

"HOW GREEN, COOL & ENERGY EFFICIENT IS YOUR COOLING SYSTEM?"

ARMEC GROUP

ARMEC[®]

ESTABLISHED IN 1990

An ISO 9001 – 2008 Company

Registered with NSIC

Installation Base of over 7265+

across the globe.

प्रमाणित किया जाता है कि पेटेंटी को उपरोक्त आवेदन में यथाप्रकटित ZERO DRIFT SYSTEM FANLESS FILL LESS SPRAY TYPE COOLING TOWERS नामक आविष्कार के लिए, पेटेंट अधिनियम, १९७० के उपबंधों के अनुसार आज तारीख 21st day of May 2008 से बीस वर्ष की अवधि के लिए पेटेंट अनुदत्त किया गया है।

It is hereby certified that a patent has been granted to the patentee for an invention entitled ZERO DRIFT SYSTEM FANLESS FILL LESS SPRAY TYPE COOLING TOWERS as disclosed in the above mentioned application for the term of 20 years from the 21st day of May 2008 in accordance with the provisions of the Patents Act, 1970.

भूमहाराज्य अनुवान की तारीख : 31/01/2020

पेटेंट नियंत्रक Controller of Patent

टिप्पणी - इस पेटेंट के नवीकरण के लिए फीस, बंदि इसे बनाए रखा जाना है, 21st day of May 2010को और उसके परचत प्रत्येक वर्ष्य मे उसी दिन देव होगी। Note. - The fees for renewal of this patent, if it is to be maintained will fall / has fallen due on 21st day of May 2010 and on the same day in every year thereafter.

Patent **Certificate-ZERO DRIFT SYSTEM** FANLESS FILL LESS **SPRAY TYPE** COOLING TOWER

Patent Certificate-JET NOZZLES

Renewal Certificate (Valid From 19/02/2021 to 18/02/2023) ANNEXURE TO GOVERNMENT PURCHASES ENLISTMENT CERTIFICATE NO NSIC/GP/SIL/2014/0010779 D.T 16/06/2021 ISSUED TO M/s. Armec Cooling Tower Pvt Ltd, MAHARASHTRA

Plot no 136/J, GIDC Phase II, Off Silvassa Road, Vapi, Dist Valsad, VALSAD, GUJARAT-396195

Sno	Store(s)/ Service(s) Name	Specification(s)	Qualitative Capacity	Quantitative Capacity PMPS
1	Cooling Tower	MS IS 2062. FRP Mat IS 11551	Volume-5m3/hr to 2500 M3/hr Volume-5m3/hr to 500 M3/hr	35 Nos

Comments / Note

(Optional): RITES/NSIC-Armec Cooling Tower Dtd. Feb-2018 (A-493)

M/s Armec Cooling Tower Pvt Ltd

Authorised Signatory

"Authenticity of the certificate can be checked through the web portal: www.nsicspronline.com"

CIN: U74140DL1955G01002481

NSIC Certificate

ARMEC [®]JET TOWERS [®]

Mission

- Optimum cooling
- Trouble free operation
- Least operating cost
- Savings on energy bills
- Creating greener environment

ARMEC[®] JET TOWERS[®]

INVENTOR & PATENT OWNER OF JET COOLING TOWERS "FAN-LESS & FILL-LESS"

ENERGY SAVING

- COMPACT DESIGN
- **MODULAR CONSTRUCTION**
- **EXPORT FRIENDLY**
- **EASY TO SHIFT & RE-ERECT**

ASSETS MANAGEMENT SYSTEM : Process Water

GREAT ACHIEVEMENT IN VSSC-ISRO

ARMEC Cooling tower was formally inaugurated at VSSC-ISRO by Shri S. Somanath, Chairman, ISRO/ Secretary, Department of Space

1500TR ARMEC Jet cooling tower technology at their Ammonium Perchlorate Experimental Plant (APEP) which manufactures fuel Oxidiser for all units of ISRO

Ô

Not a constructive and creative way to solve problem.

Should not be used by future generations.

