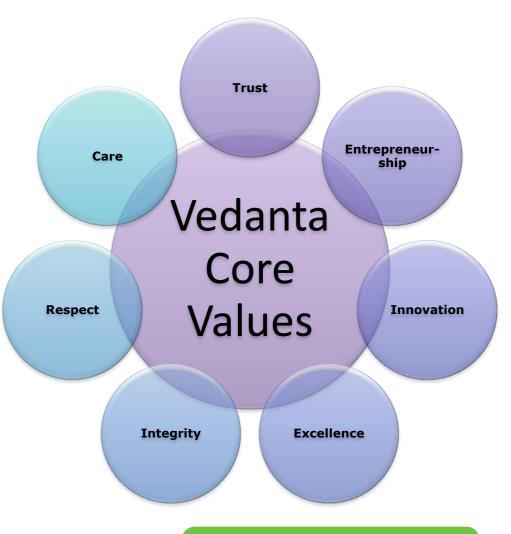


URJA - SOURCE OF ENERGY

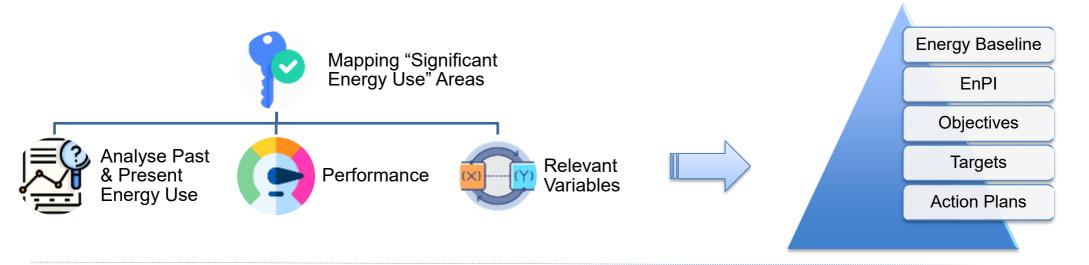
VEDANTA LIMITED, JHARSUGUDA


Purpose & Values

Core Purpose

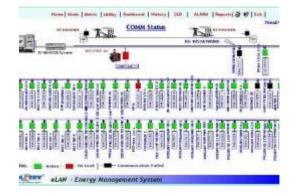
"Vedanta is a globally diversified natural resources company with low-cost operations. We empower our people to drive excellence and innovation to create value for our stakeholders. We demonstrate world-class standards of governance, safety, sustainability & social responsibility"

Operational Best Practices



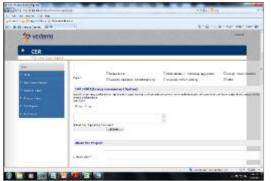
Energy Management

□ certified with ISO 50001:2018



Energy review frequency

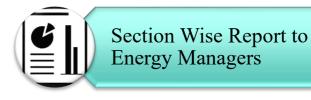
	Designation	Daily	Weekly	Forth nightly	Monthly
	Head O&M	V	V	V	٧
	Plant Head		٧	V	٧
BAIN & COMPANY	COO (Power)		٧	V	٧
Management Consultant	CEO			V	٧
	Group CEO				٧



Energy Reporting & IT Enablement

Integrated Energy Meters reports

E-CER (Capex) Energy Impact Assessment


MES

e cust	TAR BOOKSEN PART AND BE
Constantion of	A TO C & B B Constants
N	* Devertisation
- D-rate	an a state of the
B to the	MARKALITZARA RACHARA BARANA MURANA AND AND AND AND AND AND AND AND AND
	Contraction of the second state in the free free free free the state of the
Despis	

Energy Efficient Procurement

SEC Report to Plant

Upgrading towards Industry 4.0

People Focus

<u>Awareness</u>

- Energy discussion in daily War-room
- Energy awareness in Tool Box Talk
- Awards & Recognition for Energy initiatives
- Campaigns likes leakages arrest are organized with VL employees & service partners.
- Competition related to Encon, environment etc. are organized among VL employees & service partners

Awards/Recognition

vedanta

transforming for good

Implement of six sigma projects

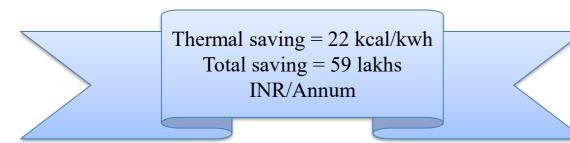
Execution of Kaizen & quality circle projects

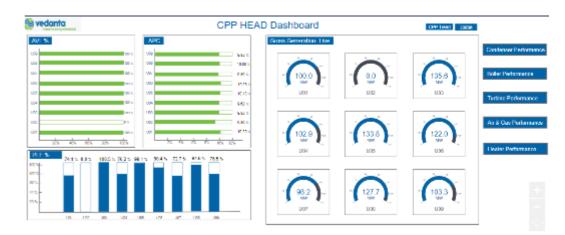
Implementation of Asset optimization & WAR room concept

Daily monitoring & tracking of specific power consumption

Development & implementation of innovative & break through energy efficiency improvement projects

Energy improvement projects directly linked to employees KRA


Energy audit & ISO 50001 implementation & certification


Operational excellence through digital initiative

Abstract :-

- implemented energy monitoring system though OSI- PI System is a suite of software applications that allows for collecting, historicizing, finding, analyzing, delivering and visualizing data.
- The PI System unlocks operational insights and new possibilities. The PI System enables digital transformation through trusted, high-quality operations data. Collect, enhance, and deliver data in real time in any location. Empower engineers and operators. Accelerate the work of **analytics & energy monitoring on real time basis**

