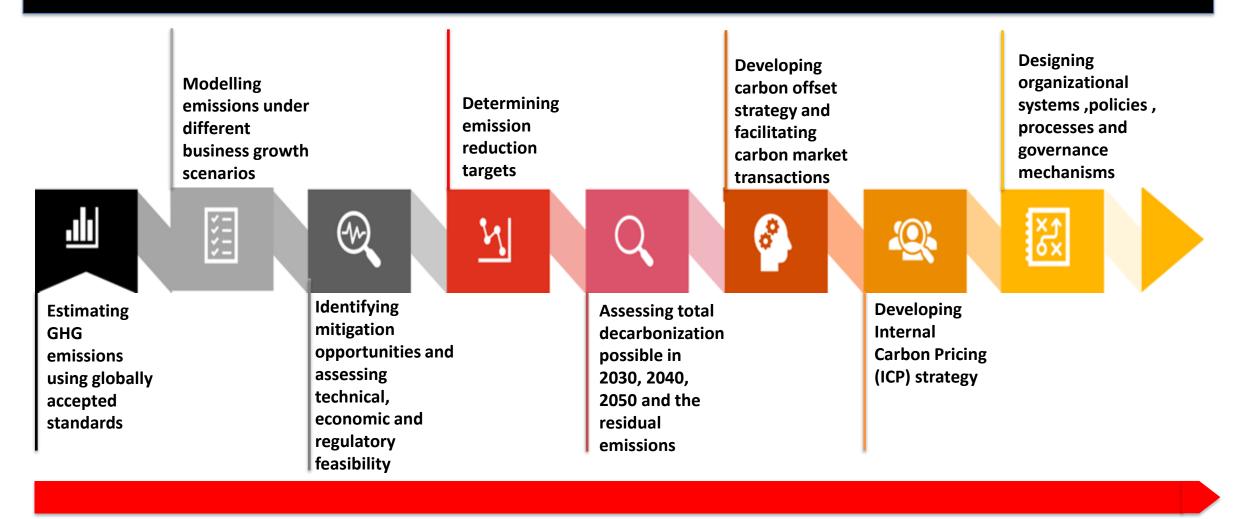


Vedanta Limited, Jharsuguda

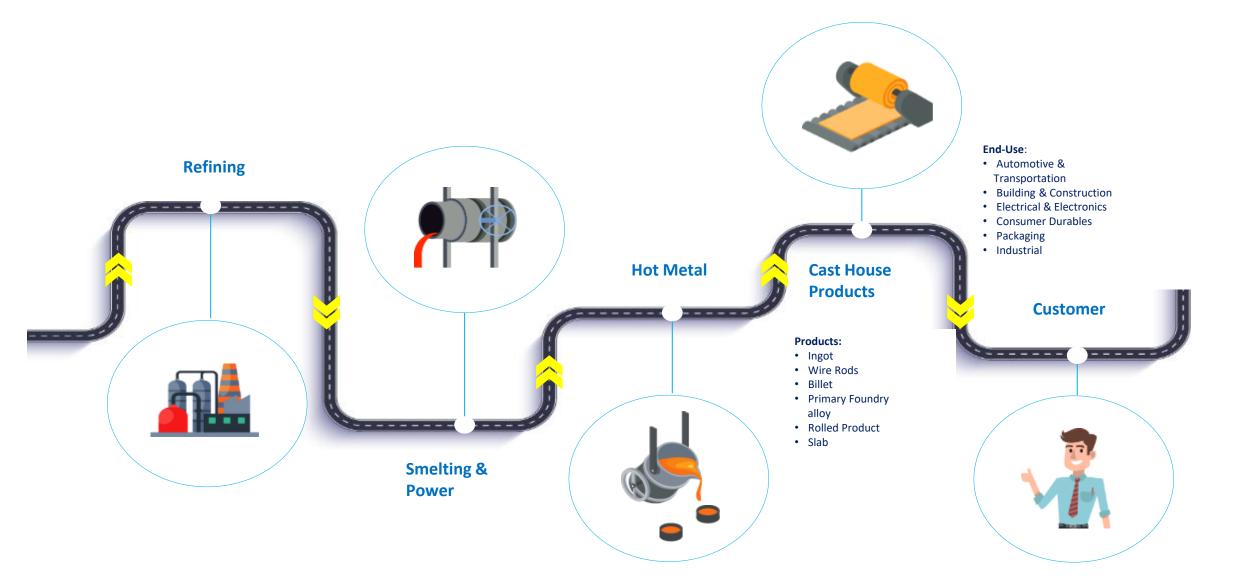
Vedanta- What we do!