Cooling Tower As A Concept

No need of cooling tower

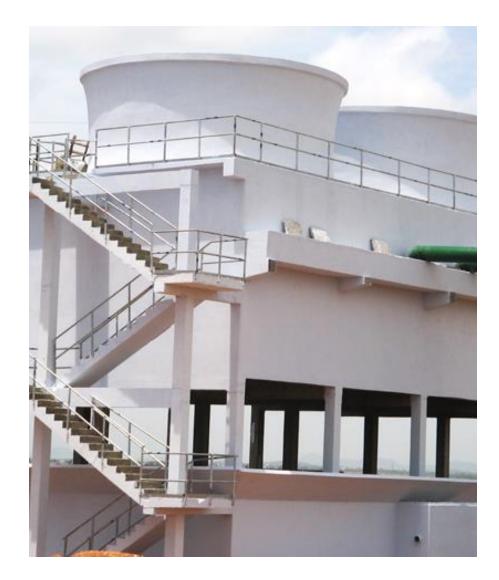
What Must Happen In Future

Use

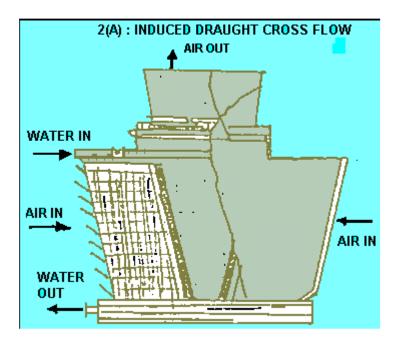
Yours/Ours

Resources

Wisely


Till such time

YOU MAY HAVE WOODEN COOLING TOWER


YOU MAY HAVE FRP COOLING TOWER

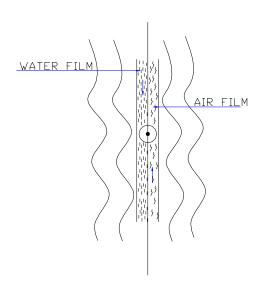
YOU MAY HAVE RCC COOLING TOWER

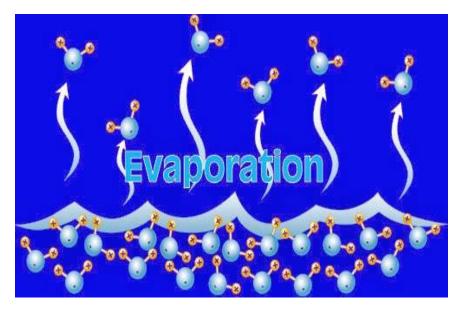
Working of Cooling Tower

COMPONENTS IN A CT

Water Distribution

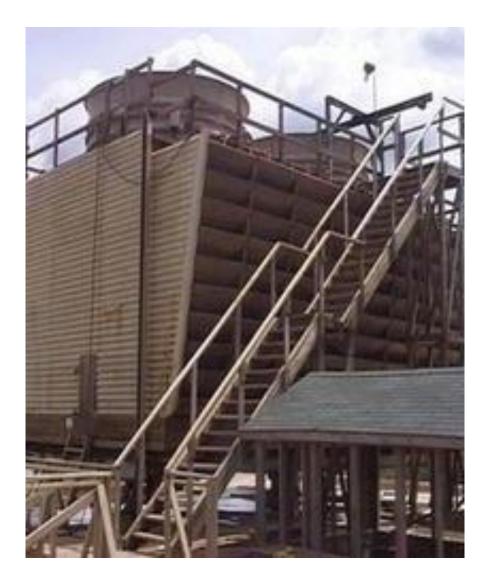
- SPRAY NOZZLES.
- DISTRIBUTION VALVES.
- 0.2 Kg / Cm2 to 1.0 Kg / Cm2


Air


- DIRECT DRIVE
- BELT DRIVE
- GEAR DRIVE
- NO LARGE BLOWERS

Principal of Operation

FILM BASED EVAPORATION


EVAPORATION COOLS WATER

ARE THESE SYSTEMS GREEN? COOL? ENERGY EFFICIENT?

CROSS FLOW WOODEN COOLING TOWER

OLDEST PROVEN DESIGN : VERY POPULAR FOR MANY YEARS.

LOW APPROACH POSSIBLE.

LARGE CAPACITY AVAILABLE.

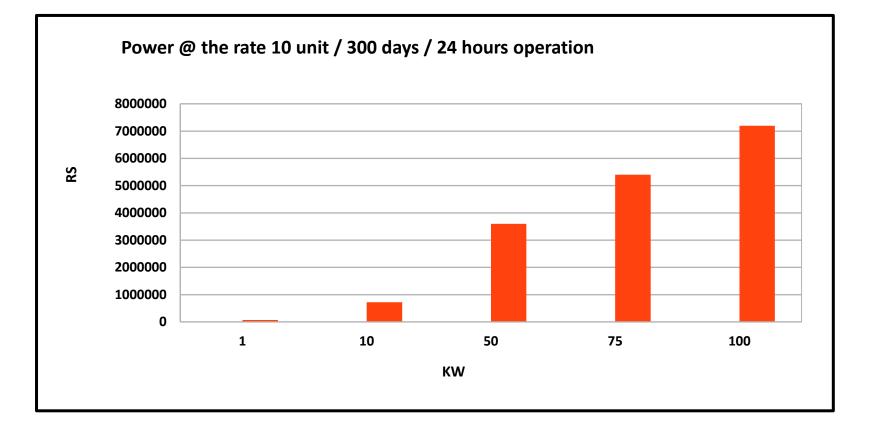
SPACE LESS THAN ANY NATURAL DRAUGHT COOLING SYSTEM.

