Chanderia Cement Works, Chittorgarh BIRLA CORPORATION LIMITED

Plant Details

Chanderia Unit

- Location : 4 Km from Chittorgarh & 315 Km from Jaipur
- Installed capacity : 4.0 MTPA Cement

Birla Cement Works Kiln (2 Kilns)

Chanderia Cement Works (2 Kilns)

• Lime Stone

: Bherda & Jai Surjana Lime stone mines Annual Production 4.32 MTPA

Plant Details

			-			
Ρ	lant	nt Year Make Installed Capacity (TPD) Present Capacity (TPD)		Remarks		
Clinkerization						
BCW	Kiln-1	1967	FLS / L & T	600	1050	Last up-gradation was done in 1991-92 by L & T. BCW kiln is not in operation most of the
	Kiln-2	1971	FLS / L & T	600	1050	time due to high manufacturing cost a limestone issue. It runs only on emergen requirement.
CCW	Kiln-1	1986	FLS	2500	3700/3300	Last up-gradation was done in 2009 by M/s Atec.
	Kiln-2 (NCCW)	2012	FLS	3600	4850	Up-gradation work is in progress. Phase-I part was completed in Jan. '20.

Plant Details

Plant		Туре	Make	Rated Capacity-TPH	Present Capacity-TPH		
Raw grine	Rawgrinding						
	RM-1		FLS	68	70		
BCW	RM-2	Ball Mill	FLS	68	70		
	RM-1	Ball Mill	FLS	230	180		
CCW	RM-2	VRM	NHI-China	155	190		
NCCW	RP1 & RP2	2 Roller Presses in comflex mode	KHD	465	390		

Plant		Туре	Make	Rated Capacity-TPH	Present Capacity-TPH	
Cement grinding						
	CM-1		FLS	45	45	
DCVV	CM-2	Dali Iviili	FLS	45	45	
	CM-1	Ball Mill	ТКІІ	315	315	
CCW	CM-2	+ Polycom	ТКІІ	325	290	

Company Profile

Birla Corporation Limited is the flagship Company of the M.P. Birla Group. Incorporated as Birla Jute Manufacturing Company Limited in 1919, it was Late Mr. Madhav Prasad Birla who gave shape to it. As Chairman of the Company, he transformed it from a manufacturer of jute goods to a leading multi-product corporation with widespread activities. Under the Chairmanship of Mrs. Priyamvada Birla, the Company crossed the Rs. 1,300 - crore turnover mark and the name was changed to Birla Corporation Limited in1998.

After the demise of Mrs. Priyamvada Birla, the Company continued to consolidate in terms of profitability, competitiveness and growth under the leadership of Mr. Rajendra S. Lodha, late Chairman of the M.P. Birla Group. Under his leadership, the Company posted its best ever results in the years ended 31.3.2006, 31.3.2007 and 31.3.2008. The Company continued to record impressive growth in 2008-09 and 2009-10.

Mr. Harsh V Lodha is now Chairman of the Company.

Company Profile

The Company is primarily engaged in the manufacturing of cement as its core business activity. It has significant presence in the jute goods industry as well.

The Company has acquired 100% shares of Reliance Cement Company Private Limited (Reliance Cement), a subsidiary of Reliance Infrastructure Limited (RIL). After this acquisition, Reliance Cement has become a wholly-owned material subsidiary of Birla Corporation Limited. The entire cement business of RIL has been acquired for an Enterprise Value of Rs. 4,800 crores. This acquisition provides Birla Corporation Limited with the ownership of high-quality assets, taking its total capacity from 10 MTPA to 15.5 MTPA

PRODUCT	INSTALLED CAPACITY
Cement	15.5 Million Tons
Jute Goods	52,631 Metric Tons
Iron & Steel Casting	3,750 Metric Tons

Chanderia Cement Works

We would like to throw some light on our plant's background:-

Blasting in our plant mines was banned in 2012 by hon'ble supreme court as it was falling within 05 Kms radius of Chittorgarh fort. That was a hard time we faced suddenly and we accepted it as a challenge and decided to go for mechanical mining. We invested in breakers and splitters and slowly we reduced our dependency on outsourced LS by optimization of raw mix & fuel mix, increased usage of petcoke up to 100% other than AFR. Thus our team bounced back leaving all past setbacks. We are now able to produce 80% of our Lime stone requirement from own mines. We are now one of the best in Chittorgarh cluster in many KPIs like fly ash absorption, Cement grinding power, AFR utilization etc.