Value Chain Aluminum- Jharsuguda **Our operations** Zinc-Lead-Silver 1/1 India, Ireland, Namibia & South Africa **Jharsuguda** Exploration Oil & Gas CAIRN Operational India & South Africa 1.75 MTPA Asset 3615 Development 1.25 **Iron Ore** Goa, Karnataka & Libera 0.5 Aluminium Extraction Power Copper India, Australia and Zambia Processing Aluminium Jharsuguda, Korba (Balco), Lanjigarh Value Addition Power Talwandi, Jharsuguda, Korba, Tamil Nadu

OUR VALUES


CORE PURPOSE

Vedanta is a globally diversified natural resources company with low-cost operations. We empower our people to drive excellence and innovation to create value for our stakeholders. We demonstrate world-class governance, safety, sustainability, and social responsibility standards.

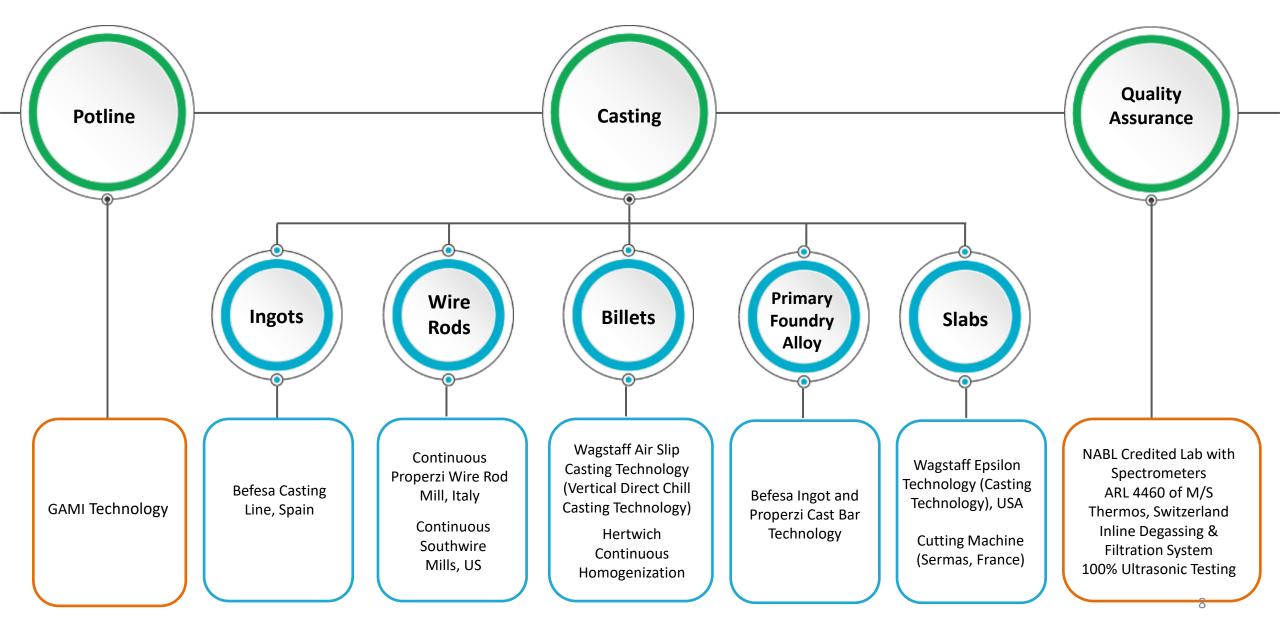


APPROACH ADOPTED

Smelter Overview

Smelter 1

- ✓ GP 320 Prebake Technology
- ✓ No. of Lines 2
- ✓ No. of Pots 608
- ✓ Pot Amperage 325 KA
- ✓ Design Capacity 500 KTPA
- ✓ GAP 2 Paste Plants (Outotec GMBH, Germany)
- ✓ Bake Oven 4 Bake Furnaces
- ✓ Anode Rodding Plant


- ✓ Ingot Casting Mill 3 Lines
- ✓ Wire Rod Mill 2 Lines
- ✓ Billet Casting Mill 1 Line
- ✓ Slab Casting 1 Line