MERITS / PLUS POINTS

PROBABLE DEMERITS

QUALITY WOOD EASILY NOT AVAILABLE

NO EFFECTIVE SUPPORT FROM OEMS


OEMS PROMOTING RCC/CONCRETE COOLING TOWER

RUNNING COOLING TOWER CAN COLLAPSE DUE TO AGEING – MAY BE FATAL

CONTINUOUS POWER HUNGRY

POWER CONSUMPTION

NOISE

VIBRATION

ALIGNMENT PROBLEMS

BALL BEARING PROBLEMS

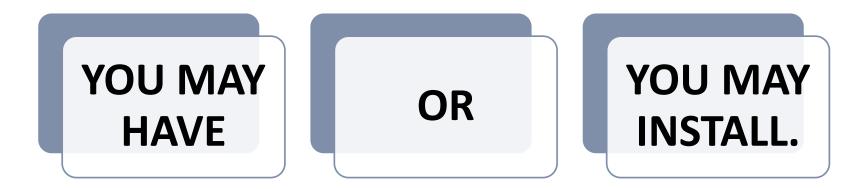
STRUCTURAL STABILITY PROBLEMS

STAND BY INVENTORY IS MUST

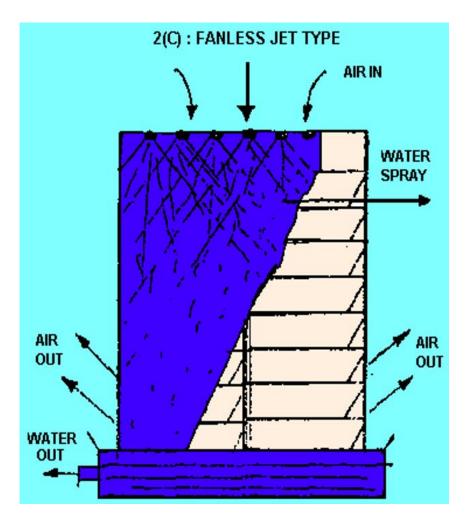
GEARBOX

FAN

DRIFT ELIMINATOR

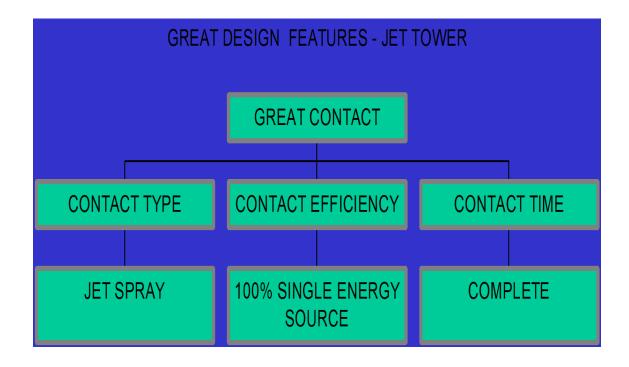

MOTOR

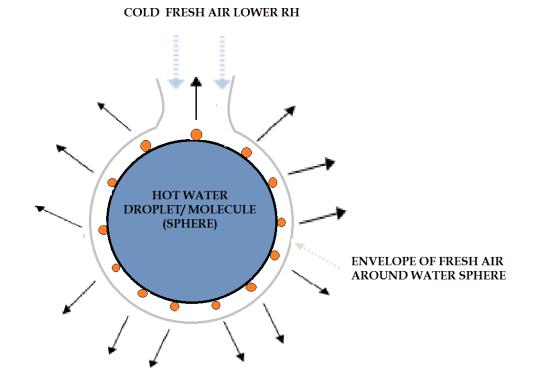
BALL BEARING



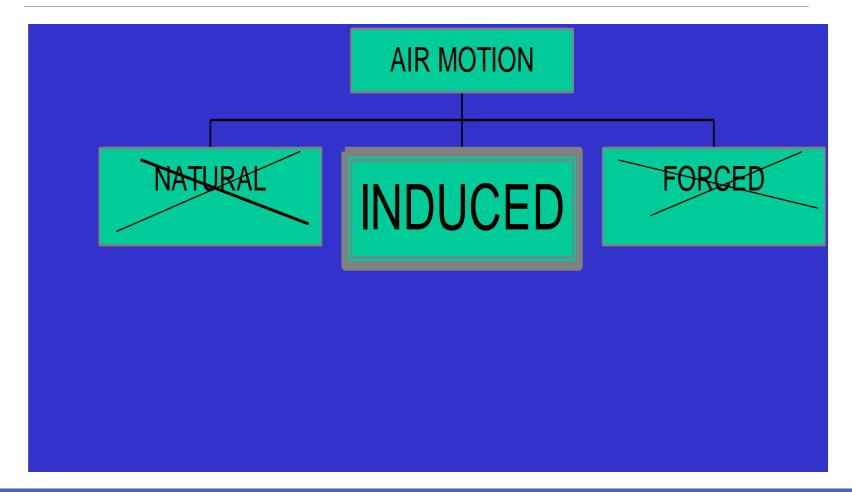
JET TOWER

TECHNOLOGY Jet Cooling Tower


- In Jet tower air current is produced by Jet Effect
- •Jet nozzles are placed at the top of the tower
- •When water comes out of nozzles, it pushes surrounding air downwards by Jet effect
- •This air is drawn out of tower from the bottom, through side eliminators (louvers)


Principle of Operation of Jet Cooling Tower.

- Jet Cooling Towers work on Water Jet principle.
- •So when water comes out of Jet nozzles, it pushes the air below it, creating a low pressure zone.
- •Hence surrounding air tries to rush in and air current from top to bottom is established.
- •When water comes out of nozzles, it pushes surrounding air downwards by Jet effect.
- Exit air is drawn out of tower from the bottom, through side eliminators (louvers).

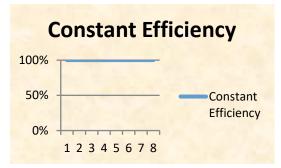

Jet Cooling Tower

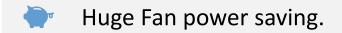
MULTIPLE EXIT FOR EVAPORATION

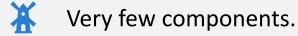
Jet Cooling Tower – Air Motion

JET COOLING TOWER

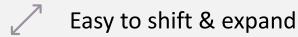
The Most User Friendly


Maintenance Free




Energy Saving

Constant Efficiency



Service Service Werks Werks.

Modular Constructions.

GREEN COOLING TOWER

Component level maintenance possible.

No need of Lubricant Oil.

No electrical power cable.

No heat generation due to friction .

No fire hazards.

GREEN COOLING TOWER

SPECIAL DESIGN ASPECTS

- High wet bulb
- High ambient


UNIQUE FEATURES

- Multi application
- Expansion
- Re shifting
- Smaller units

CAPACITY AVAILABLE

- 5 m3/hr to 2500 m3/hr Single cell,
- Higher capacity in multi cell configuration.

Jet Cooling Tower

- As water is sprayed, tower becomes spray filled, hence nothing like pack or fills is required.
- Construction is modular so expansion is very easy.
- Single tower can be used for multi-application.
 - 100 % fan power is saved.

Practically zero maintenance.

MERITS - Jet Cooling Tower

Cooling Tower will never collapse.

Can handle contaminated water.

Can tolerate Algae growth.

Can handle water with dissolve matter .

END USER FRIENDLY-Because

Hot & Humid Air is discharged from all sides.

Looks like natural draught tower.

Space requirement : 15 to 20 % more.

Clear space around jet tower : 2 to 3m.

Technical Demerits -Jet Cooling Tower

Recently Installed & Partially commissioned–IOCL Kandla- LPG-Import Plant.

Jet Cooling Tower Capacity- 1500m3/hr for LPG IMPORT TERMINAL

ARMEC MOMENT OF PRIDE...Recently Inaugurated At Bharat Petroleum Corporation Limited-Mumbai

INSTALLATION - For HVAC Plant at IT Park with Residential Zone

- Jet Tower of Capacity 225 TR
- Installed in year 2002-03 : replacement of fan type as a Noise Free Tower : complaints from residential area
- AC PLANT supplied by Voltas.