It's only plant in India having fully mechanized mines and operated without blasting.

Energy Consumption Overview

Description	UOM	(Consumption	During Years		
		2017-2018	2018-2019	2019-2020	2020-2021	2021-22
Total Thermal Energy Consumption	(Million Kcal)	2317073.7	2443905.1	2319816	2117260	2044502
Total Electricity consumption	Million kWh	260.836	271.967	253.954	219.35	259.65
Electricity Purchased from Grid	Lakh kWh	701.66	679.27	482.04	483.02	1121.47
Electricity Exported to Grid/Colony/Others from CPP	Lakh kWh	339.63	187.14	302.61	277.17	157.23
Total Energy Consumed (Thermal+ Electrical)	(Million Kcal)	2285139	2426955.8	2244270	2050574	2082206
Specific Energy Consumption(Without Normalization)	(TOE)	0.0763	0.0632	0.0640	0.0649	0.0610
Specific Energy Consumption (Normalized)	(TOE)	0.0698	0.0632	0.0628	0.0633	0.0613
R.P.O Obligation in Percentage	%	14.25	13.35	15	13.43	14.25

Normalized Gate to Gate Specific Energy Consumption:-0.0613 toe/ton of equivalent Cement

- Electrical Energy Consumption:- Reduced 10.25 kWh/MT Cement Power consumption in last 05 Years
- Thermal Energy Consumption:- Reduced 22.0 kcal/kg clinker in CCW-1 Kiln and 27.0 Kcal/kg clinker in CCW-2 last 05 Years
- Fly ash Utilization:- 7.22% Increase in fly ash utilization at BCW (from 24.86% to 32.08) and 3.0% increase in fly ash utilization at CCW (from 30.86% to 33.86%) in last 05 Years
- Waste Utilization:- Used 140451 MT Solid & LIQUED AFR during last 5 Years in CCW & NCCW.

		Chanderia Cement works.				
	Energy C	Energy Consumption in Kcal/Kg Majorproduct				
PAT Cycle No.	Base Line Energy Consumption	Target	Achieved	Energy Saving Certificate Acieved		
PAT Cycle-1 (Assessment Year 2014- 15)	887	845	804	7098		
PAT Cycle-2 (Assessment Year 2018- 19)	749	712	636	23235		

Clinker production (Lac Tons)

Clinker Production(Lac Tons)					
Year	CCW-1	CCW-2	Total		
2017-18	10.98	11.28	22.26		
2018-19	12.88	13.30	26.18		
2019-20	11.50	11.85	23.35		
2020-21	7.11	14.27	21.28		
2021-22	9.62	14.72	24.34		

CCW Kiln TPD					
Year	CCW-1	CCW-2			
2017-18	3842	3996			
2018-19	3970	4137			
2019-20	3481	4444			
2020-21	3124	4914			
2021-22	3454	5136			

Cement Production and SpecificPower

Cement Production (Lac Tons)

Cement Production (Lac Tons) BCW
 Cement Production (Lac Tons) CCW
 Cement Production (Lac Tons) Total

Grinding Power(kWh/T)				
Year	BCW	CCW		
2017-18	35.39	30.38		
2018-19	32.26	27.51		
2019-20	34.51	29.02		
2020-21	33.41	30.19		
2021-22	31.88	27.79		

Cen	Cement Production (Lac Tons)						
Year	BCW	CCW	Total				
2017-18	5.31	27.64	32.95				
2018-19	5.77	29.79	35.56				
2019-20	6.02	29.78	35.80				
2020-21	5.32	26.64	31.96				
2021-22	5.14	29.16	34.30				

Grinding Power(kWh/T)

Clinker Power and Heat

Clinkerisation Power (kWh/T) CCW-2

CCW Kiln (Thermal Energy-Kcal/kg)					
Year	CCW-1	CCW-2			
2017-18	740	736			
2018-19	720	713			
2019-20	718	713			
2020-21	721	706			
2021-22	718	709			

