

Forbes Marshall

Energising Businesses and Communities Worldwide

ENERGY EFFICIENCY BENCHMARKING AND SUSTAINABLE SOLUTIONS FOR THERMAL UTILITIES IN TYRE INDUSTRY

Date 07-08-2024

Presenter- Forbes Marshall

TYRE CURING

TYRE CURING – ENERGY INTENSE PROCESS

High Intensity, less Consumption Process requirement

Curing quality – Tolerance Limit of Parameters are very narrow

UTILITIES

Steam – High, Medium and Low Pressures

Hot water supply

Nitrogen Supply

Cooling water

Vacuum

SSC OPTIMISATION OPPURTUNITY IN STEAM AND CONDENSATE SYSTEM

Representation of SSC Reduction in basic steam and condensate system

Proprietary content

CONDENSATE RECOVERY FACTOR OPTIMISATION

Possible Improvement Range of condensate recovery factor %

- 1. Pressure wise condensate segregations
- 2. Flash and condensate recovery (closed loop) to feed water tank
- 3. Condensate contamination detection, segregation and heat recovery
- HP Internal condensate recovery (Incase of Nitrogen step – condensate carryover to Nitrogen cycle which is loss of water and air)
- Practically complete flash steam and condensate recovery can achieve feed water temp of 100-105 deg.c – cutdown to Zero Live steam

SP.STEAM CONS AND STEAM CYCLE IN CURING

HP Blow-through steam contributes to 10-15% of Plant Average steam load 40-50% Higher Steam system design /Boiler capacity 5-10% Loss /vent in the Plant

Key Parameters to Optimised

step time of Blow-through

Pipe /Orifice Opening size

Improvement in plant

Optimised Boiler capacity/ Improved Boiler efficiency

Improved Steam pressure controls

Reduced steam consumption and No vent steam in Plant/Reduction in Excess air & CO2 Emissions

SP.STEAM CONS AND PRODUCTIVITY

- 1. Reasons /areas of productivity or production Planning 100.0
- Regular shut down and start-ups- Press Heatup
- Idle Presses
- Breakdowns and bladder change in presses
- Delay in Loading and unloading
- Daily Press Planning
- Right selection of press size corresponding to the tyre /Mould size

Key Parameters

Platen surface temperature

Platen surface Area

Heatup Time /Idle time

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Variation of tyre production rate with Specific fuel consumption

SPECIFIC ENERGY CONS. OPTIMISATION

- 1. Temperature control of platens separately (set the temperature specifically for each tire type)
- 2. Insulation of Curing Headers and Press Insulation
- 3. Flush steam/Depressurization steam recovery to feed water tank /Hot water make up tank & Increasing the Hot water Make up temperature
- 4. Hot water recovery based on the temperature to enable maximum recovery
- 5. Nitrogen recovery to be used in Compressed air system Reduces compressed air consumption
- 6. Heat recovery from Curing cooling water return tower
- 7. VFD Based electrical Pumps for Hot water/cooling
 Propriewateresystem

- RIGHT DESIGN NOT OVERSIZED /UNDERSIZED
- UNDERSTANDING THE HEAT AND MASS BALANCE OF PLANT (SOURCE /SINK MAPPING)

KPI MONITORING AND SUSTENANCE

SPECIFIC WATER CONSUMPTION

How I overcome controllable Variations?

Plant as per Design
Monitor KPIs
Sustain KPIs

Presentation By

FORBES MARSHALL

Energy Conservation | Environment | Process Efficiency

TYPICAL LOADS

	EQUIPMENTS	DIRECT CONSUMPTION	INDIRECT CONSUMPTION	PRESSURE	HOURS OF	TOTAL STEAM CONSUMPTION	% STEAM	% DIRECT	% INDIRECT	PRODUCTS
		Kg/hr	Kg/hr	kg/cm2	OPERATION	TPD	CONSUMED	CONSUMED	CONSUMED	
l	BANBURY OIL HEATING	NA	170.63	2	24	4.10	0.98	NA	0.98	
(CALENDER-1	NA	400	3	16	6.4	1.53	NA	1.53	
(CALENDER-2	NA	218	3	16	3.49	0.83	NA	0.83	Proper
(CALENDER-3	NA	495	3	8	3.96	0.94	NA	0.94	Trapping,
1	EXTRUDER	NA	57.14	6	14	0.8	0.19	NA	0.19	CRS, PRS,
١	VAM	NA	990	6	24	23.76	5.66	NA	5.66	TCM
I	DIP ZONE-1	NA	759	6	16	12.14	2.90	NA	2.9	
I	DIP ZONE-2	NA	762.56	6	16	12.20	2.91	NA	2.91	
	TOTAL		3852.33			66.85	15.94		15.94	

EQUIPMENTS	DIRECT CONSUMPTION TPD	INDIRECT CONSUMPTION TPD	PRESSURE USED kg/cm2	HOURS OF OPERATION	TOTAL STEAM CONSUMPTION TPD	% STEAM CONSUMED	% DIRECT CONSUMED	% INDIRECT CONSUMED	PRODUCTS
RADIAL CURING PRESSES	76.7	69.5	17	24	146.2	34.86	18.29	16.57	CHRS, CCDS,
BIAS CURING PRESSES	51.1	78.3	17/12	24	129.4	30.85	12.18	18.67	Trapping.
HOT WATER GENERATOR	77	NA	12	24	77	18.36	18.36	NA	PRS
TOTAL	204.8	147.80			352.60	84.06	48.83	35.24	