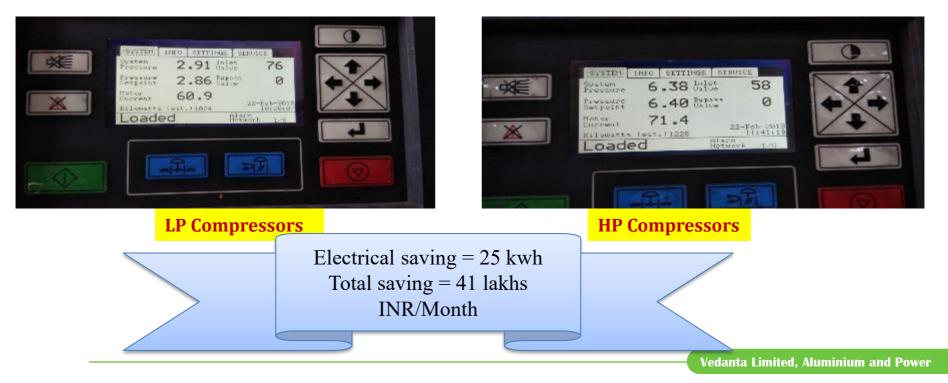
Parameters Badge UGM UI ID UI UII UIII UIIIII UIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					Devia	ition in c	ontroll	able pa	rameter	8		ŧ۹	edanta	pood
High Langenkan Str.	Parameters		Dasign	NON	UI.	10	08	04	- 05	05	07	08	US	_
VS presente 137 UPs 1373 1321 1373 1373 1373 1374 1374 1373 1374 1374 1373 1374 1374 1373 1374 1374 1373 1374 1374 1375 1374 1374 1375 1374 1375 1374 1375 1375 1374 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375 1375	VS tempera	ta se	537	0	576.2	223.4	535.6	599.1	598.2	\$24.3	535.7	595.8	648.2	
Condenserversion 48.82 dfs 47.5 41 24.4 48.7 47.5 65.6 48.2 45.1 45.1 Singress 15 TFH 24.6 0.0 55.6 24.2 17.5 65.6 48.2 45.1	HRH Langes	elure -	537	0	522.5	372.6	532.1	540.4	537.5	542.3	\$24.7	5227	624.8	_
Stragen 15 TPH 21.6 0.0 55.6 0.0.1 0.2.3 96.2 22.2 10.8 21.1 Idit agay 0 11.91 3.5 6.0 0.3 0.0 0.0 0.0 0.3 1.7 FCG FW lake many 28.5 0 24.6 1.0.6 24.6.7 24.7 22.5.0 24.2.2 22.8.0 24.2 22.8.0 1.7 FCG FW lake many 28.5 0 24.6.7 24.7.6 24.7.7 22.5.0 24.2.2 22.8.0 24.2.2 22.8.0 24.2.2 22.8.0 24.2.2 22.8.0 24.2.2 22.8.0 24.2.2 22.8.0 24.2.2 22.8.0 24.2.2 22.8.0 24.2.2 22.8.0 24.2.2 22.8.0 24.2.2 22.8.0 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2.2 24.2	V5 pressure		10.67	MPA	13.73	3.32	13.75	19.69	10.07	1173	13.38	11.62	13.70	
Idd spap 0 IPH 2.2 0.0 0.3 0.0 0.0 0.3 0.3 1.7 FGD FW Internets gap 0 PIE 0	Condensery	eta en la calega	25.85	8Pa		-0.1	-84,4	-66.7	-67.5	-65.6	-88.2	-85.4	-86.1	_
Proceeding Disk Old PM (internation of the section of	SH aptay		11	TPH	25.6	0.0	35.6	28.1	28.3	38.2	22.2	19.8	20.5	
The gas substrate 133 0 191.1 81.4 197.5 195.5 195.7 131.6 147.5	RHapny		0	IPH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12	
Heat rate losses due to deviation Parameters HOM U1 U2 U3 U4 U3 U4 U3 U4 U3 U4 U3 U4 U3 U3 <thu3< th=""> U3 U3</thu3<>	FCO EWinin	rinnip	245	0	216.6	110.5		2452	255.7	2467	225.0	245.2	28.0	
Parameters IION U1 U2 IIO U4 U5 U6 II7 U8 U8 99 Response HRL ResMMA 1.2 100.3 1.0 -1.4 -0.6 1.0 1.0 4.2 1121 temperature IRL ResMMA 5.1 165.6 2.3 -3.3 -3.4 -3.5 0.2 2.8 -3.7 V8 pressure HRL ResMMA 0.0 16.4 6.0 6.1 0.2 0.3 0.1 1.1 -3.7 V8 pressure HRL ResMMA 0.0 16.4 6.0 6.1 0.2 0.3 0.1 1.1 0.7 Controls accurate HELL ResMMA 0.0 1.0 0.24 5.17 64.8 257 50.7 54.3 Seropsy HRL ResMMA 0.0 0.0 0.1 6.1 6.1 0.0 0.0 0.3 0.3 1.1 Rescong HRL ResMMA 0.0 0.0 0.0 0.0 0.0 0.3 <t< td=""><td>The payout</td><td>attemp</td><td>133</td><td>0</td><td>151.1</td><td>81.4</td><td>106.6</td><td>153.5</td><td>158.7</td><td>113.6</td><td>142.6</td><td>141.8</td><td>141.2</td><td></td></t<>	The payout	attemp	133	0	151.1	81.4	106.6	153.5	158.7	113.6	142.6	141.8	141.2	
W8 Interpretation HRL Exc.RVM 1.2 137.3 1.0 -1.4 -0.2 1.8 0.8 0.2 1.1 118: Interpretation HRL Exc.RVM 5.7 176.5 5.3 7.5 -3.4 -3.5 0.2 2.8 3.7 58: processed HRL Exc.RVM 5.7 176.5 5.3 7.5 -3.4 -3.5 0.2 2.8 3.7 59: processed HRL Exc.RVM 0.0 176.6 6.0 6.1 0.2 0.3 0.1 1.4 -3.1 Detectors excavase HRL Exc.RVM 0.6 1.06.7 10.1 0.2 0.3 0.1 1.4 -3.1 Detectors excavase HRL Exc.RVM 0.6 0.06.7 10.4 0.0 0.0 0.3 Bit ciputy HRL Exc.RVM 0.0 0.3 0.0 0.0 0.3 Bit ciputy HRL Exc.RVM 0.0 0.0 0.0 0.0 0.0 17 DCO ETV Infertores HRL Exc.RVM 0.0					He			due to c	deviatio	n				
HR: Interpretation (IR) Interpretation (IR) <thinterpretation (ir)<="" th=""> Inter</thinterpretation>	Pa	and kno	16	NN .	01	02	- 10	04	05	Uß	117	Uñ	LIR	
VS processes HR Read/W1 C/U IGG C/O	M8	kenpendare HRI	ko.	ANWE -	12		- 11		-0.0					
Description sequence (H) FrankWith #6.6 1.000 FT 106.1 62.4 51.7 84.8 32.7 53.7 54.3 Be-space (H) Joan (W) 1.7 0.0 0.1 0.1 0.1 0.0	HR	itemperature Hi			5.7						12			
Bit sprag PHL Read/With D1 0.0 0.1 0.1 0.1 0.0 0.1 Bit sprag PHL Read/With D.1 0.0 0.1 0.1 0.1 0.0 1.7 DCD FW Infect news INSL. ExaMV/M 25 ± 10% G 0.6 1.0 G.1 2.8 10% G 0.2 14.4	M8	processory HPU												
Biograp (R) Reality UU 00 00 00 00 00 00 00 00 17 DCD FW Internates (R) Reality R 255 1766 06 10 63 28 18:0 402 14:9	Gue	Conversacional												
DC0 FW life terrs IRL Real W/h 25.5 126.5 0.6 1.0 6.1 (2.8 18.0 4.2 16.9	84	spray HHL										0.0		