Smelter 2

- ✓ GP 340 Prebake Technology
- ✓ No. of Lines 4
- ✓ No. of Pots 1322
- ✓ Pot Amperage 340 KA
- ✓ Design Capacity 1250 KTPA
- ✓ GAP 2 Paste Plants (Outotec GMBH, Germany)
- ✓ Bake Oven 6 Bake Furnaces
- ✓ Anode Rodding Plant
- ✓ Ingot Casting Mill 4 Lines
- ✓ Wire Rod Mill 2 Lines
- ✓ Billet Casting Mill 3 Line
- ✓ Cast Bar Mill 2 Lines
- ✓ SOW Cast 1 Line

TECHNOLOGY & EQUIPMENT

Product Portfolio

ALUMINIUM BILLETS

Automotive, Building & Construction, Electrical

ALUMINIUM WIRE ROD

Electrical

P1020 INGOTS Automotive, Electrical, Building & Construction, Re-melting

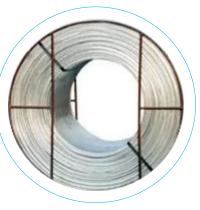
PRIMARY FOUNDRY ALLOY INGOT

Automotive (Alloy Wheels, Cylinder Heads) SLAB

Building & Construction, Cold & Hot Rolling

ROLLED PRODUCT

Automotive, Insulations, Bus Bars, Power Projects, Electrical, Packaging



SOW INGOTS

Automotive, Electrical, Building & Construction, Re-melting

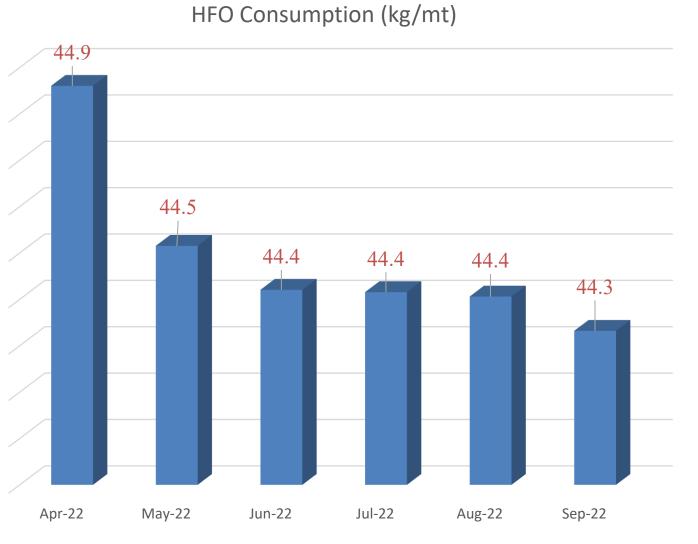
T-INGOTS Building & Construction, Automobile, Transportation, Electrical, Household Appliances, Re-melting

FLIP COILS

Steel Manufacturing

HOT/LIQUID METAL

Any Application



SI No.	Initiatives
1	Reduction of specific HFO consumption -44.9 kg/Mt to 44.3 kg/MT.
2	Increase in Green Anode plant Throughput-35 TPH to 37 TPH
3	Anode Stub Hole Modification- 5 mv of Voltage saving
4	100 % Graphitization Journey-13000 kWh/MT
5	Vedanta Lining Design-200 units saving in Power
6	Installation of RUC Cathodes- 265 Units saving in Power
7	Energy Saving Initiatives-LED Installation
8	Energy Saving Initiatives-VFD Installation
9	India's largest Electric Forklift Fleet Deployed- Step Towards Net Zero emission
10	Environment Initiative

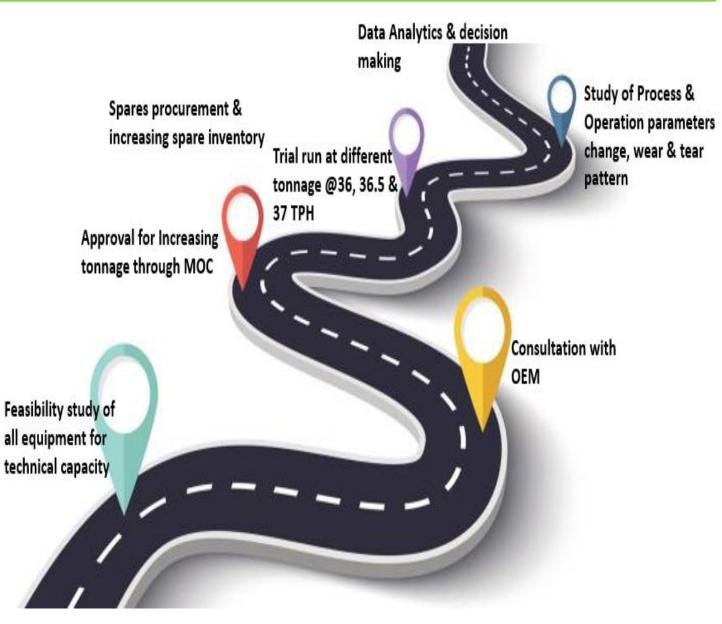
Reduction of Specific HFO Consumption- 44.9 Kg/MT to 44.3 kg/MT