ARMEC JET COOLING TOWER

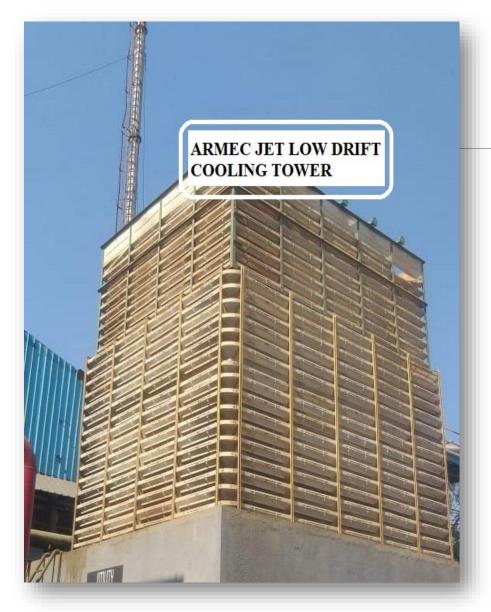
a. Return on Investment

: 8 Months : 390m3/hr

: approx 510 days

: Rs.16,80,307/-

- b. Capacity
- c. Day in Operation
- d. Power saving since installation
- e. Expenses on maintenance of jet tower : NIL


INSTALLATION -Pharmaceutical

- Jet Tower of Capacity : 390m3/hr in Neon Laboratories Ltd.
- Installed in year 2017-18.
- •Jet cooling tower for 3deg C Approach

INSTALLATION - PSU – Refinery in Coastal Belt (High wet bulb Area)

- Requirement: Energy saving & maintenance free
- Reason: Quick Payback Period
- Solution: One Jet tower
 of 550 m3/hr capacity
 was installed

INSTALLATION -Pharmaceutical

- Jet Tower of Capacity 250m3/hr in Alkem Laboratories Ltd.
- Installed in year 2020-21: Double drift Jet cooling Tower (Very low drift loss - 0.001%)
- •4 pass drift eliminators to minimize drift loss.

INSTALLATION -Food Industry

- Jet tower of capacity60 CUM / HR
- Installed in year 2016-17
- Used for Food Industry
 Rasgulla cooling line.
- 4 pass drift eliminators to minimize drift loss.

INSTALLATION -Chemical Process

- Single Jet tower for multi machines.
- Installed in year 1997-98

Jet Cooling Tower - Structure

- Jet Cooling Tower is made of non corrosive material using FRP
- •Louvers : moulded FRP
- structure : MS sections are lined with FRP
- Nozzles : Nylon 6. Industrial plastic
- •Nut Bolts : Glass filled Nylon

INSTALLATION -Detergent Plant

- Two jet towers, each of capacity 250 CUM / HR
- Installed in year 1997-98
- Used for detergent powder manufacturing process.
- The water carries soap particles

INSTALLATION - For DG Set

- Single Jet tower of capacity 450m3/hr
- Installed in year 2006-07

INSTALLATION – Chemical Process

- jet tower of capacity300 CUM / HR
- Installed in year 1997-98
- Used for Sulfuric Acid manufacturing process.

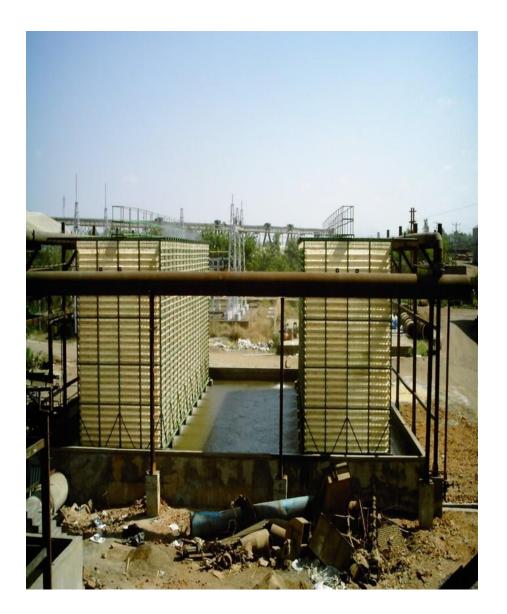
DCM SHRIRAM CONSOLIDATED LTD – Kota (Rajasthan).

- Jet tower capacity : 1000m3/hr x 4 Towers
- Application : Urea / Ammonia
- INSTALLATION -Fertiliser Plant

800m3/hr-STEEL INDUSTRY (TMT BARS COOLING)

Sugna Metals Limited

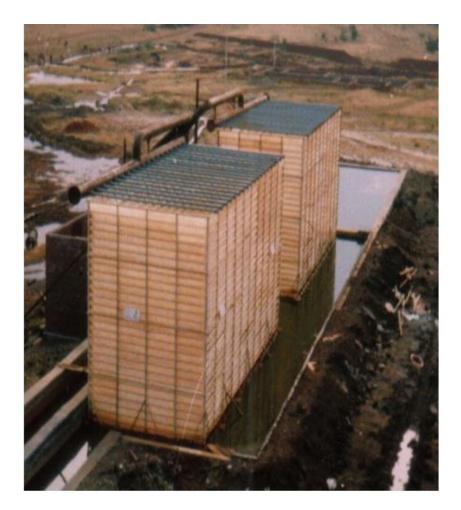
840M3/HR-Process cooling-Metal industries : ANODE CASTER