Osi Pi Screen

	sion											O New	Display			
	HP_APS: (reading) (separat	r nisag												<u>-</u>	00	Екро
_									EXCX.							
	RTICULAR		UNIT-1			UNIT-2			UNIT-3			UNIT 4				
	in including	MW	- %	% (ND)	MW	%	S. (ND)	MW	- 5	% (ND)	MW	- %	35 (ND)			
GE	INERATION		-2			348			354			335				
ΑP	۰C	0.9	-37 74	11.94	27.9	8.02	821	31.9	9.04	8.17	32.3	9.56	829			
нт	EQUIPMENT TOTAL	0.11	CalcFa	68 74	23.05	6.68	5.70	0.00	0.00	0.00	15.27	4.64	6./6	1		
	FAN	0.00	Cale Da	0.43	0.60	0.20	0.30	0.00	0.00	0.17	0.28	0.00	0.30			
	BLb	0.00	CaleFa		0.74	0.21	0.17	0.00	0.00	0.17	0.37	0.11	0.17			
ME	DEFP	0.00	Calc Fa		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
MI	LL	0.00	Calc Fa	kd:37	6.07	1.74	1.63	0.00	0.00	1.62	1.44	0.43	1.61			
	FAN	0.00	Calc Fa		4.40	1.26	1.65	0.00	0.00	1.54	2.00	0.83	1.56			
	V PUMP	0.00	Calc Fa		4.70	1.35	1.75	0.00	0.00	1.75	4.50	1.34	177			
PA CL	FAN	0.00	Calc Fa		2.50	0.73	0.53	0.00	0.00	0.53	3.11	0.93	0.53			
	-F FALAIR FAN	0.00	Calc Fr Calc Fr		1.04	0.53	0.20	0.00	0.00	0.27	1.24	0.37	0.28			
BC		0.00	California California	0.28	0.23	0.20	0.05	0.00	0.00	0.19	0.00	0.00	0.20			
	iP Ix	0.00	Calc Fa		0.00	0.06	0.10	0.00	0.00	0.10	0.32	0.10	0.10			
	Tx	0.08	Calc Fa		0.64	0.18	0.15	0.00	0.00	0.15	0.58	0.17	0.15			
	0 10 7000 Tota Au															45-04-04
	8/12/2022 7:16:21 AM						8	h 🔰	•				Now		342/2022 5	:15:21 Pi
	812/2022 7:15:21 AM					-	a		•			O No	Now • Deplay		ана/2022 s милно	
Pl Vi:							 8 	h _)	>			() No.				213185
Pl Vi:	sion			Op	peration	Overv		h 🕨	•			O NO			N MARK	enters
Pl Vi:	sion Secution Everylew			Op 15 MW (pr						North	korne: Pikol A		e Doplay OPP		очлос]]]	
Pl Vi	sion Decarion Overview	66					iew	V (%)	8.01	Melal Va			e Doplay OPP		National States	
Pl Vi:	sion Contion Control of Vedanta EUF 051515WW (%)	66 MTD	SCC 35		(5)		iew Po 3615 MV	V (%)	3.01 NTD			I (KI)	e Dogday CPP	IT Volume	Part 2 (K 21	213185
Pl Vi	sion Contist Contains Section Contains Section Contains Pur Section (15) 63		796		789 NTD		iew 80 3615 MV 3.51	V (%)		0.00		1(KI) 12.31	e Dogday CPP	I Velure .00	Part 2 (K 21	enters
P Vi	sion Contist Contains Section Contains Section Contains Pur Section (15) 63	MTD	796	15 MW (gn	789 NTD	**	iew 80 3615 MV 3.51	V (%)		0.00		1(KI) 12.31	e Degliky CPP 0 Running	La Volume 100 FID Pols	Plant 2 (40 N	enters 01 03 03 04 07
Pl Vi	sion Socialisa Cascalese Weddanta PEPOSISAW(S) 63 FTD Gam TRP 1000 MM	MTD	500 35 796 FTD	15 MW (gn	789 NTD	**	iew 80 3615 MV 3.51	V (%)		0.00		1(KI) 12.31	e Degliky CPP 0 Running	I Velure .00	Part 2 (K 21	enters 01 03 03 04 07
P Vi	sion Receiver Vedanta FLEOSISMW (2) 63 FTD	MTD	<mark>300 35 796</mark> FTD	15 MW (gn	789 NTD	**	iew 80 3615 MV 3.51	V (%)		0.00		1(KI) 12.31	CPP CPP 0 Bunning Plan	La Volume 100 FID Pols	Plant 2 (K) 21 N	E 15115
Pl Vi	sion Description Conserver Experimentation FID FID FID Constitution Taken State Mark 1,175		300 35 796 FTD 429	15 MW (gr	789 NTD	2.79	iew 30.511 FTD	(1991) 	22	0.00	0.86	(1K1) 12.31 MTD	CPP CPP 0 Bunning Plan	Let a la construction de la construcción de la cons	Plan	E 15115
Pl Vi	sion Socialisa Cascalese Weddanta PEPOSISAW(S) 63 FTD Gam TRP 1000 MM		300 35 796 FTD 429 gamp (MV)	15 MW (gr	789 NTD	**	iew 30.511 FTD			0.00		(1K1) 12.31 MTD	CPP CPP 0 Bunning Plan	Let a la construction de la construcción de la cons	Plan	E 15115
Pl Vi	sion Description Conserver Experimentation FID FID FID Constitution Taken State Mark 1,175		300 35 796 FTD 429 gamp (MV)	15 MW (gr	789 NTD	2.79 (2.79 (2.19) (2.19	iew 25.5615 Ми 3.51 FTD			0.00 FTD	0.86 (299-1215 (JMI)	(1K1) 12.31 MTD	CPP CPP 0 Bunning Plan	Let a la construction de la construcción de la cons	Plan	E 15115
Pl Vi	sion Section Controller PLPOSition (Section) 63 FTD Gene 1997 1600 MW 1,175 GENE 1015 MW		5800 as 796 FTD 429 429 94779 (444) 587	15 MW (gr	789 NTD	2.79 (2.79 (2.19) (2.19	iew 351015144 3.51 FTD			0.00 FTD	0.86	(1K1) 12.31 MTD	CPP CPP 0 Bunning Plan	Let a la construction de la construcción de la cons	Plan	E 15115
Pl Vi	sion Section Controller PLPOSition (Section) 63 FTD Gene 1997 1600 MW 1,175 GENE 1015 MW		5800 as 796 FTD 429 429 94779 (444) 587	15 MW (m 4N 272 215 MW	789 NTD	2.79 (2.79 (2.19) (2.19	iew 25.5615 Ми 3.51 FTD			0.00 FTD	0.86 (299-1215 (JMI)	(1K1) 12.31 MTD	CPP CPP 0 Bunning Plan	Let a la construction de la construcción de la cons	Plan	E 15115
Pl Vi:	sion Description Construction Experimental FTD Gene Taxanasco Markov 1,175 CEPP 1015 MAY 1,268 PLAYET 1 CONS. (MARK)		200 35 796 FTD 429 90mp (MM) 587 587 50 MW 1 647 2 666	15 MW (m 4N 272 215 MW	789 NTD		iew 25.5615 Ми 3.51 FTD			0.00 FTD	0.86 CPP 17 IS LINIT	(1K1) 12.31 MTD	CPP CPP 0 Bunning Plan	Let a la construction de la construcción de la cons	Plan	213115 1 1 60 TD 1 - 2
Pl Vi:	sion Coortion Controller Vedanta 63 FTD Gain 197-1600 MW 1,175 COPP 12151 MW 1,268		200 as 796 FTD 429 quimp (4W) 587 20 MW 1	15 MW (m 4N 272 215 MW	789 NTD		iew 3.51 rto 			0.00 FTD	0.86 CPP 17 IS LINIT	112.31 MTD	CPP CPP 0 Bunning Plan	Let a la construction de la construcción de la cons	Plan	213115 1 1 60 TD 1 - 2