Clinkerisation Power (kWh/T)				
Year CCW-1		CCW-2		
2017-18	73.02	59.10		
2018-19	71.01	58.16		
2019-20	68.61	56.74		
2020-21	72.24	57.91		
2021-22	67.95	55.68		

CCW Kiln (Thermal Energy-Kcal/kg)

CCW Cement Mills Performance(TPH)

CM-1 TPH

CM-1 TPH Year OPC PPC 2017-18 220 259 2018-19 246 292 2019-20 232 262 2020-21 202 265 2021-22 224 302

⊂ CIV	1-1 '	TPH	OPC	CM-1	TPH	PPC

CM-2 TPH					
Year	OPC	РРС			
2017-18	227	281			
2018-19	254	299			
2019-20	226	275			
2020-21	206	253			
2021-22	223	300			

CM-2 TPH

CCW Cement MillsPerformance(Power Consumption)

CM-1 (kWh/T)				
Year	OPC	РРС		
2017-18	36.86	31.42		
2018-19	30.47	26.44		
2019-20	31.1	28.81		
2020-21	34.76	27.66		
2021-22	32.90	25.32		

CM-2 (kWh/T)				
Year	OPC	PPC		
2016-17	37.0	30.97		
2017-18	29.32	26.5		
2018-19	28.30	24.81		
2019-20	30.59	26.47		
2020-21	34.11	27.66		

CM-2 (kWh/T)

MP BIRLA GROUP

CCW Raw Mills Performance (Power Consumption)

Raw VRM					
Year	ТРН	kWh/T			
2017-18	173.0	19.0			
2018-19	169.77	19.69			
2019-20	176.81	18.5			
2020-21	182.36	18.79			
2021-22	199.85	18.19			

Roller Press					
Year	Year TPH				
2017-18	310.0	17.25			
2018-19	346.07	15.56			
2019-20	370.15	15.45			
2020-21	367.39	15.79			
2021-22	397.33	15.27			

MP BIRLA GROUP

Sp. Electrical Energy Consumption in last 5 years (Section wise Bifurcation)

■ 2017-18 ■ 2018-19 ■ 2019-20 ■ 2020-21 ■ 2021-22

Specific Thermal Energy Consumption of Last five Years (Average Of Line-1&2) kcal/kg of clinker

Information on Competitors, National & Global benchmark

		Cluster Benchmarking	National Benchmarking	NCCW	Remarks
Impacto	crusher Power Breakup (KWH	/T Mtl)	•		
а	Crusher Drive		0.2		
b	Other Auxilaries		0.38		
С	Jai Crusher			1.52	
d	CCW Crusher			3.52	
е	Total		0.58		
Roller P	ress Power Break-up For Rav	v Grinding(KWH / T mtl)			
1	Make	Polysius Roller Press	FLS HRP	KHD	
2	Raw Mill Aux	0.59	3.23	2.85	
3	Raw Mill Fan	2.68	2.20	4.86	
4	Seperator ventFan		1.11		
5	Raw Mill Roller PressMotor	7.17	6.40	7.02	
6	Raw Mill Dynamic Separator	0.16			
7	Raw Mill Transport	0.71			
8	Mill feeding belt	0.14			
9	Roller PressB/E	0.73			
10	Silo feeding B/E	0.25		0.98	
11	Compressors	0.20		0.78	
12	Total	12.63	12.94	16.48	
Coal Mi	I Power Break-up (KHW/T Mtl				
13	Make	Pfifer (Pet coke Grinding)	Polysius (Petcoke Grinding)	Pfifer (Petcoke Grinding)	
14	Coal Mill Aux	3.17	4.98	12.8	Coal Mill is design for 60 HGI but we
15	Coal Mill Fan	15.19	12.30	14.5	are operating at 40 HGI of Coal
16	Coal Mill Main Drive	12.23	18.90	14.8	
17	Coal / Gypsum Storage	4.21			
18	Compressors	1.43			10
19	TOTAL	36.2	36.2	42.1	10