Hindalco Industries Ltd

INSTALLATION - Steel Plant

- Jet tower capacity: 1000m3/hr x 5 Towers
- Application: STEEL


INSTALLATION -Power Generation Plant

- Jet tower capacity: 1250m3/hr x 2 Towers
- Application: Power Generation

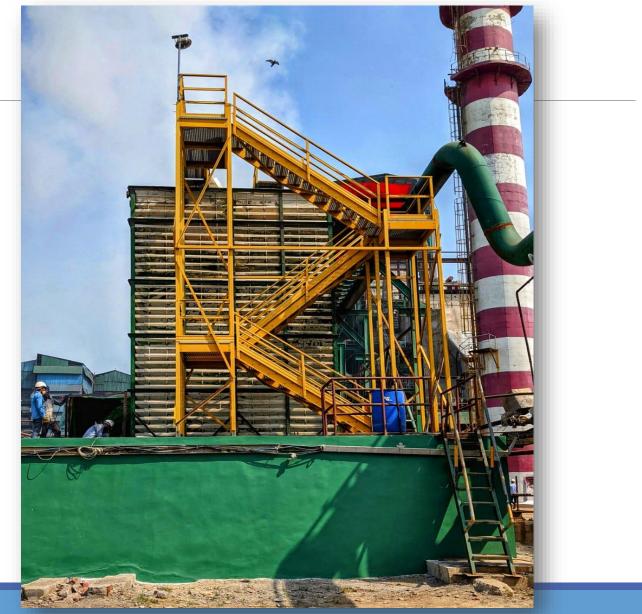
INSTALLATION – Process Cooling

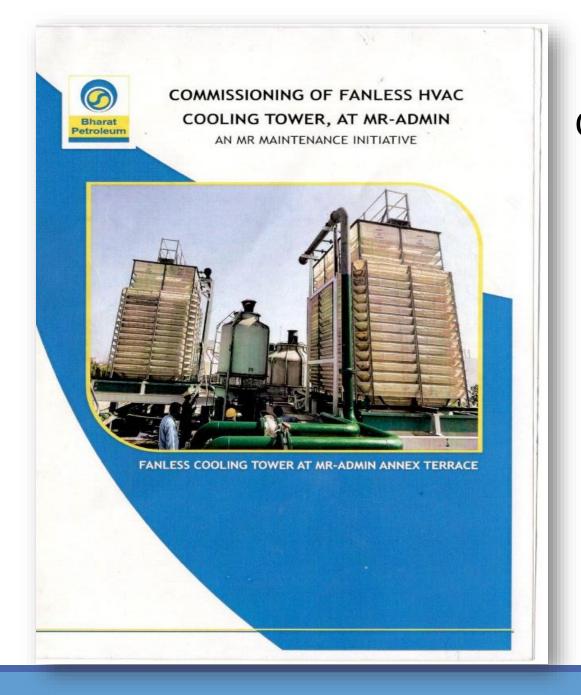
- Jet tower capacity: 120m3/hr
- Application:Condensate Cooling

INSTALLATION - Sugar Mill

- Jet tower capacity: 900m3/hr x 2 Towers
- Application: Sugar

Maximum single cell capacity= 3000m3/hr (6000m3/hr installed)


EID PARRY INDIA LTD- HALIYAL


Single location installation=7000m3/hr (2000m3/hr x 2, 1500m3/hr x 2)

MYLAR SUGAR

FRP Staircase for large cooling tower installation & other Industrial structures

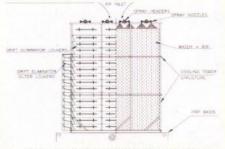
Case Study of BPCL-Mumbai

Case Study : Bharat Petroleum Corporation Ltd

Project : Installation of fan-less HVAC cooling towers in MR Admin

Vendor: M/s. Armec Cooling towers Pvt. Ltd (ISP 9001-2008/NSIC)

Cost: Rs. 21,00,853


Objective : Installation of energy saving and maintenance free Cooling Towers.

Background:

Cooling Towers (CT) are an integral part of HVAC system performing as heat exchangers that use water and air to transfer heat from air-conditioning systems to the outdoor environment. Conventionally induced draft cooling towers are employed for heat exchange which uses fan for induced draft. For the first time in BPCL MR, we have introduced fan-less CT for Admin Annex-North HVAC system. These cooling towers are based on liquid jet technology where air movement is induced with the help of water jets and also called as Jet Cooling Towers.

The hot water from the heat source is circulated to the inlet header of the CT. The inlet header pipes have branches and sub branches covering the internal area of the CT. The non-clog nozzles are connected at the outlets of the sub branch piping. At an inlet pressure of 2 - 2.5 Kg/cm' to the CT. The hot water is atomized to a mist state. The nozzles are self-designed to create more pressure thereby converting water into minute atomized particles. From the four sides of the lowers, plenty of fresh air is automatically circulated by the aerodynamic designed FRP Louvers.

The hot water that are in a mist state comes directly into contact with the ambient air and the cooling is achieved mainly by the portion of water that gets converted to vapours, thus caring away the heat through evaporation. Therefore, water gets cooled.

FAN-LESS COOLING TOWER COMPONENTS

JET ACTION THROUGH NOZZLE

Cost Benefit Analysis:

Power Savings:

CT motor for 100 TR rated Cooling Towers: 5.5 kW Power savings in a year: 5.5 kW X 9 hrs X (365-52) days X 2 CT = 30987 Units Cost Savings: Power Savings X Unit Rate (Rs. 9/Unit) = Rs. 2,78,883/ Year

One Time CostSavings:

Cost of motors + Push button stations + power & control cables (Rs. 65,000 X 2 nos.) = Rs. 130,000

Salient Features:

APPLICATIONS	FEATURES
Extensively used in HVAC systems	Easy Maintenance: Due to absence of no moving parts/mechanical devices/choking parts like fins etc., no regular maintenance is required.
Captive Power Plants	Power Saving (Eliminates the use of CT fan)
Air compressors, Quenching Oil Cooling	Water Saving: Louvers are specially designed to minimize drift losses.
Process Cooling: a. Jacket and heat exchangers b. Vacuum condensers/ steam jet ejectors	Constant Efficiency: Efficiency of cooling tower remains constant with continuous usage as water to air contact area & contact remains unaffected

Comparison Table:

Features	Fan - less CT	Conventional Fan Type CT
Fan requirement/gear boxes/bearings	NO	YES
Vibration	NO	YES
Moving Part Wear & tear	NO	YES
Collapse of Fan blade motor assembly	NA	PROBABLE
Fills Ageing/chocking/replacement	NA (NO FILLS)	YES
Power Saving	100%	NO
Higher Delta T Possible	YES	NO
Delta 'T' range (Deg C)	4-20 deg C	4-5 deg C
Spares Required	NEGLIGIBLE	YES
Running Cost	NEGLIGIBLE	VERY HIGH
Maintenance	ZERO	REGULAR
Efficiency	CONSTANT	DECREASE WITH OPERATION
Expansion of CT	POSSIBLE	NOT POSSIBLE

Case Study: Bharat Petroleum Corporation Ltd, Kochi

Energy Saving Jet Type Fanless Cooling Tower at GT-2 **Power Plant**

Mr BK Datta, Director (Refineries) inaugurated the operation of the Jet type cooling water tower in GT2 area on 22 January in the presence of Mr Prasad K Panicker, ED(KR), Mr P Kumaraswamy, GM(UC) Project, Mr MN Neelakanton, GM(AE), Mr CK Soman, GM(O) and other executives.