	1/11/2021 7:04:05 PM				-	31	ld 🕨 🕨			Now	2/11/2021	7:04:06 PM
0	Pl Vision								O Nov	Display	U WLINS	new 🎯
Ø	IFP_U0_COMBUSTION_O	PTINZER	and-only analy	nevnos)							<u>k -</u> 11	Esport
8 [©]	Unit-3 Combustion 0	Optimiz	er									BACK
۵Ø۸	Parameters	UOM	Expected	Actual	Weightage	Score	Parameters	UOM	Expected	Actual	Weightage	Score
	Load	MN	354	354			Steam Temp	degree	638	537		
	O2 at APH Inici	5	4.95	4.79	5	5.00	RE Heater Temp	degree	538	532		
	02 st APH Curlet	56	5.86	8.91	5	0.00	SH Spay Flow	TPH	0	171.59	2.5	0.00
	Total Air Food Batio		5	3.56	5	3.86	RH Spray Flow	TPH	0	20.81	2.5	1.96
	Primary Air Fud Rafio	-	2	1.06	5	0.60	APHAEDuicney	۰.	70	46.5	5	2.65
	Cost CCV	56	3300	3,392	5	5.00	APH A X Ratio PA		83	54.2	5	2.42
	Lunace Of Temp/Ag	56	688	582	5	5.00	APH A X Ratio SA	-	80	53.7	5	2.37
	Lunars Of Temp Dev Avg	125	20	122.0	5	0.00	APH A Leakage	5.	6.0	64.8	5	0.00
	Formers To Wind Dox DP	125	101	42	5	5.00	APH B Efficiency	۹.	70	64.6	5	4.46
	Furner: Drought	EA.	50-100	-24	5	5.00	APH B X Ratio PA	-	83	53.7	5	2.37
	FGET Corrected	chag	140	154	5	2,15	APH B X Ratio SA		80	58.5	5	2.35
	CO in Hue Gas		<50	2.03	5	5.00	APH B Leakage	5	6.0	15.4	5	1.30
		Un	FI Unit	l Un	13 Urt	м		Comb	ustion Inde	× 56.	48	
	B/12/2022 7:18:17 AM						h 🕨			Now	8/12/2022	8:16:17 PM

Osi Pi Screen



Reduction of HP Compressed air pressure from 6.6 to 6.4 kg/cm2 & LP from 2.88 to 2.86 kg/cm2

Abstract:-

Reduction in energy consumption achieved by reducing set pressure of HP Compressors from 6.6 kg/cm2 to 6.4 kg/cm2 gradually without affecting plant operations. Load reduction of 305 kw achieved in Jan 2018 owing to the same. Similarly, owing to reduction of LP Compressed air set pressure from 2.88 to 2.86 kg/cm2,load reduced by 25 kw.

APH leakage reduction by sector plate upgradation

OBJECTIVE AND GOAL STATEMENT

"APH Sector plate Modification"

Modification of air preheater sector plate assembly to close frame adjustable type sector plate.

BASELINE

The levelling of sector plate cannot be done within the recommended limit 1.0mm because of open frame nonadjustable type assembly of sector plate & also the gap between the seal & sector plate is more than recommended.

TARGET

To modify the existing open frame nonadjustable type assembly to close frame type with adjustable rod for levelling of sector plate & reducing the gap between the seal & sector plate

> Energy Saving = 300 KwH Total savings-55 Lakh/Month

		U6 COH I	Perform	nance Repo	ort		
SI No	System	Parameter	UoM	Design	Pre OH	Post OH	Improvement
1	Boiler	Boiler Efficiency	%	85.66%	87.20%	88.50%	1.20%
		Air Leakage	%	8.87%	14%	6%	8%
2	APH Performance	Gas side efficiency	%	62%	54.00%	62.50%	8.50%
		FGET	°C	138	168	138	30

Vacuum improvement by CT nozzle modification:-

Abstract:-

We were concerned of cooling tower deck overflow, for that we modified cooling tower nozzle ,diameter has been increased from 38 mm to 43 mm resulting decrease the riser bypass flow & gain in vacuum by 0.15 Kpa resulting Energy savings by 13 Kcal/Kwh.

	Energy Saving = 13	
	Kcal/Annum Total savings-14 Lakh	
	INR/Month	
/		

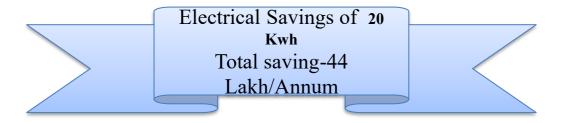
HP cylinder efficieccy improvement by HIP carrier refinning

Challange:-

Low HP cylinder efficiency was concern,72% against 81%

Solution:-

Low HIP carrier refining by during COH improves cylinder efficiency from 72 to 78%.



 Thermal Savings of 20	
Kcal/Kwh	
Total saving- 21	
Lakh/Month	

Process Improvement initiatives

- □ Replacement of LT motors with lower capacity motor to increase the motor loading
 - ✓ 2 CT fan Motors were replaced with 110 KW (down from 132 kW)
 - Energy saving of 6 kW/motor
 - ✓ 2 Seal air fan motors were replaced with 132 KW which was removed from CT fan motor instead of 160 KW motors
 - Energy saving of 8 kW/motor
 - ✓ Such 10 motor were taken for replacement in Station

HIP carrier refining for cylinder efficiency improvement

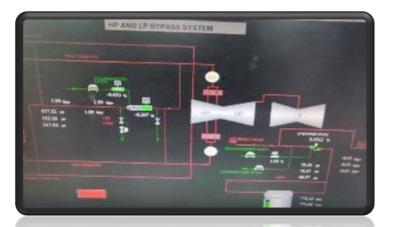
aton	s ≣ ©								0 A	r to f
Summary	Dashboard	~				E.	4 20/03/002	Texes 1040.0	a Neva	Conc. 1948 1945
cNo.	Revision No.	Inst. Freq	BEF	56	Inst Export		lwg Export	Suggested	Polarity	Polarity Vi
44	0	50.0	04 49.99	0.00	-34	00	-38.54	250.9	50 -2	8
vious R	lock		Durrent N	nck		Gener	rations	NW	Line	MW
			Inst Roog	50.	0114	GT-1		82.40	CE-212	
			Arginec	50	01 Hz	612			CF-213	
			00	a.	00 NW	61-3		121.67	21.	
The	grid has no data		\$5	a.	DO MW	G1-4		114.15	201	
			UL MAY	-74	00 MW	GT-5		132.58	231	
			U fate	215	67 Paranjk	GT-8		136.77	211	
			acient.		61	GIE		94.33	511	
d Nork	s (MW)		Summary	(MM)		61-1		131.04	51-7	
	00 30	a -	GT	91	5.57 MW	614		99.80	513	
- 45		0.00	Unit	63	0.53 MW	Total	GT	916.92	51-4	
40		0.00	Smeller	25	1.19 MW	Unit-0	л	12,40	APC UNITA	
17		3.00	r dit troodor		A CRY MARK	Unit-0	2		APC Unit-2	
					-	Unit-0	0	110.12	APC Unit-3	
						Unit-0	NA	107.62	APC Unit-4	