Information on Competitors, National & Global benchmark

Pyro-	Power Break-Up (KWH/	T CIK)			
2 0	Make	Thyseen Krup		F L S	
2 1	Baghouse Fan	1.1		3.09	
22	Bag House Transport	0.2			
23	Cooler Fans, PA Fan &	4.9	3.4	6.07	Selection of cooler is different
24	Kiln Main Drive	2.0	1.5	1.3	
25	Kiln Auxiliary	0.5	4.2	3.8	
26	Kiln Feed	0.9	1.0		
27	Preheater Fan	4.9	8.7	7.1	Pre-Heater fan is operating on LRS
28	Root Blowers, Coal firing	0.6			
29	Clinker silo transport gro	0.5			
30	Dialution airfan	0.0			
31	E S P transformers	0.0		0.21	
32	Cooler hydraulic pumps	0.2		0.54	
33	Kiln feed B/E	0.8		0.36	
34	ESP Fan	0.7	1.2	0.65	
35	Compressors	0.8		1.19	
36	ΤΟΤΑΙ	18.1	19.98	24.4	
Ceme	nt Mill OPC-43 (KWh/T	Polysius - RP for ceme	nt grinding	Polysius	- R P for cement grinding
37	Mill Main Drive	12.06		10.04	
38	Seperator			1.35	
39	Mill Seperator Fan				
4 0	Sepol Fan	1.88		3.59	
4 1	Seperator Ball Mill				
42	Booster Fan				
43	Roller Press drive	4.35		7.2	
44	Fly-Ash unloading				
45	Compressors			0.94	
46	Re-circualtion Elevator			0.66	
47	Auxilary	4.6		5.94	
48	TOTAL	22.89	0	29.72	
Ceme	nt Mill PPC (KWh/TCe	Polysius - RP for ceme	nt grinding	Polysius	- RP for cement grinding
49	Mill Main Drive	13.9		7.6	
50	Seperator			0.98	
51	Mill Seperator Fan	2.4			
52	Sepol Fan			2.72	
53	Seperator Ball Mill				
54	Re-circualtion Elevator			0.5	
55	Roller Press drive	4.62		6.04	
56	Fly-Ash unloading			1.16	
57	Cpmpressor			0.95	
58	Auxilary	4.6		4.9	
59	ΤΟΤΑΙ	25.52	0	24.85	

Energy Saving projects implemented in for last five years

Year	No. of Proposals	Investments	Savings	Payback months
2017-18	13	1991.34	1828.29	11
2018-19	14	1312.15	3618.68	3
2019-20	08	2800	987.77	3.0
2020-21	4	Nil	854.248	0
2021-22	2	15,000	1030.79	0

	Investments	Savings	
Project Details	(Rs. million)	(Rs. million)	Payback months
Optimization of NCCW Kiln-2 (Thermal)	13	15.01	0
Optimization of CCW CM-1 Grinding	0	32.61	0
Optimization of CCW CM-2 Grinding	0	33.40	0
Optimization of CCW Kiln (Electrical)	0	7.59	0
Optimization of Roller press for raw meal Grinding	2	9.32	0
Total Saving		103.079	

Major Energy Saving projects implemented

Phase-I part of NCCW Expansion Project up to 6000 TPD (Design - 5500 TPD) consisting of the following has been completed:

- Installation of ABC inlet instead of CIS at clinker cooler
- Extension of clinker cooler by addition of 02 nos. cooler modules
- Up gradation of Cooler ESP by addition of 4th field of ESP
- After completion of the above, the Specific Heat Consumption of NCCW has reduced up to 705 Kcal/kg clinker and Kiln TPD increased up to 5000 TPD.

Energy Saving projects implemented in for last three years

Top view of extended part of Clinker Cooler

Side view of extended part of Clinker Cooler HRB

Clinker Cooler ESP Vent Fan

1. Raw grinding roller press Optimization

Action Taken:-

- During maintenance both feed gate checked and gap was uneven for both RPs which was varying from 120 to 180 gap. We have reduced it up to 120 mm by adjusting the plate , choke feeding started due to this.
- Levelsensor in overflow bin below SKS separator is always showing 1.98 MT(Full) due to this there is always having some risk of filling material in separator and fines eject from separator overflow bin air slide to both elevators, Levelsensor checked by instrument and now it is working perfectly
- Blaster installed at SKS outlet duct to avoid dust accumulation.
- It was observed many times that When both RPs running in auto condition and RP-1 tripped due to any fault whole fines from SKS rushed towards RP-2 and bucket elevator tripped many times , Logic changed and now fines controlling is better.
- Motorized actuator required for SKS reject air distribution gate for RP-1 for better fines control, Correct size Actuatorinstalled to control reject material.