The first of its kind in BPCL, Jet type fan less cooling tower saves considerable electrical energy as it does not have any fans. About 30KW power consumption is saved due to discontinuation of two numbers induced draft fans of the old cooling tower. Power savings is around Rs. 25 lakhs per annum. The entire project cost was Rs. 55 lakhs.

The cooling tower supplied by M/s Armee Cooling Tower (P) Ltd. was installed in GT2 Power plant.

Mr BK Datta with KR officials in front of the cooling tower at GT-2 power plant

Main Highlights of Jet type cooling tower are:

- The fan less cooling tower has no fills and rotating equipments. Hence virtually it is maintenance free. .
 - Reliability issues due to

fan failure, dislocation of distribution header branch pipes. disintegration of fills and it's carry over etc are eliminated. Drift losses are reduced due to extended sump.

Fast installation.

Mr BK Datta inaugurating the Jet type cooling water to

Kochi Refinery achieves 38 million accident free man-hours

Case Study - CEAT Ltd

¢ib	Location	: Ceat Corporate Head Quarters, Mumbai.
***	Application	: Packaged Air-conditioning units of Voltas make.
\checkmark	Capacity	: 330 TR (Total 26 Unit of 7.5 TR and 10 TR)
	Replacement Time	: 2 ½ days.
*	Conventional C. T.	: Jet Tower
×	Fan HP	: 7.5 x 2 = 15 HP
	Space Required	: 4.9m x 5.0m 4.8m x 4.8m

Case Study – Cummins Diesel

e Lib	Location	: Cummins Diesel Sales & Services (I) Ltd.		
***	Application	: Central A. C.(Mcquey Ch	illers) + D.G.[2 Separate Cooling Towers].	
~	Capacity	: 225 TR + 750 KVA x 2 No	S	
	Replacement Time	: 3 days.		
*	Conventional C. T.	: Jet Tower		
×	Fan HP	: 15 + 5 = 20 HP		
	Space Required	: 16' x 12' and 8' x 8'	16'x20'(single Tower for both application.)	

Case Study - Phillips Carbon Black Ltd

	Location	: Palej, Gujrat
B	Application	: Aux cooling for Power Plant : Air Compressor Cooling.
Ę	Capacity	: 500 m3/hr
÷	Fan HP	: 15 X 2 = 30 HP

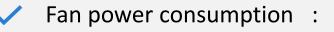
FAILURE TO SUCCESS

Why did Turnkey contractor opted for ARMEC Copier	 Cheap & Price suiting. Reduce project cost mission.
Post installation	Cooling tower miserably failed, The Supplier did not turn up.
Team ARMEC	Called by User
Team ARMEC	Modified existing failed tower.
Key features	Jet Venturi designImproved contact time
Time Period for retrofitting	3 Days

Case study-Bilagi Group, Karnataka

LIFE CYCLE COST ANALYSIS (LCCA) Factors to be considered

LCCA – DATA


Application : Power Plant /Process Cooling

Water Flow Rate : 2500 m3/Hr

Inlet Temp : 42 / 40 °C

→ Outlet Temp : 32 °C

✿ Wet Bulb Temp : 28 °C

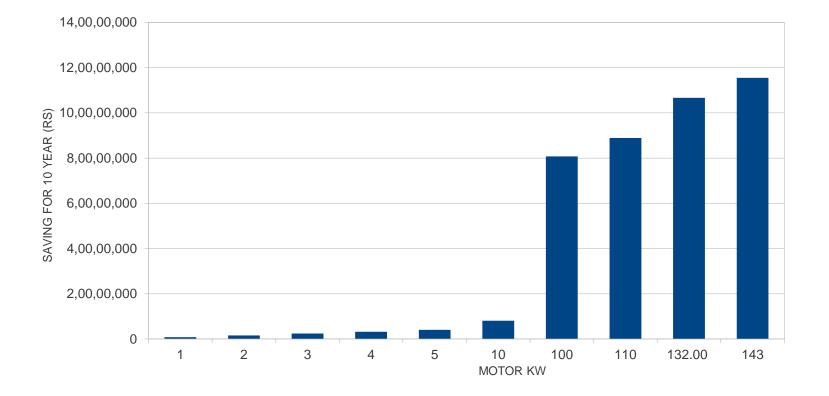
: 0 KW
: 132 KW
: 110 KW
: 143 KW

Due to repair cost

Due to revamp cost

MONEY EARNING CALCULATIONS SAVING

UNIT RATE	RS. 8	RS. 10	RS. 12
COST OF 1 KW POWER	57,600/-	72,000/-	84,400/-



QUICK PAYBACK PERIOD SAVING TABLE

WHEN YOU BUY ARMEC JET COOLING TOWER INSTEAD OF FAN TYPE COOLING TOWER

	SAVING/YR 2017 TO 2019	SAVING/YR 2020 TO 2022	SAVING/YR 2023 TO 2026	POWER CONSUMPTION FOR 10 YEARS
MOTOR KW	Rs. 8 / kw	Rs. 10 / kw	Rs. 12 / kw	
1	1,90,080	2,37,600	3,80,160	8,07,840
2	3,80,160	4,75,200	7,60,320	16,15,680
3	5,70,240	7,12,800	11,40,480	24,23,520
4	7,60,320	9,50,400	15,20,640	32,31,360
5	9,50,400	11,88,000	19,00,800	40,39,200
10	19,00,800	23,76,000	38,01,600	80,78,400
100	1,90,08,000	2,37,60,000	3,80,16,000	8,07,84,000
110	2,09,08,800	2,61,36,000	4,18,17,600	8,88,62,400
132	2,50,90,560	3,13,63,200	5,01,81,120	10,66,34,880
143	2,71,81,440	3,39,76,800	5,43,62,880	11,55,21,120