ABT secure meter installation for bulk energy data tracking

Auxillary power reduction through engineering control

Boiler penthouse cleaning & air sealing

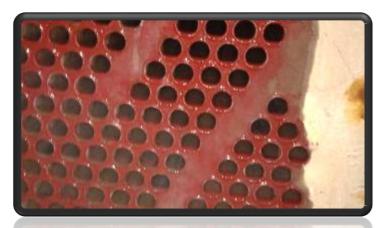
Vacuum improvement by CT cell bitumen coating



Fan power reduction by APH seal replacement

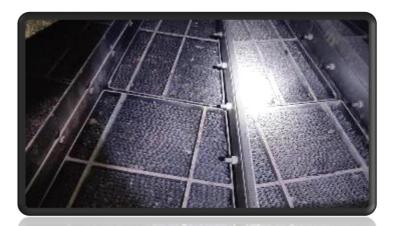
Boiler efficiency improvement by reducing radiation losses

Loss reduction through automation(HP LP bypass system) Thermal saving-34 Kcal/Kwh- Total saving- 47 Lakh/Annum



Double layer bucket strainer installation for vacuum improvement

Radiation loss reduction by padded insulation installation in Turbine

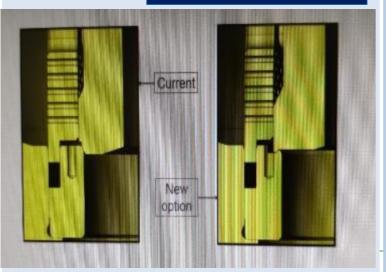


Condenser waterbox epoxy coating

Auxillary power reduction by mill roller replacement

Flue gas temperature reduction by APH basket replacement

LP bypass CV upgradation

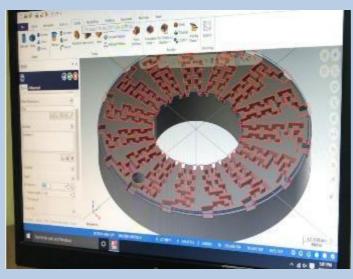

Presence of wet steam which leads to wet steam erosion. Passing of this valve results in:

1. Low generation

2. Delayed start-up of the units

Upgradation of this LPBP Control valve avoided direct erosion from the wet steam and initial damage to the plug sealing surface and improve the leakage situation and prolong the lifetime of the valve permanently

SAVINGS 15.44 Cr



BFP RC control valve upgradation

Old cage is changed to a new Drag design for the same set off operational parameters

Material upgraded from SS 316 to SS 410 Cage is modified from 03 nos. stages to "18 stages Hi-Tier technology DRAG designed cage " for better high temp. & pressure feedwater flow with zero cage erosion & velocity control from 95 m/s to 3.7 m/s approx.

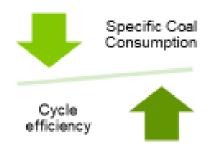
SAVINGS 11.8 Cr

Booster Pump Bearing Temp Reduction

By the increase of BP bearing temperature, it leads to failure of bearings and mechanical seal of booster pump causing high spares consumption and also tripping of booster pump

Results & Analysis Provision for extra 1 no. of Cooling Coil-16 mm dia.

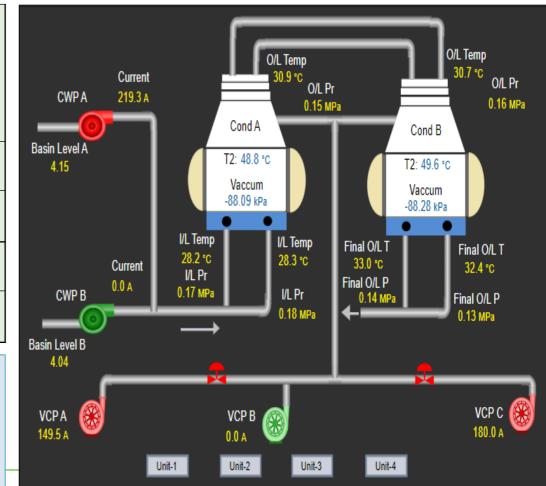
SAVINGS 5.1 Lacs


Vacuum Pump Suction Header Modification

Vacuum pump suction line modification has been carried out in all units. so now one vacuum pump is dedicated to each condenser and solenoid operated valve is fixed in between the vacuum pumps for feasibility in operations if any vacuum pumps trips/preventive maintenance is scheduled.

	Perfo	rmance Ana	ilysis - Uni	t #1 Va	cuum	pumpHF	% LP su	ction se	paration	l
Date	Conditions	Vacuum pump	charged with	Load	(MW)		Vacuum	(in kPa)		Station SCC Gain
Dalla	Conditions	LP side	HP side	Before	After	LP side	HP side	Average	Gain	(gms/kwh)
	Condition 1 st	A+B+C (Norm	nal condition)			-84.3	-83.8	-84.1		
27-07- 2020	Condition 2 nd	A+B	С	500	500	-89	-84.2	-86.6	2.55	4.0
	Condition 3rd	А	B+C			-88.6	-84.5	-86.6	2.50	

Benefits :


- ~ 4200 tons coal saving per month for 1800 MW
- Vacuum pumps operation flexibility sustained
- Horizontal deployment for other units

CWP A Low-speed conversion Connection Changed from Star to Delta

CW Pump	Before Current (Amps)	After Current (Amps)	Savings (MWh)
1A	282	221	0.92
2A	281	229	0.79
3A	286	224	0.91
4A	300	221	1.21

Total Savings Capability in MW 3.83 Total Savings capability in APC 0.2%

Coal Handling Plant

SAVINGS 43.2 Lacs



Frequent ignition at Coal heaps

Loss of Calorific Value (GCV)

Chemical and Water consumption of fire fighting line for quenching of smoke

For Stacking of 90KMT Heap Dozer running hour was 10 Hrs/ day for Dozing and Chaining/Compaction of coal

PENTHOUSE AIR SEALING

- High HP vacuum machine used for removal of ash from penthouse, done within 15 days
- 2. Complete air seal installation in penthouse roof
- 3. Spray reduction to significant level
- Eliminated Ash (furnace to penthouse) & air ingress (outside to penthouse).

Vendor : Air seal

Product : Adhesive compound

ELECTROHYDRAULIC BRAKE IN FAN

 Successful design & commissioning of electrohydraulic brake assembly in ID fan to ensure zero energy in the system
 high risk reverse rotation hazard in ID fan has been eliminated by the successful commissioning of the brake assembly

Vendor : GM Engineers Product : Ring Span

MILL GIRTHGEAR SAF MODIFICATION

SAF assembly shifted to Feeder floor from existing 6.9mtr with additional pipe assembly.

- 1) Effective sealing of Girthgear
- No frequent failures due to filter chocking, motor tripping, dust accumulation that was faced at previous location.
- 3) Ease of maintenance of SAF at feeder floor.