The control of combustion for heavy oil is essential to ensure energy efficiency (an optimum fuel consumption) and anode quality during the baking process.

Action plan Taken

- Reduction in leakages by improving sealing in furnaces
- Improvement in side flue wall and cross-over temperatures
- Optimization of firing curve in both pre-heating and heating zones and in operational practices
- Negative & positive pressure optimization for complete combustion of pitch volatiles in pre-heating zone
- Usage Emulsified Oil instead of Heavy Furnace Oil during firing

Increase in Green Anode plant Throughput-35 TPH to 37 TPH



One major step taken in carbon is an "Increase In Green Anode Plant throughput from 35 tph to 37tph" resulting in 4500 nos. more anode production over capacity without affecting anode quality parameters.

Anode quality parameter comparison

Anode quality	@35.0 TPH	@37.0 TPH				
Apparent Density (g/cm3)	1.584	1.584				
Air Permeability(nPm)	0.47	0.51				
Electrical Resistivity(μΩm)	59.0	58.9				
Flexural Strength(Mpa)	11.54	11.48				

SEC reduced by 10%

Sensitivity: Internal (C3)

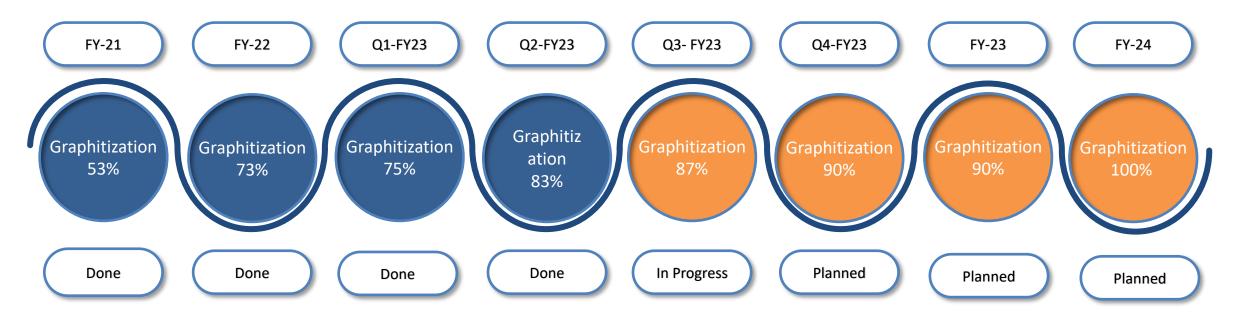
Total 4 numbers of stub holes in one anode, which are formed by stub hole formers fixed with Vibro compactor cover weight in GAP. To take a trial all eight stub hole formers are changed in two Vibro compactors of GAP 1 and anodes are tracked up to the pot line for performance tracking.

KEY CHANGES MADE

Particulars	Uo M	OEM design	Modified Design		
Height	mm	115	120		
Outer diameter r		195	205		
Flute width	mm	T: 28/20, B: 26/18	T: 24/16, B: 20/11		
Flute angle	deg	15	15		
Height of top flute ring	mm	10	10		
Height of bottom flute ring	mm	8	8		

GREEN ANODE

Financial gains (Stub Hole Design Modification)	UOM	Formula	Gain from 1910 pots
Basline STC at pot line	mV	а	83.7
MSH STC at pot line	mV	b	78.8
Decrease in Pot Voltage per unit decrease in MSH	mV	c=a-b	4.9
Decrease in DC kWh/MT of Al with unit mV decrease in pot voltage	KWH/MT of Al/mV	d	3.2
Total Annual Savings	Million \$		0.42
Considering Exchange Rate	INR/\$		80
Annual Payback	INR (in cr)		3.07


In smelting, pot Carbon is used as Anode and Cathode block for necessary electrolysis.

