 (17.60)	18.56	18.68	Hav-19 (99-11-19)	19.41 (18.14)	21.28	21.21
	BH FAN P.H.Fan W G Fan I.D Fan Kiln Aux	2155 MT 24 Hrs 89.79 TPH	3.40 (2.96) 9.67 (6.91) 0.87 (0.41) 0.09 (0.05) 6.47 (6.47)	3.53 8.28 1.00 0.13 10.00	3.53 8.40 0.94 0.12 9.56	3445 MT 24 Hrs 143.54 TPH	3.12 (2.53) 6.86 (4.24) 0.45 (0.30) 0.48 (0.15) 9.03 (8.59)	3.92 7.40 0.74 0.59 10.38	3.98 7.08 0.73 0.62 10.44	BH FAN P.H.Fan Booster Far - Kiln Aux	4258 MT 24 Hrs 177.42 TPH	2.26 (2.07) 8.07 (7.88) 11.67 (10.04)	2.80 9.15 - - 11.44	2.90 9.37 - - 11.81		2.35 (2.07) 7.13 (6.36) 1.17 (0.75) 	2.44 7.27 0.93 - 11.38	2.37 7.37 0.97 - 11.09
	Misc Sub Total	JAH-19 (19-41-19)	0.45 (0.38) 20.96 (20.39)	0.68 23.61	0.68 23.24	AUG-19 (30-09-19)	0.54 (0.29) 20.48 (18.98)	0.41 23.44	0.50 23.34	Sub Total	JAN-20 (7-01-20)	0.43 (0.37) 22.43 (21.54)	0.52 23.91	0.58 24.66	JAH-20 (09-06-2021)	0.47 (0.44) 21.37 (19.73)	0.63 22.66	0.71 22.52
Coal mill	Coal Mill C.A. Fan Coal Mill Aux Misc Coal Transfer	461 MT 24 Hrs 19.21 TPH	1.87 (1.48) 1.67 (1.24) 0.22 (0.06) 0.07 (0.04)	+-HI-1 11.01 2.36 10.14 2.17 0.70 0.15 0.54 0.11 0.00	2.17 2.09 0.17 0.11 0.05	670 MT 22.83 Hrs 29.35 TPH 60 MT	1.85 (1.31) 2.19 (1.75) 0.72 (0.35) 0.14 (0.06)	•- HI-1 9.42 1.83 13.88 2.70 2.90 0.56 0.52 0.10 0.57	1.85 2.68 0.50 0.12 0.10	Coal Mill C.A. Fan Coal Mill Aus Misc Coal Transfe	614 MT 18 Hrs 34.1 TPH	1.78 (1.24) 1.19 (0.93) 0.41 (0.19) 0.06 (0.05)		1 2.49 1 1.92 4 0.03 9 0.11	324 MT 12 Hrs 27 TPH 0 MT	1.85 (1.19) 1.57 (1.08) 0.37 (0.15) 0.13 (0.08)	•- HI-1 21.64 151 16.35 1.14 3.36 0.23 1.32 0.09 0.00	1.59 1.27 3 0.21 3 0.12
	Sub Total	JAN-20 (16-03-21)	3.83 (3.00)	22.39 4.79	4.59	MAT-19 (24-02-	4.91 (4.07)	26.72 5.77	5.24	Sub Total	0CT-1# (29-11-21)	3.44 (2.60)	30.86 3.9		HAR-19 (17-0‡-22)	3.93 (2.54)	42.67 2.97	
Coal Handling Power			0.64	2.06 0.44	0.37		0.34	1.97 0.38	0.40			0.48	1.97 0.2	8 0.41		0.33	2.02 0.14	0.18
TOTAL ON CLINKER		JAH-19 (25-01-19)	51.99 (49.87)	58.28	57.57	5apt-19 (27-09-19)	53.57 (51.78)	59.39	58.45		H07-21 (14-11-21)	47.50 (45.53)	48.29	49.87	JAN-22 (05-05-21)	47.37 (45.66)	48.59	48.77
Kcal/kg of Clinker			705.00	705.00	705.00		700.00	705.00	704.42			693.00	696.00	696.00		693.00	695.00	695.00
Shutdown power On Clinker (k¥h/T)					0.39				0.00					6.56				0.00
Coal in MT for start up and stop of kiln					60				0.00					140				0.00

Note: Misc power includes plant lighting, Water Services, Welding works, Work shops supply, Common building supply, AC's & Distribution losses.

On line Electrical Sp. Power Monitoring at CCR :

	FH1 T43.07 kW RMD1 T12.53 kW FH2 T20.54 kW NMD2 T14.66 kW FH3 T25.00 kW VD DA FAMS	VPD BAG JALICS VPD BAG JALICS PITTONICAL CLASS BARAS TODE Society Distanti Carlos BARAS TODE Society BARAS Distanti Carlos BARAS TODE Society BARAS TODE Society Distanti Carlos BARAS TODE Society BARAS TODE Society BARAS TODE Society Distanti Carlos BARAS BARAS TODE Society BARAS <			SECTION 43 GRADE	LL ORADE WISE POWER SHEET PARAMETER OPC 43 GRADE POWER OPC 43 GRADE POWER OPC 13 GRADE PRODUCTION OPC 53 GRADE POWER OPC 53 GRADE PRODUCTION OPC 53 GRADE PRODUCTION PPC GRADE POWER	PREVIOUS 12-12 Day 39902.6 7.98 1672.1 54090.4 10.82 2290.0 2290.0	PRESENT 12-12 Day 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
	PLANT POWER-SECTION WISE		POLY MOTOTERS and	STD MISC.CEM	PPG GEADE	PPC GRADE RUN HOURS	5,35	8,75
	NUMBEL NUMBEL COALMBLE CEMENT MILL U 10 100.3 100 60.4 100.3 10	DIE PLANT	TOTAL 1095	ANSIC FRAM.	THE ATTENT OF A TOTAL CONTRACTOR OF A TOTAL	PPC GRADE PRODUCTION	1591.8	2606.6
TOTAL VED POWER	Internet (Concerne) (Concerne)	(****			VOLE POWER	MILL IDLE POWER	0.0	0.0
		50.12 (20.12			Up dirichedwale	U2 INTEGRATION DBC POWER	38.0	0.0

List of System Certifications

Green Pro Certificate

ISO / 50001:2011

Learnings from EE Awards :

- Installation of new high efficiency static guide vanes within existing separator casing of cement mill – 2.
- Increasing classifier inlet velocity by reduction of classifier annular gap.
- Installation of VFD in Packing plant compressors to save power.
- Up gradation of SPRS control cubicle of U4 Cement mill HR separator fan

29

Recognitions and awards

Energy Efficiency Awards

Mines Awards

Safety Awards

Productivity & water efficiency Awards

Thank you

"Growth and improvement is about acknowledging weakness." CMO -

Mr. UV Raju