ADVANCED LIGHTNING DETECTION SYSTEM

Installed an advanced lightning detection & protection system in ash dyke to boost safety of employees working in the area. It comes with a protection radius of 110 m and can detect storm activity from 40 km away and can send alerts 3-5 minutes in advance so that employees working in the vicinity can move to safe place.

GO-LIVE INSAR ASH DYKE STABILITY MONITORING

Launched ash dyke monitoring using InSAR, Interferometric synthetic aperture radar technology. This will aid in all weather monitoring of ash ponds monitoring of ash ponds providing site overview, time lapse reporting, statistical data generation along with a range of critical inspection applications. Further, the algorithm feed will facilitate condition analysis of dykes, thereby accelerating decision making for the teams

Configuration of Real time parameter monitoring system for Compressor in DCS. Human machine interface is connected to DCS for online monitoring and analysis

Configuration of Real time Contract Demand monitoring system to control the drawl of power from WESCO

Configuration helps us to keep watch on every time block giving benefit in penalty imposed due to extra drawl

In all the second	10.01	State D	U.s. INFERE	ALL LACK	1000		-		
UT as the unam	2512 1	2+ 124,		autors		11 A 1.3.2 A 4			5-2-H
			Contraction of the local division of the loc	ABT		TTER LAND.	-117	and the second second	- LOUGH
Paratretter	Cumir, va	A.80	Skowler An be	an 12:00	Har II	Dunitative	to the De		100
Frequercy	56.15	1-2	50.14	z	1670		-	-	-
Sen imp Generation	10000		1216.00		175475	UNI Grote Get		VH 2	1056
Orienter Decase (CD)	5.04	MA	424 987		COLORAD COLORAD	UKS Share Sar			199 AVT
социят	22.0	1	CD ASK RAIE	42.7 10		UNI Gross Ger			100 .MT
AVG OD (BLK 21-53)	-27.3	N/M	Contraction of the local division of the loc						
AVO OD (BLK 22-84)	0.800	NW	-				_		
4V0 CD (8LK 85-38)	-40.2	147.9				1			
CD LIMIT ALARM			insi kashiti ekiseki	C 648.3 M	м				
PLAST 2WW		10	19655 114		subsect C	atur ().	1890	No. 12	- 262
ICHILLIS			4296 W		UND B-BA	e Ger	-43	NW.	
LIND BAY MAR			AND UN		UN2 10-04	- Den	334	ww / 1	
HUP CELVIS XVS			7020 FA		a show the second	1000		-	-
NP ASKINTE		_	-1518 UW		Jec 8-84	a Gen.	348	NW.	
MIRCRI ROMOLAS			HIOL NY		UAI Co-Ba	a Gen	383	ww.	
UPDATE DOME FROM	78 TO 54 8	18:15	(195		States Lo	ad T HV Side	-3.8	-	
SLOCK WHER	CALL & F.D.	FRANK OF				and 2 HV Side	4.68	17.00	-

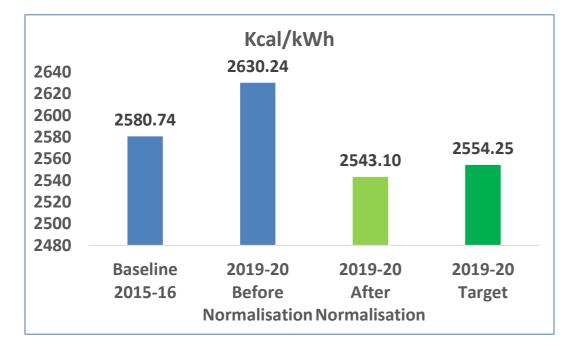
Advancement of control system in Auger and Stacker cum Reclaimer by developing in house SCADA Early identification & Reduced maintenance time due to alarms configured by team.

Renewable Portfolio

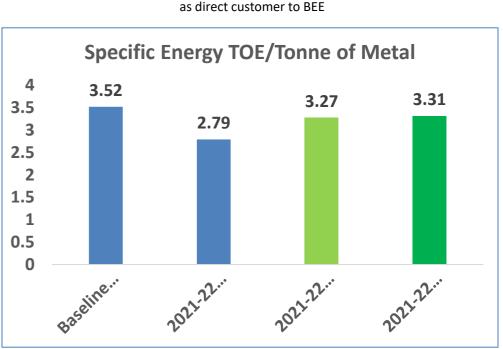
FY	2018-19	2019-20	2020-21	2021-22
RPO Target	768	654	648	741
RPO Achieved	545	407	487	2975

more than 35% of the green power traded on IEX in Q1 FY22!

150 MW solar power plant planned at Gudigaon, Jharsuguda. Scheduled to come up by FY 24


Floating solar plant planned to be set up in reservoir by FY 24

PAT Cycle-3 Performance


PAT Cycle-5 Performance

The CPP units 1,3,4 along with aluminium smelter defined

Unit 2 IPP

- M&V Audit done
- 3438 Energy saving certificates are realized for 11.15 kcal/kwh
- over achievement.

- Baseline audit of PAT is completed on 7th March 2019. Baseline- 3.52TOE/Tonne of equivalent product.
- On 25th March 2019 BEE gave a target of 3.31TOE/Tonne of equivalent product for FY21-22.
- 13943 Energy saving certificates are realized for 0.0397 TOE/MT over achievement.

Year	Scope 1 Emission (tCO2e)	Scope 2 Emission (tCO2e)	Scope 3 Emission (tCO2e)	Total Emission (tCO2e)
FY 20-21	22893187	802665	377712	24073564
FY 20-21	24437097	510833	323339	25271269
FY-21-22	23895350	1956916	5005928	30858194

Year	Sp. GHG (TCo2e/MT)		
FY'20	17.65		
FY'21	17.46		
FY'22	15.33		

Battery Operated Forklift

Electric Tanker Pilot Project

Initiative Description:

Initiative Description: Deployed 23 Lithium-battery powered electric forklifts Substantially longer life than conventional lead-acid batteries.

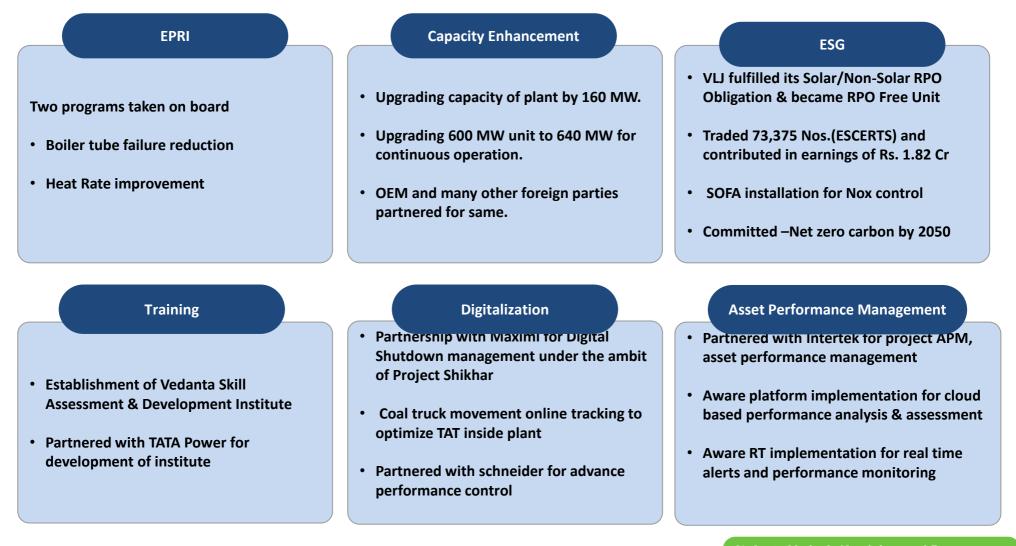
Reduction in diesel consumption by over 2.5 lakh liters annually thereby ensuring GHG reduction of approx. 690 TCO2/yr.