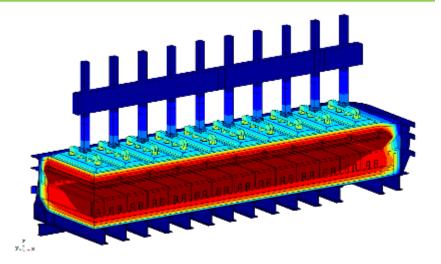
Existing cathodes are of 50% graphite content which consumes more power due to less conductivity same is replaced with 100% graphitized

cathodes which is having better conductivity and hence high energy conservation.

Benefits of implementation:

- Resistivity reduced from 26 ohm-cm to 12 ohm-cm.
- Operating Voltage decreased from 4.206 V to 4.110 V
- CVD (Cathode voltage drop) decreased from **385mV to 265mV**.

Vedanta Lining Design-200 units saving in SPC Power


vedanta transforming for good

o Development of indigenous lining design

- ✓ Novel lining design including the insertion of copper collector bars has been developed with the help of modeling & simulation in collaboration with CAETE, Brazil.
- ✓ Modelling and Engineering expert is on-site for supervising the pot build-up and start-up.
- Pot build-up is in process under the supervision of the CAETE team.
- \checkmark Trial to be conducted in 10 pots for gauging practical feasibility.

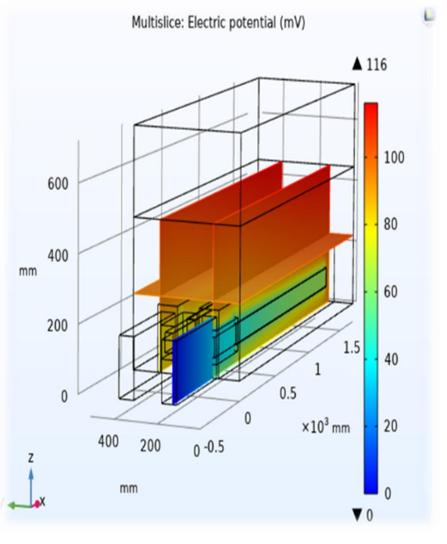
• Key Benefits

- ✓ Potential SPC reduction: 200 units
- ✓ Current creepage capability: +20 kA

VLD Thermal Model

Installation of RUC Cathodes- 265 Units saving in SPC Power

Problem Statement: \bigcirc


- Limitation of existing lining design for current creepage.
- Higher CVD in existing lining design

Ο

- Approach and Solution:Collaboration with Tokai Cobex for installation of RUC cathodes
- The RUC lining design is having the current creepage capacity of up to 360 kA which will lead to higher productivity & less SPC

Potential Impact: Ο

- SPC Reduction: 265Units ٠
- Current Creepage: +3.5kA (On Modeling Basis) ٠

RUC Thermal Model

Energy Saving Initiatives-LED Installation

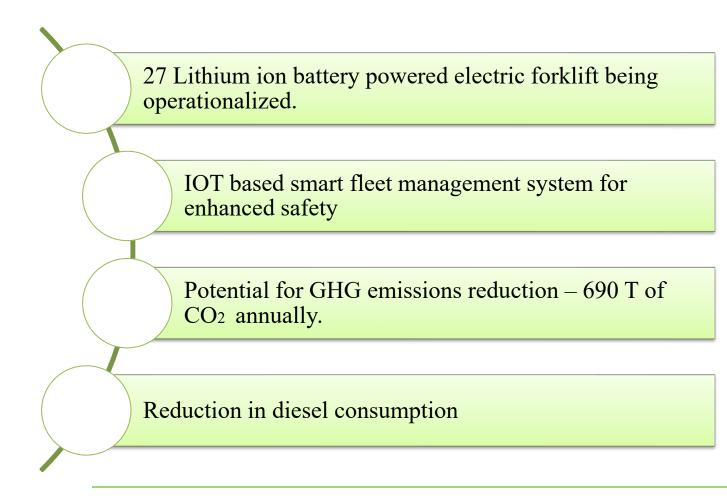
Lighting is the area where a lot of scope is there for energy consumption reduction. Many initiatives have been taken in all the areas of Smelter-1 like LED conversion, automation of lighting circuit to eliminate idle running of lights, Day time lighting control at shop floor lighting, etc.