QUICK PAYBACK PERIOD SAVING GRAPH

		TOTAL COOLING TOWE	R CAPACITY – 2500 m	3/hr	
DESCRIPTION	BASE	ARMEC JET	RCC COOLING TOWERS	WOOD COOLING TOWERS	PVC /FRP COOLING TOWERS
TOWER PURCHASE COST	Market Survey [A]	47,42,950	4,74,29,500	61,65,835	37,94,360
LIFE OF TOWER (BASED ON MAINTENANCE & USE OF OEM PARTS)	SURVEY X	15	20	10	8
TOTAL LIFE TIME POWER COMSUMPTION	[B]	NIL	25,09,05,600	8,88,62,400	11,55,21,120

LIFE CYCLE COST ANALYSIS FOR COOLING TOWER [A & B] ARMEC JET Vs RCC Vs WOODEN Vs PVC FRP

		Total coo	ling tower capacity – 2	2500 m3/hr	
Description	Base	Armec jet ct	Rcc ct	Wood ct	Pvc /frp ct
Fill replacment	% of tower cost	Fill less	8%	40%	10%
Fill replacment	Cost in rs	Fill less	35,57,213	24,66,334	3,79,436
Fill replacment frequency in life time	Survey	Fill less	4	2	5
Total life time fill maintenance cost	[C]	Nil	1,42,28,850	49,32,668	18,97,180

Fill Replacement Cost [C]

		Total cooling	g tower capacity – 250	0 m3/hr	
Description	Base	Armec jet ct	Rcc ct	Wood ct	Pvc /frp ct
Motor Rewinding	% of tower cost	NO MOTOR	1%	3%	1%
Motor Rewinding	Cost in rs	NO MOTOR	4,74,295	1,84,975	1,51,774
MOTOR REWINDING FREQUENCY	SURVEY	NIL	1	1	1
TOTAL LIFE TIME MOTOR MAINTENANCE COST	[D]	NIL	4,74,295	1,84,975	1,51,774

Motor Rewinding Cost [D]

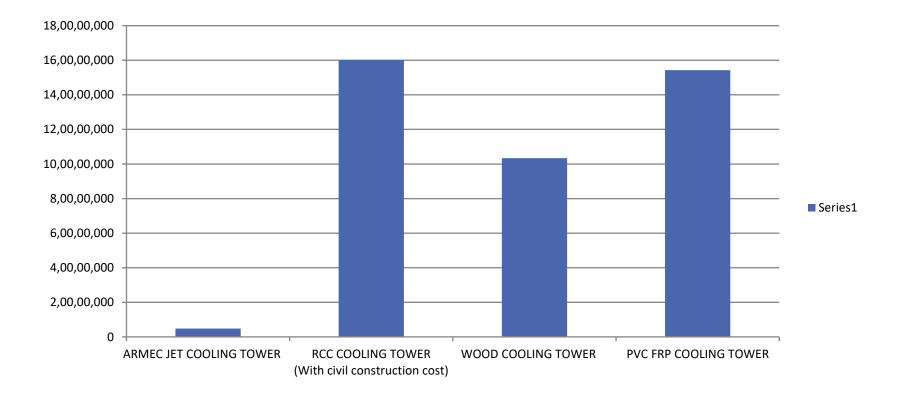
		Total cooling	tower capacity – 2500) m3/hr	
Description	Base	Armec jet ct	Rcc ct	Wood ct	Pvc /frp ct
Blade Cost	% of tower cost	NO Blade	2%	5%	7%
Blade Cost	Cost in rs	NO Blade	9,48,590	3,08,292	2,65,605
FREQENCY BLADE REPLACEMENT COST	SURVEY	NIL	1	1	1
TOTAL LIFE TIME BLADE MAINTENANCE COST	[E]	NIL	9,48,590	3,08,292	2,65,605

Blade Cost [E]

		Total cooling towe	er capacity – 2500 m3	/hr	
Description	Base	Armec jet ct	Rcc ct	Wood ct	Pvc /frp ct
Lovers and Nozzles Replacement Costs	% of tower cost	40%	3%	10%	6%
Lovers and Nozzles Replacement Costs	Cost in Rs.	18,97,180	14,22,885	6,16,584	2,27,662
Lovers and Nozzles Replacement Freq.	SURVEY	1	1	1	1
TOTAL LIFE TIME LOUVERS & NOZZLES MAINTENANCE COST	[F]	18,97,180	14,22,885	6,16,584	2,27,662

Lovers and Nozzles Replacement Costs [F]

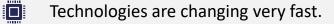
То	tal cooling to	wer capacity -	- 2500 m3/h	r	
Description	Base	Armec jet ct	Rcc ct	Wood ct	Pvc /frp ct
Oil Replacement + Gear Box	% of tower cost	Nil	5%	15%	2%
& Misc Reapir Life Time Costs	Cost in Rs. [G]	NIL	23,71,475	9,24,875	75,887
Toatl Life Time Structure	% of tower cost	5%	3%	10%	15%
Referbishing Cost	Cost in Rs. [H]	2,37,148	14,22,885	6,16,584	5,69,154
TOTAL LIFE TIME MAN POWER COST Rs. 6, 00,000/- PA. (10% rise every year) FOR LIFE TIME.	% of tower cost	2%	3%	8%	10%
	Cost in Rs. [I]	2,37,148	14,22,885	6,16,584	5,69,154


Oil Replacement, Strucuture Referbishing Costs & Man Power [G, H & I]

	Tot	al cooling tower	capacity – 2500 r	m3/hr	
Description	Base	Armec jet ct	Rcc ct	Wood ct	Pvc /frp ct
	A+B+C+D+E+F+G+H+I	72,58,547	32,02,35,030	10,33,77,209	12,34,58,988
TOTAL LIFE TIME COST	IN WORDS	SEVENTY TWO LAKH, FIFTY EIGHT THOUSAND, FIVE HUNDRED FORTY SEVEN ONLY	THIRTY TWO CRORE, TWO LAKH, THITY FIVE THOUSAND THIRTY ONLY	TEN CRORE, THIRTY THREE LAKH, SEVENTY SEVEN THOUSAND, TWO HUNDRED NINE ONLY	TWLVE CRORE THIRTY FOUR LAKH,FIFTY EIGHT THOUSAND, NINE HUNDRED EIGHTY EIGHT ONLY.