To decarbonize its vehicle fleet, Electric tanker vehicle for transportation of alumina flagged off. It will reduce diesel consumption by 18000 Liters annually/vehicle thereby reducing carbon emissions by ~50 TCO2e per annum.

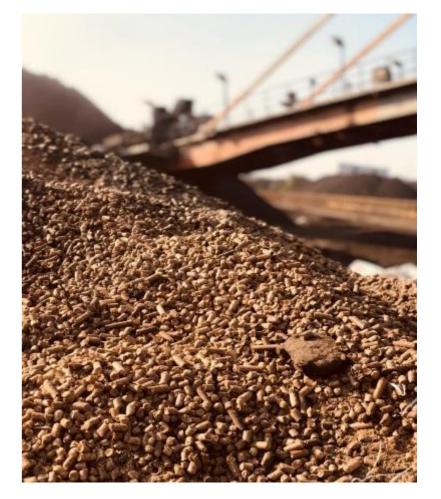
Lithium-ion Electric Bikes

Initiative Description: Initiative Description: Transformation of petrol-fueled bikes to Electric Bikes. These 4 e-bikes are completely emission-less and will be used by security team for patrolling in plant and township. It will reduce petrol consumption by 2800 Liters annually thereby reducing carbon emissions by ~4 TCO2e per annum.

Fixed Mist Canon in Coal Yard	Mobile Mist Cannon	Wheel Wash System at Main Gate	500 m3 ETP at TPP
Initiative Description: Installation of Fixed type mist canon at Coal Handling Plant of 2400 MW TPP resulting in significant improvement in air quality of CHP as well as surrounding areas.	Initiative Description: Deployment of mobile mist cannons (6000 Liters/vehicle) on the plant roads to reduce fugitive emission from vehicles during transportation.	Initiative Description: Installation of wheel wash system at Main gate to reduce fugitive emission from vehicles during transportation of ash and coal vehicles	Initiative Description: Effluent Treatment Plant (ETP) of 500 m3/hr with RO facility installed for treatment of wastewater and regeneration water from DM Plant.
			The second s



Way forward



200 tons of biomass co-fired in CPP 1215 MW units for the first time in Dec 2019 to check technical feasibility by taking reference from NTPC Dadri. Biomass Co-firing in one of our ESG projects to reduce GHG emission & also Ministry of Power mandates a 5% blend of biomass pellet on annual basis by Oct 22.

Way Forward:- Biomass pellets for 400 T/Month (65 tons received & fired) and 1800 T/month (supply will start from the august end) for CPP 1215 MW as the trial has already been completed.

35

Digitalization

🗟 vedanta

economica vedanta

Vedanta Jharsuguda deploys 3D TRASAR technology for water monitoring

Vedanta Jharsuguda introduced 3D TRASAR technology to monitor critical water parameters at its power plants. The technology will aid in 24X7 data monitoring, automatic data collection, display & storage as well as report generation. Besides ensuring availability of insights for real-time decision making, it will also help in optimizing water usage at our operations.

The technology was inaugurated by Mr. Sunil Kumar Satya (CEO – Power, Aluminium Business) in the presence of Mr. Ashutosh Dwivedi (COO - Power), Mr. Vijay Ingole (Head - TPP), Mr. Abhisek Chakrabarti (CDIO), and Mr. Rajat Jain (Lead – Digital). The on-ground team members include Mr. Sendhil R Kumar, Mr. Rupak Sarkar, and Mr. Hare Krishna Mohanty.

Launch of Digital Logbook

Vedanta Jharsuguda has developed a digital logbook to facilitate auto-creation of defect notifications and geo-fencing of equipment. The SAP-integrated mobile application will introduce a new system of online approval mechanism through the application, along with other features like reduction of non-valuable assets, availability of field readings for failure prediction, health analysis of equipment, and monitoring of field operators' effectiveness.

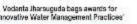
The E-Logbook was launched by Mr. Ashutosh Dwivedi (COO – Power) and Mr. Abhisek Chakrabarti (Chief Digital and Information Officer – Aluminium Business), who commended the efforts of the Asset Optimization, Operations and Digital teams.

The initiative was driven by Kalyan Veeraneni, Rupak Sarkar, Sendhil R Kumar, Gayatri Mohanty, and Rajat Jain.

AWARD & ACCOLADES

AWARDS & ACCOLADES

Vedanta Aluminium bags 'Runner Up' at The Economic Times Energy Leadership Awards 2022



Vedanta Aluminium wins Bronze Prize at the prestigious PR Awards Asia 2022

BALCO bags Golden Peacock Award for HR Excellence - 2021

BALCO wins 'innovation in Learning' Award for best L&D practices

Vedanta Lanjigarh bags Golden Peacock Award for Innovation Management.

VOL. 3 ISSUE 4 + JULY 2022 + PAGE 11

Innovative Water Management Practices'

AWARDS & ACCOLADES

BALCO wins 'Platinum' Award at the prestigious CII National Safety Practices Competition

Vedanta Jharsuguda wins 'Shipper of the Year' Award at India Cargo Awards 2022!

Efficient Management of Fly Ash

Vedanta Jharsuguda wins IMC Rama Krishna Bajaj Excellence Award 2021 in Manufacturing

Vedanta Jharauguda's Power Team bags National Efficiency Awarda'22

ELEMENTAL

VOL. 3 ISSUE 2 . MAY 2022 . PAGE 10

Vedanta Limited, Aluminium and Power

ELEMENTAL

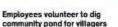
Corporate social responsibility

COMMUNITY DEVELOPMENT

Lanjigarh's farming community provided with high-quality seeds for growing vegetables

More than 1000 farming households in Lanjigart were. provided with asserted high-quality seeks of vegetables Lady ringer, Brinjal, Tomato, Ridge Gourd, Cauliflower, Beans, etc. by us, in partnership with the Odisha Horticulture Department. The Increase in agricultural yield is expected to have the two-fold benefit of increasing household income and ensuring better nutrition for the families.

Valediction ceremony for students of skill training program


vedanta

A valediction peremony was held for the graduating batch of students under Vedanta Lanjigarh's Skill Training Program, who were enrolled in the housekeeping trade. All trainees have now seen upgraded from unskilled category to semi-skilled category. certified by FICCI, and recruited by some of incla's top hospitality companies.