Potline-2

Ungrouping area of Bake oven

Rectifier, Plant 1

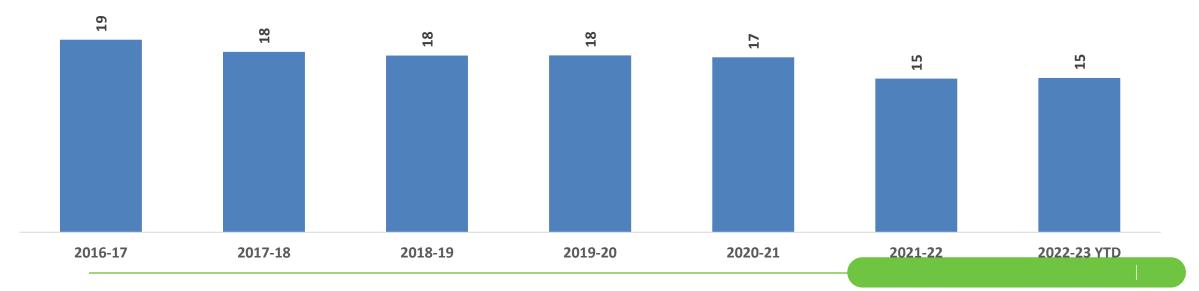
In RPH-1 & 2, there are 3 CT fans one with VFD and the other two are DOL starters. At normal operation, one DOL CT fan and one VFD CT fan run simultaneously. Now one more VFD installation is done and now at normal operation two VFD CT fans run simultaneously at 36.5Hz. This resulted in energy saving of 8kW in each RPH.



Energy saving per Anum- 140160 Kwh

India's largest Electric Forklift Fleet Deployed- Step Towards Net Zero emission

As a step towards net zero emission, it is planned to use battery operated forklift in place of diesel operated. Recently demo trial has been taken, generating savings of 30L/day, and one switchyard battery-operated car was in-house developed in place of diesel operated one.



SI No.	Initiatives Taken
1.	Installation of Mechanical Waste converter done for manure production from food waste.
2.	Dross Refining unit Installation.
3.	Recycling of broken Cathodes in Carbon Plant .
4.	Recycling of used steel stub pins in casting.
5.	Reuse of Refractory (SPL) Waste.
6.	Reuse of used steel collector bars.
7.	Reuse of effluent water for gardening.
8.	Rejected Anode butt utilization.
9.	Incineration of used Bag Filters in Baking Furnaces.
10	Regulated consumption of Contaminated Alumina.

Year	Scope 1 emissions CO ₂ e (MT)	Scope 2 emissions CO ₂ e (MT)	Scope 3 emissions CO ₂ e (MT)	CO ₂ e MT
2016- 17	1,50,98,803	45,942	3,99,815	1,55,44,560
2018-19	2,18,01,821	26,24,891	7,70,588	2,51,973,00
2019-20	2,28,93,187	8,02,665	3,77,712	2,40,70,583
2020-21	2,39,26,260	5,10,837	-	24437097
2021-22	23895350	1956916	5005928	30858194

Sp. GHG Emission

Battery Operated Forklift

Electric Tanker Pilot Project

Initiative Description:

Initiative Description: Deployed 23 Lithiumbattery powered electric forklifts at Smelter Plants. Substantially longer life than conventional lead-acid batteries.

Reduction in diesel consumption by over 2.5 lakh litres annually thereby ensuring GHG reduction of approx. 690 TCO2/yr.

To decarbonize its vehicle fleet, Electric tanker vehicle for transportation of alumina flagged off. It will reduce diesel consumption by 18000 Litres annually/vehicle thereby reducing carbon emissions by ~50 TCO2e per annum.

Lithium-ion Electric Bikes

Initiative Description: Initiative Description:

Transformation of petrol-fueled bikes to Electric Bikes. These 4 e-bikes are completely emissionless and will be used by security team for patrolling in plant and township. It will reduce petrol consumption by 2800 Litres annually thereby reducing carbon emissions by ~4 TCO2e per annum.

Fixed Mist Canon in TPP Coal Yard

Initiative Description: Installation of Fixed type mist canon at Coal Handling Plant of 2400 MW TPP resulting in significant improvement in air quality of CHP as well as surrounding areas.

Mobile Mist Cannon

Initiative Description: Deployment of mobile mist cannons (6000 Liters/vehicle) on the plant roads to reduce fugitive emission from vehicles during transportation.