ROLL PRESS PERFORMANCE CCW

(TPH and kWh/T Material)

2. Reduction in thermal Energy consumption

Action Taken:-

- Formation of lime stone piles instead of point stacking (Quality variatio reduced)
- Same fuel mix started for both the kilns(100% Pet coke).
- Dedicated SGA teams formed for regular arresting of false air.
- Change both inlet and outlet seal for CCW-1.
- Reduce kiln feed residue from 18-19% to 16-17% @+90
- Reduced Kiln feed residue from 4.67% to 2.5% @+212
- Change kiln burner for CCW-1
- False air arrested and major leakages arrested during kilns

Thermal Energy Consumption-Kcal/kg clinker

shutdown.

3. Reduction in Lime stone Pile LSF and reduce outsourced lime stone

Action Taken:-

- Usage of bauxite having silica up to 7-8%
- Formation of larger size lime stone piles instead of point stacking
- Increase pet coke consumption in CCW up to 100%
- Raw mix optimization according to available fuel mix
- Reduce kiln feed residue from 18-19% to 16-17% @+90
- Reduced Kiln feed residue from 4.67% to 2.50%
 @+212 R
- Increase smoke chamber and riser duct cleaning frequency
- Installation of extra air cannon as per the requirements

Lime stone Pile LSF

4. Optimization of Vertical Roller Mill and reduce breakdowns

Description& Action Taken:-	status
Dam ring provided for mill table	Done (30mm dam ring)
Interlocking to be changed for metal detector from 3 times to 02 times in the circuit and to be rev ised in future if required	Done
Reset LBP (at RM-1) shifted near metal detector	Done
Damaged nozzle plates repaired and planned to replace complete set during nextopportunity	Done
Replacement of table/roller liner	Done
Repair and Optimization feed entry triple gate and reject chute	Done
Reduction in False air entry(Up to 13%) and dedicated team formation to monitor in regularly	Done
Formation of Lime stone Piles instead of point stacking	Done

■ Raw VRM TPH ■ Raw VRM kWh/T

5. Solar Plant (3 MW) Installed in Year 2019-2020

Utilization of Renewable Energy Sources

Years	Onsite generation (MW)	Off-site generation (MW)	Investment made (INR Crores)	Capacity addition (MW)	Power generation (Kwh)	RPO obligatio n
2017-18						14.3
2018-19						13.4
2019-20	2384570		15	3	2384570	15
2020-21	5844656		15		5844656	13.4
2021-22	5863050				5863050	14.25

Installed Solar Power plant of 3.0 MW in FY 2019-20 and generated 5863050 Kwh in year2021-22which is renewable energy sources

Waste utilization and management

Waste utilization	and manageme	ent (Usage of A	(FR)		
Type of materials (MT)	2017-18	2018-19	2019-20	2020-21	2021-22
Carbon Black	3037	7468	2508		4670
Power PlantAsh	3114	0.92			-
Waste Mix Solids	9511	10383	6130	4924.39	7320
ETP Sludge	1203.04				137
Mustard Husk, Ground nut Husk	3621	6137.8	701	15	2977
TDI Tar	517.23	860.44	229	3.8	-
Industrial Waste	16.1	30.7	183	6	-
Waste Mix Solids Non Haz.	327	8.5	42	0.7	15
Saw Dust		673.58	64	77.8	445
Liquid Waste	292.86	3912	2398.5	133	4047
Plastic waste (Hazardous+Non hazardous)	45	4565.69	1778	9247.74	12629
COAL ASH	4169	14407.93	1909		-
Liquid (LCV)		13.5			6
Wooden Chips	145	139	66	130.43	38
N Hz paper waste		4.25			-
Refused Derrived Fuel			60	18.3	-
FUEL PTRL,PTCK (PTRLM CK),TPP	6488	180.41			-
Crushed F.M.C.G			354	121.99	211
TOTAL	32486.22	48785.72	12005.5	14679.15	32495