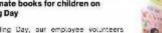
5000 students receive bags and stationery for starting school post COVID

In order to encourage sludents at government schools to return to schools after the pandemic, the bauxite team of Vecants Aluminium distributed schoolbags and stationary items to more than 5000. Students from 53 Govt Schools in Lawrigur Block. The initiative is an important step forward in molivaling the sludents in the region to altend school regularly, thereby increasing overall attendance in the schools and enhancing education levels.

Our team at BALCO dug a pond in the Parsakhola village and decleated it to the community. With engoing monsoons, the pand will harvest reinwater and store it to help the residents of the village meet their household and agricultural needs. If will elso contribute towards improving the region's water table in a gradual manner and maintain the ecological balance.

VOL. 3 ISSUE 4 - JULY 2022 - PAGE 06

GREENIFYING THE PLANET


vedanta

COMMUNITY DEVELOPMENT

Employees donate books for children on World Reading Day

On World Reading Day, our employee volunteers conducted interactive reading sessions at various Nand Ghars across Jharsupuda to promote the habit of reading among children. Our employees also donated books for the creation of mini-tibraries at our Nand Ghars. The World Reading Day is celebrated plobally and is an opportunity to inculcate reading as a regular practice among children and adults alike.

vedanta

Vedanta Volleyball Tournament at Koraput sees 16 teams battle for glory

We facilitated a community volleyball tournament at Kakriguma, Koraput, which saw participation of 16 talented teams from across the district. The tournament saw community leaders, district administration and local public come together with our Bauxite division team for encouraging sporting culture among the region's youth.

Cancer screening camp in Koraput garners huge footfall

We organised a Cancer Screening Camp at the District Headquarters Hospital in Jeypore, Koreput, in partnership with BALCO Medical Centre (BMC). Hundreds of people from Koreput and nearby districts, including the patients of district hospital visited the camp for consultations. Potential patients were referred to BMC for further consultations and hassle-free treatment under several govt schemes.

World No-Tobacco Day: anti-smoking campaign to raise awareness

On World No Tobacco Day, our Lanjigath team conducted an awareness program for local communities in line with the theme 'Tobacco is killing us and our planet'. The campaign saw community leaders from medical, social, and political fields come together to sensitize the public on the subject. A village-level rally saw school children and community members join to spread awareness on ill effects of smoking.

VOL. 3 ISSUE 3 · JUNE 2022 · PAGE 02

VOL. 3 ISSUE 4 • JULY 2022 • PAGE 07

Vedanta Limited, Aluminium and Power

ELEMENTAL

ELEMENTAL

ELEMENTAL

Digitization, Innovation & Operational excellence

vedanta

🗟 vedanta

DIGITAL & INNOVATION

Video analytics solution at Coal Handling Plant (CHP)

Vedanta Jharsuguds has tsunched a video analytics solution for assessing truck movement within the Coat Handhing Plant (CHP) at in our 0.5 MTPA plant area. The solution will enable supervisors in the CHP control room to track the exact movement of trucks in the tippler and parking area, monitoring the vehicle's idle time and facilitating proactive decision making.

App-based Process Audit Score-Cards for paperless audit and reporting

Process audit scores signify process healthiness and are essential to asset optimization. Upon identifying the opportunity to make it paperless through digitalization and reduce time consumed in reporting, our Process and Digital teams created a mobile and web application for daily audit report entry, automated logic-based reports, automatic emails for real-time tracking, sutomated root cause analysis vizualization, and more.

Thermo-gravimetric Analyzer (TGA)

We have deployed Thermogravimetric

Analyzer (TGA), an advanced automation

solution for proximate analysis of coal samples. It will introduce several advanced technologies such as Sulphur Analyzer and GPS tracking of sampling vehicles.

for proximate analysis of coal

ELEMENTAL

Asset Performance Management (APM) for Power Plants

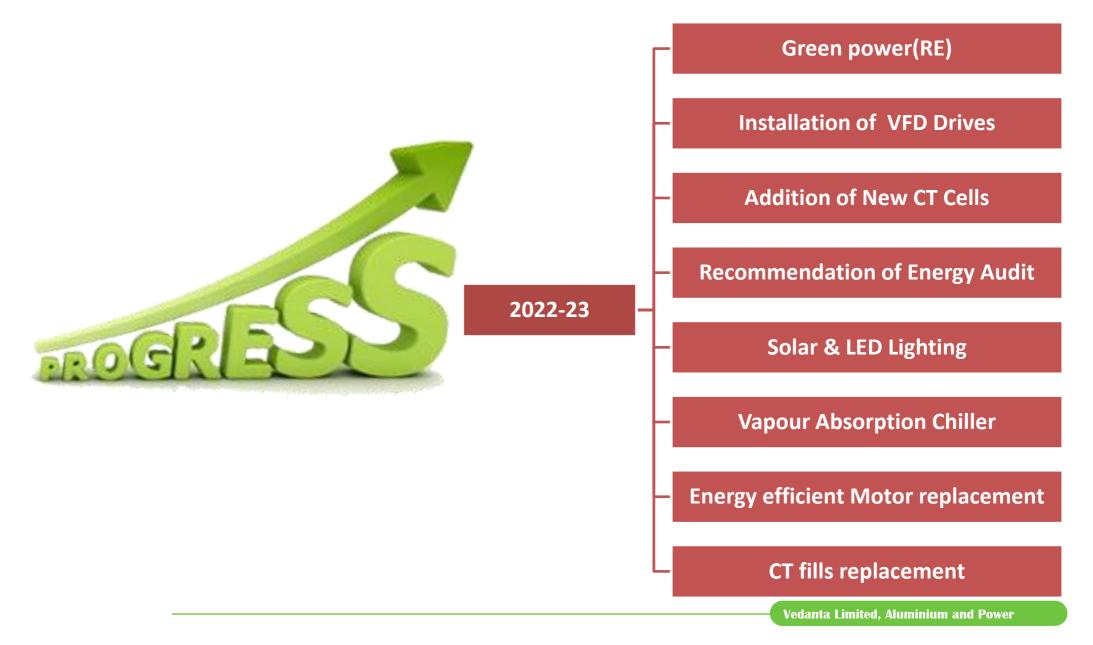
Vedanta Jharsuguda has deployed Asset Performance Management to manage all critical power plant assets in the boller, turbine and generator area. APM embraces data capture, integration, visualization, and analytics tied together for improving the reliability and availability of physical assets. Its main functional pillars are Health, Reliability, Strategy, Integrity and Safety which can be used independently or together to provide a comprehensive approach to asset and C&M management.

VOL. 3 ISSUE 2 • MAY 2022 • PAGE 06

WE ARE 'GREAT PLACE TO WORK' CERTIFIED!

ELEMENTAL

VOL. 3 ISSUE 2 • MAY 2022 • PAGE 02



EXCELLENT ENERGY EFFICIENT UNIT – SINCE 2013

ENCON PROJECTS-2022-23

Celebrating Diversity & Inclusion with

Vedanta Limited, Aluminium and Power