Ways of making Alumina Refinery Energy Efficient

by

M.J.Chaddha

Former-HOD(Alumina Department), JNARDDC

Benefits of conducting process Audit

- Energy Reduction is possible in any operating plant
- Energy reduction can be achieved by reducing Raw Material consumption by conducting Process Audit

Process Audit

- Process Audit is primarily the management tool to **identify deficiencies** and recommending **implementable remedial** measures for improvement.
- The Process Audit Report will provide all **assessment data** and information to management to ensure their implementation in the plant.
- During the Process Audit of the plant, **thorough evaluation** of operation, process control, **efficiency parameters**, safety and quality control including **analytical aspects** of Alumina refinery will be done to arrive at recommendations for improvement in respective areas thereby improvement in profitability of the plant.
- Process Audit of the plant will **uncover the shortcomings** / limitations in operation, process control, equipment, training, quality control, documentation and other related technical aspects of the plant.

- **To identify problems and specific solution to those problems for implementation with more focus to :**
- **reduce production cost by reduction in consumption of Caustic soda,**
- **improvement in extraction efficiency,**
- **improvement in liquor productivity,**
- **reduction in evaporation load,**
- **improvement in steam economy and reduction in utilities and services**.

Flow chart of Bayer process

Specific Raw Material Consumption in Bayer Process

- The raw material consumption can be divided into :
- Bauxite
- Caustic soda
- Water
- Lime
- Flocculant, Defoamer,Dewatering agents,CGM, additives, chemicals, filter cloths etc

Specific Bauxite Consumption(SBC)

- SBC depends on extractability of alumina and supersaturation (RP)
- Extractability depends on Temperature, Caustic Conc. & Residence time
- SBC = $1010/(M.E.A)x$ % Ext.)
- M.E.A = Maximum Extraction Alumina (THA/(THA +MHA))
- % Ext. = Extraction after considering all losses such as unextracted alumina, auto-precipitation etc.

Determination of Break-Point of Digestion

In an Alumina Refinery or technological testing of bauxite it is sometimes required to know what should be the maximum target RP which can be achieved without much loss of digestion efficiency.

•**To determine it one has to conduct digestion test at different target RP and Temperature to determine achieved RP along with digestion efficiency. A point is achieved when there is a drop of achieved RP which shows the breakpoint as shown in the figure.**

Target A/C vs Achieved A/C

Target A/C

Analysing Distribution of Alumina Losses

Analysing Distribution of Caustic Soda Losses

Conducting Caustic Soda Consumption Audit

PRE-DESILICATION

- \cdot **Na**₂**O** + **SiO**₂ = **Na**₂**SiO**₃ **------ (1)**
- \cdot **Na**₂**O** + **Al**₂**O**₃ = **2NaAlO**₂ ------ (2)
- Na_2SiO_3 + $NaAlO_2$ = x Na_2O . y Al_2O_3 z SiO_2 n H_2O -- (3)
- **A** $(\mathsf{k}_1) \rightarrow \mathsf{B} (\mathsf{k}_2) \rightarrow \mathsf{C}$ Where $\mathsf{k}_1 \gg \mathsf{k}_2$

ENERGY REDUCTION OPPORTUNITIES IN PRE-DESILICATION

• **Study Kinetics of Pre-desilication**

SiO² Conversion Batch vs Continuous

Kinetics of Pre-desilication

- d[SiO²]/dt = k [(SiO²)^t – (SiO²)equ] n

- $-dC/dt = K (C_t C^*)^n$ where n is the order of reaction
- If $n = 1$ Then $\ln [C_0 C^*] / [C_t C^*] = kt$ --- $---(1)$
- If n= 2 Then $1/$ $[C_{o}$ -C^{*}] $1/$ $[C_{t}$ C^{*}] = kt ------ (2)
- Plot the value of (1) & (2) vs time at different temperature, if it is linear than determine $k = A \exp(E_0/RT)$ to determine activation energy in KJ/mol
- $-dC/dt = A exp(Ea/RT) \times [C_t C^*]^n$

Digestion- Flashing System

Terminology of Flash Type Heat Exchanger

 $W1$ = Mass Flow rate in ton/hr x Specific heat of Slurry in Mcal/ton/^oC **W1** represents slurry flow to digester circuit for heating in flash heaters W2 = represents flow of digested slurry from last digester entering the flash tank **PE1**

- **ME1** = flashed steam leaving first flash tank in tons/hr
- **hE1!!** = Represents Enthalpy of flashed steam in Mcal/ton
- **hE1!** = Enthalpy of condensate in Mcal/ton

Heat Balance for first flash tank

W2 x (T21 –T22) = ME1 x (hE1^{!!} – hE1[!]) + Heat Loss

Overall Heat Balance

 $W1 x (T14-T13) = W2 x T21 - (W2-ME1-ME2-ME3) x T24 - (ME1 x hE1[!] +$ ME2 x hE2[!] + ME3 x hE3[!]) + Heat loss

Flash Type Heat Exchangers & Flashing Tanks

Counter-current Decantation (WASHING)

Counter Current Decantation of Red mud Washing

Efficiency of Red mud Washing any stage (Eⁿ) :

 $E_n = (CNa_2O)$ underflow $(n-1) - (CNa_2O)$ underflow x 100 (C Na₂O) underflow (n-1) – (C Na₂O) overflow

For E.g. Settler underflow Na2O conc. = 150 gpl 1 st Washer overflow Na2O conc. = 72 gpl 1 st Washer underflow Na2O conc. = 75 gpl

Then 1st Washer Washing Efficiency = 150 – 75 x 100 150 - 72

= 96.15 %

- **To Increase Washing Efficiency : Maintain Higher Temperature in washer circuit**
- **This will also reduce auto-precipitation in settlers and washing line**

Precipitation Modeling

- **dA/dt = K x S x e –(∆E/RT) x (A-A^e) 2 / (FC) 2**
- **Where K = rate constant**
- **S = Surface area of seed available in tank in m² /lit**
- **∆E = Activation energy in Kcal/mole**
- **FC = Free caustic concentration in gpl**
- **A^e = Equilibrium alumina concentration in gpl**
- **T = Temperature in Kelvin**
- **Vⁱ x Aⁱ - V^o x A^o = V^t x (dA/dt) Taking Alumina Balance**
- **Vⁱ x Aⁱ - V^o x A^o = V^t x K x S x e –(∆E/RT) x (A-A^e) 2 / (FC)²**
- **Where Vⁱ & V^o is volume of liquor entering & leaving Precipitator tank in m³ /hr**
- Where V_t = Volume of precipitator tank in m³

\cdot dA/dt = $K \times S \times e^{-(\Delta E/RT)} \times (A-A_e)^2 / (FC)^2$

• Conduct Batch Precipitation test at 2 to 3 precipitation temperature and determine dA/dt. Calculate Value of K and ∆E for the plant liquor. Substitute the value in equation and you can even calculate the percentage or extent of bypassing of aluminate liquor.

Conclusion

- There is a considerable scope in reducing material as well as energy consumption in alumina manufacture to reach goal of 10.5 GJ/ton and further down.
- The Alumina Refinery should appoint Consultant for Process Audit to identify plant implementable measures to bring down the material & energy consumption in a phased manner.
- All alumina refineries should go for break-point digestion studies for increasing alumina extraction & supersaturation.
- Precipitation Modeling studies should be conducted to evaluate optimum liquor productivity
- In-house plant measures such as maximizing hot condensate recovery from digester-flashing system and reducing unauthorised water into the system which will help in reducing evaporation load thus reducing energy consumption.