Waste utilization and management

GHG Inventorisation

Green Plantation – Birla Premises

<u>Reduction in Emission (kgCO₂ / Ton of Final Product)</u>

Green Supply Chain Management

FLY AH ABSORPTION (%) IN PPC

Way forward

• Reduction in Thermal Energy/Electrical Energy of CCW Kiln-1 after TAD

modification

• Reduction in Thermal Energy/Electrical Energy of CCW Kiln-2 after

Expansion Phase-2

- Exploring possibilities to optimize fuel mix
- Increase usage of AFR

- Electrical Energy Consumption:- Reduced 10.25 kWh/MT Cement Power consumption in last 05 Years
- Thermal Energy Consumption:- Reduced 22.0 kcal/kg clinker in CCW-1 Kiln and 27.0 Kcal/k clinker in CCW-2 in last 05 Years
- Fly ash Utilization:- 7.22% Increase in fly ash utilization at BCW (from 24.86% to 32.08) and 3.0% increase in fly ash utilization at CCW (from 30.86% to 33.86%) in last 05 Years
- Waste Utilization:- Used 140451 MT Solid & LIQUED AFR during last 5 Years in CCW & NCCW

Team work, Employee Involvement & Monitoring

- Daily Energy review meeting chaired by **Unit Head (Review sheet attached below)**
- Separate Budget taken every year for energy saving projects
- Energy efficiency/awareness training program conducted in house and external through RTC, CII etc.
- Energy savings through Small group activities (Total 42 Nos. of SGA groups-List Attached)
- Monthly Meeting review meeting held(Chaired by Unit Head) for each SGA groups consisting down to level employees and workmen f

various improvement initiative in the plant and award also given to performer team

• One cross functional team (CFT) also formed which review energy performance on weekly basis and send MOM to top management with a PPT for all the

KPIs (PPT Attached Below)

SGA Monitoring and Encouragement

Involvement of Employee/workmen for 5S, Energy etc. and review

Involvement of Employee/workmen for 5S, Energy etc. and review –

Involvement of Employee/workmen for 5S, Energy etc. and review –

Details of Energy Awards

AWARD DETAILS Rajasthan Energy Conservation Award – 2019 Under cement category for excellent efforts in energy conservation	By Government Energy Department, Jaipur In December, 2019		
Excellence in Energy Management - 2019 (Excellent Energy Efficient Unit Award)	By CII, Hyderabad In November, 2019		
National Energy Management Award – 2019 For excellence in energy conservation	By SEEM, 2019		
Best Improvement in Electrical Energy Performance 18-19	By NCCBM International In November, 2019		
fly ash utilization, 1st Award, during "fly ash utilization conference 2019"	By Mission Energy Foundation in February, 2019		
08 set of papers presented at NCCBM International seminar In November, 2019, regarding saving of energy / Plant initiatives.	Presented at NCCBM International seminar Dec. 2019		
Excellence in Energy Management - 2020 (Energy Efficient Unit Award)	By CII, Hyderabad In Sep, 2020		
Silver Award & SEEM National Energy Management Award – 2019 Indian Energy Enclave – 2019 for excellent efforts in energy conservation	By IICC, New Delhi In October, 2019		
For fly ash utilization, 2nd Award, during "fly ash utilization conference 2020"	By Mission Energy Foundation in February, 2020		
	SEEM Delbi		
Gold Award & SEEM National Energy Management Award – 2020 Indian Energy Enclave – 2020 for excellent efforts in energy conservation			
For fly ash utilization, 2nd Award, during "fly ash utilization conference 2020"	By Mission Energy Foundation in February, 2020		

Presented 08.0 Nos. of Technical Papers during NCCBM International seminar in Dec-2019.

Details of EnergyAwards

Award from Govt. of Rajasthan (1st Prize)

Certificate of CII

Best EE reduction Award by NCCBM

Fly ash utilization Award, Feb-2020

Excellent energy efficient award by CII

Award at India Energy Conclave-2019

Thanks