Total Lifetime Cost

		Total cooling tov	ver capacity – 2500 m3/hr		
Description	Base	Armec jet ct	Rcc ct	Wood ct	Pvc /frp ct
Per year cost	IN FIGURES	4,83,903	1,60,11,752	1,03,37,721	1,54,32,374
(Total Life time cost / Life of tower)	IN WORDS	FOUR LAKH, EIGHTY THREE THOUSAND, NINE HUNDRED THREE ONLY	ONE CRORE, SIXTY LAKH, ELEVEN THOUSAND SEVEN HUNDRED FIFTY TWO ONLY	ONE CRORE THIRTY THREE LAKH SEVEN THOUSAND, SEVEN HUNDRED TWENTY ONE ONLY	ONE CRORE, FIFTY FOUR LAKH,THIRTY TWO THOUSAND, THREE HUNDRED SEVENTY FOUR ONLY.
Ownership Cost for 10 wears	IN FIGURES	48,39,030	16,01,17,520	10,33,77,210	15,43,23,740
Ownership Cost for 10 years (All 4 types of cooling towers compared for same duration)	IN WORDS	FORTY EIGNT LAKH, THIRTY NINE THOUSAND & THIRTY ONLY	SIXTEEN CRORE, ONE LAKH,SEVENTEEN THOUSAND,FIVE HUNDRED TWENTY ONLY	TEN CRORE THIRTY THREE LAKH, SEVENTY SEVEN THOUSAND, TWO HUNDRED TEN ONLY	LAKH TWENTY THREE

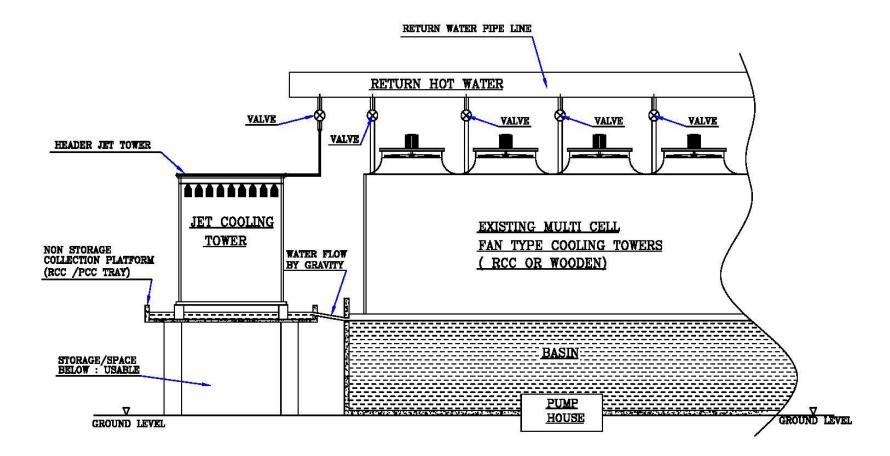

Cost of Ownership

TEN YEARS LIFE OWNERSHIP COST OF COOLING TOWER

IAMS – INNOVATIVE Asset Management System

> A low cost, flexible, adaptable modern technology which can support huge fan type cooling towers.

The RCC cooling towers envisaged, designed & installed 10 or 20 years back are becoming obsolete due to their "Old Design".


The newer cooling towers are more compact & more energy efficient.

Older RCC cooling towers have regular revamp schedules + costs including RCC structure care.

 $mathcal{Many}$ Many times such RCC towers work at reduced efficiency levels.

In a multicell arrangement, at any given time, few cells are always under repairs & revamps due to constant ageing and due to the moving parts, vibration & packing material.

Why IAMS – INNOVATIVE Asset Management System ??

PEAK	PEAK SUMMER / CRITICAL MONTHS
REDUCE	REDUCE PER CELL FLOW.
IMPROVE	IMPROVE L/G RATIO.
KEEP	KEEP SAME AIR FLOW.
IMPROVE	IMPROVE PER CELL EFFICIENCY.
TOTAL	TOTAL WATER FLOW REMAINS CONSTANT AS JET TOWER TAKES THE DIVERTED FLOW.

← DIVERT ONE CELL FLOW.

WINTER MONTHS NORMALY ONE OR TWO CELLS IN "OFF" CONDITION.

U SWITCH OFF

SWITCH OFF MORE FANS.

USE JET TOWER FOR 4 TO 5 MONTHS.

USE JET TOWER FOR ALL 12 MONTHS

RECOVER MONEY BY BETTER PERFORMANCE IN SUMMER PLUS POWER SAVING.

ONCE INVESTMENT IS RECOVERED. THIS BECOMES ZERO COST (CAPITAL+RUNNING) FACILITY FOR PROCESS.

BEST GIFT FROM UTILITY TO PRODUCTION.

QUICK ROI & "FREE GIFT" FACILITY

- Jet Cooling Towers of 3000 m3/hr to 6000 m3/hr can be installed wherein;
- No space remains unutilised
- + No new pumps are added
- The hot water / return water pipe line is extended (by way of tapping) and hot water is given to Jet TowersValves are used to control / divert the required water flow,
- The Jet Towers are installed on non storage PCC/RCC slab
- The slab will be on columns where the space below can be utilised for any other purpose including storage or installation of smaller equipments
- The water falling in Jet Towers is diverted to main existing cold water basin by gravity through open channel / pipe

IAMS For a typical 30,000 m3/hr RCC Cooling Tower zone