Wheel Wash System at Main Gate

Initiative Description: Installation of wheel wash system at Main gate to reduce fugitive emission from vehicles during transportation of ash and coal vehicles

500 m3 ETP at TPP

Initiative Description: Effluent Treatment Plant (ETP) of 500 m3/hr with RO facility installed for treatment of wastewater and regeneration water from DM Plant.

Runaya Dross Processing Facility

Initiative Description: 33% metal (Al) recovery from Aluminium Dross (HW Waste) through Runaya Dross Processing facility.

Fly ash dispatch through Rail

Initiative Description: Dispatch of fly ash by rail initiated at Jharsuguda

SC

FIRST EVER FLYASH DISPATCH

BY RAIL THROUGH BOX-N WAGONS

From: Vedanta Limited, Jharsuguda

To: ACC Limited, Chaibasa Cement Works

In association with Jaycee Buildcorp LLC

Vedanta Aluminium scores a hattrick of awards for fly-ash utilization!

Efficient Manageme of Fly Ash - Captiv Rower Plant

Energy Cell Activities

"Bottom to Top Approach"

Sensitivity: Internal (C3)

PEOPLE INVOLVEMENT

- **E** Test launched to check training effectiveness.
- > 100% E-test compliance done.
- **SGA Activities along with TQM for Encon improvement.**
- Energy Dash Boards maintained.
- > Mandatory energy Audit done by CII.
- > Online webinar organized through energy efficiency product manufacture

Energy awareness in Tool Box Talk.

Energy awareness Training

War room meetings

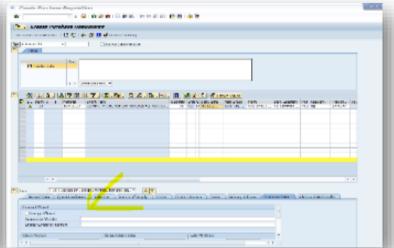
ECON Week 2021 Major event Glimpse

Our Steps Towards Digitalization

📓 🏥 (All Charles	Tool Marcal Ann	3	eren a eren het	10 M						
B107.4		Viller.	20		100						
101012		1.00			-						
Daven Correi 👘 😪	Last Opticies (0/2012/00) (0/2017)	9 0					0000000	10527			
		UNIT 1		0142.48	1140-13	1102-04	2146-00	NAME OF	0142-08	1145-13	MID
	Law Control.	10	30331	66.3	10030	62.2	10.30	30033	60.3	10030	00.18
1.00.00	Canadalase Park, News, Co.	No.	19.1	148	285	12.8	10	19.6	10	288	10
144	Open Jacob Park, De Producture	Mit	901	8.90	285	9.8	192	94	10	285	10.0
CONTRACTOR OF A	Cold House received Comp (MT)	N4.	140.610	1456/078	1425,000	1255-10	1151368	1467-630	1321148	1417-019	121431
	Cases Metal	MT	1464.00	148650	100.00	140110	1481/65	1403-000	1452.26	1411-01	10/20105
KI dava	co dive	3	We 91.	5450	V4.07	943.3	94.93	94.00	5400	V4.75	\$4.00
NUT	cu dhez	3	10.00	5132	14.20	813.5	96392	19.57	\$100	WLOV.	\$104
Lingson .	CA PIERCE		11.82	\$1.92	Y6.82	P187	94.99	11.77	\$104	W177	\$135
Report	Motal Level Alex 33	SHE	36.31	35.04	3.2.	20.35	25.25	20.29	3523	26.27	35.17
and Program .	We war(7 in (1)	0.07	112	14.2	24.3	14.0	13.2	3123	14.8	24.8	14.19
Process Control	Mel Avg Mallagetak e 10	V	4195	4.137	4194	4.114	6.158	4185	4.124	4111	4.128
o care come	Parts (Fig. 1)	- W	103.03	100.00	100.00	10048	25.43	103.03	100.00	130.00	23,04
S. Malelenane	AC Deep serve(Dentil)	Regel for	0.57	0.10	8.23	0.21	0.23	A10	0.17	3.16	0.20
	Geth Tempeldental		900.3	\$90.1	958.5	855.4	999.0	908.9	\$90.5	901.1	896.20
🖶 Quelly	Anode change wanding	NO	. V	- V		- V -		4	1		. V
6 m	Metal raping rending post	199	21.	32	2	2	2			÷ •	Q
8 m	Anoca Covering Herding	190	0			. v		20	32		0
🗟 lagtest	AC New YORK	White Party							10103		
2.44	And New YORK	White I also	612409	411.22	621.25	10104	411.07	4160	412-01	00.21	01.0
🛅 Santya 👘 🗍	Different Const	Wei/el el Al									
	Telef Devery Cores	High Art of M	15776.00	1122444	1200.04	10633-60	1121423	12202-01	110226-02	12202	1075440

MES Online Flash report

Pro and Markenson	
1000/10/10/00/00 00 000 1-0000-0	And restarting an one and a set
mann	1 mm
	erer inches laus same der a
mithani	
	more a constant strategy of the data state of the state o
	a second second second second
L.A.	


E-DMS (Document control & Approval)

Online solar power generation trend

Online Logbook Mobile app

Online Monitoring of parameter in MES

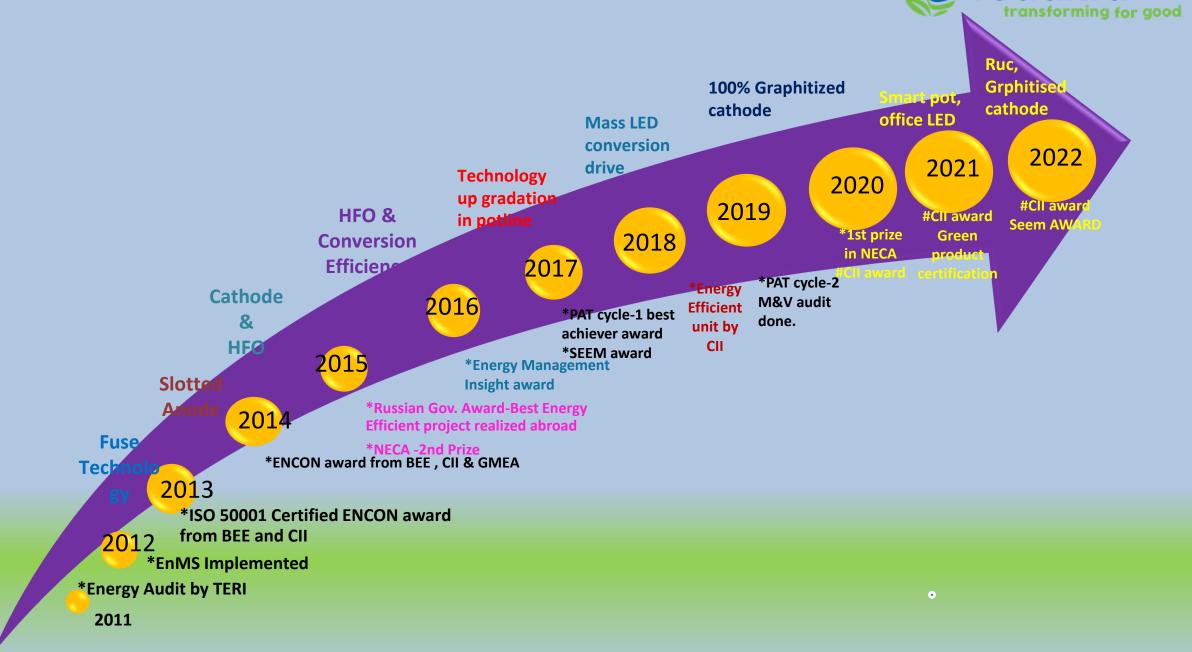
Energy Efficient Procurement Verification

ENERGY POLICY & OBJECTIVES

VEDANTA LIMITED, JHARSUGUDA Energy Policy

The Aluminium Smelter Plant-1 & Plant-2(SEZ) of Vedanta Limited-Jharsuguda, a leading player in its sector, strives to build world class capabilities in every facet of its business operations and affirms its commitment to:

- Continual improvement in energy performance by providing necessary resources and information required to achieve energy management objectives and targets.
- Ensure compliance of all necessary and applicable legal and other requirements related to organization's use, consumption and efficiency.
- Incorporate energy efficient designs, equipment and process in all the future projects.
- Purchase of energy-efficient products on merit basis as per life cycle costing.
- Create awareness towards energy conservation in the organization.


Date: 31.03.2022

Sunil Gupta CEO, VL-Jharsuguda

ENMS OBJECTIVES

- Reduce DC Energy Consumption
- Reduce Auxiliary Energy Consumption
- Reduce HFO Consumption
- Reduce Diesel consumption

ENCON EFFORTS – A NOTCH UP

vedanta

Thank You