419.45

48.83 51.17

TOTAL STEAM DEMAND OF THE PLANT IN TPD TOTAL % OF DIRECT STEAM CONSUMPTION TOTAL % OF INDIRECT STEAM CONSUMPTION

Energy Conservation | Environment | Process Efficiency

IMPROVING SSC

✓ Improving SSC by addressing

- o Steam distribution
- Steam trapping system
- Standing losses of presses
- o Reducing calorifier steam

• Steam Distribution

- · PRS for each trench -
- Quality of steam Moisture separators on steam line of all trenches
- · Line traps, air vents
- Monitoring steam consumption
- Steam Trapping Health, selection and group to individual
 - Selection of Float Traps on presses with correct delta P of trap
 - Group to individual trapping on platens
 - Proper condensate evacuation
 - o Reduction in pressure,
 - o Proper curing,

٠

- o Reduction in cycle time
 - Individual tapping to each platen
 - Air vents on dome presses
- Trap monitoring health (impact on savings / curing)

Reducing calorifier steam

- Recovering hot blowdown water at maximum temperature to calorifier
- Blow through steam recovery i.e. bladder HP flushing steam
- Recovering main drain steam at end of dome steam cycle
- Recovering shaping steam
- Steam loss from presses press insulation, dome lip gasket leaks, safety valve
- Insulation on steam, condensate, hot water supply and return lines

Compact Module – Thermodynamic Trap with replaceable seat

CMTD42M-F

CMTD42M-S

"Quick to Install Easy to Maintain"

PLATEN PRESS

Proprietary content

TYRE Press

Auxiliary header - bladder

TYRE Press

SCHEMATIC OF TRENCH

- Low Pressure steam

(Platen) HPS (Bladder) CWS

LPS

- High Pressure steam

- Cold water circulation

(Bladder) Perprietary content - Blowdown (Bladder)

CURING CYCLE | BIAS TYRE

	Press	75"	Dome	Single
Size		Shaping steam	10+/-2 psi	Dome
Sr. No.	Step	min	sec	Time
1	200+/- PSI HPS ON	0	0	2
2	Open circulation drain	2	0	0.5
3	Close circulation drain	2	30	2.5
4	Dome steam ON	5	0	5
5	Open circulation drain	10	0	0.5
6	Close circulation drain	10	30	6.5
7	HP steam OFF/270 PSI Hot water circulation ON	17	0	37
8	Dome steam OFF	54	0	1
9	Circulation of HW OFF/ CW circulation ON	55	0	3
10	CW circulation OFF/Open all drain	58	0	1
11	Apply Vacuum	59	0	1
12	Open Press	60	0	
	Utility requirement	kg/cm2	Deg C	
	HPS	14+/4	198+/-1	
	HW	19+/-1.8	168+5-0	
	CCW	14+/-4	Atm. Temp	
	Dome		155+/-1	

CURING CYCLE | RADIAL TYRE

Press	Press Segment mould Size		Platen	
Size			12+/-2	14+/-2
Sr. No.	Step	Min	Sec	Time
1	240 +/-5 PSI HPS ON/Open circulation drain	0	0	0.2
2	Close circulation drain	0	12	4.8
3	Open circulation drain	5	0	0.1
4	Close circulation drain	5	6	1.9
5	270 psi HW ON	7	0	0.5
6	HP steam OFF	7	30	4.5
7	HW OFF/ CW circulation ON	12	0	2
8	CW circulation OFF/Open main drain/ Apply Vacuum	14	0	1
9	Open Press	15	0	
	Utility Requirement	kg/cm2	Deg C	
	HPS	17+/4	206+/-1	
	MPS	12+/-0.4	191+/-1	
	HW	19+/-1.8	168+5-0	
	CCW	14+/-4	Atm. Temp	
	Platen		174+/-2	

Energy Conservation | Environment | Process Efficiency

www.forbesmarshall.co

Steam utilization within the process

Losses

- Overshoot
- Steam leakage in distribution lines
- Delay between cycles
- Delay during cycles
- Scaling within the mould channel
- Air trapped inside the mould
- Trap leakage
- Steam loss during blowdown
- Slow controller response
- Steam channels choking

Quality parameters

Proprietary content

Affecting Performance

Delay in ramp-up time (SP Temperature)				
LHS	RHS			
27 sec delay	80 sec delay			

- · Tyre quality on LHS will be better than RHS
- Uneven heat distribution in LHS and RHS
- · Delay in controller response for bladder steam (Under-curing)
- · Steam line chocking in LHS bladder supply
- · Steam leak in RHS bladder supply
- · Any delay will lead to loss in quality.

Factors

Two Orifice Float Trap Best Solution for Process Trap Applications

- The condensate load at start up is higher than the average running load
- If the float trap is sized for running loads it often becomes undersized for startup load, whereas if the same is sized for startup load the trap selected at times becomes oversized for running load

- Two Orifice Float Trap meets the need of both the startup & running load conditions
- Ideal choice for applications where temperature gradient is steep

TOFT temperature profile

TOFT in Tyre Press

06/22/2017 65.5" TYRE CURING PRESS 131/132 30 25 20 08.33.10 11.33 10 P.M 109/110 111/112 113/114 115/116 117/118 11 128 121A/121B 122A/122B 159/178 123/124 125/126 127/128 129/130 133/134 135/136 137/138 139/140 141/142 143/144 145/145 LAYOUT MAIN REALTIME TREND HISTORY TREND ALARM VIEW ALARM STATUS ALARM HISTORY

Temperature variation in bladder when trap other than TOFT were used

Temperature profile is constant when TOFT is used

Energy Conservation | Environment | Process Efficiency

www.forbesmarshall.co

AIR VENTING IN DOME PROCESS

We have observed average 30 sec. saving on total heating cycle of 2 Mins. Which is 25 % reduction in initial heating

Energy Conservation | Environment | Process Efficiency

IMPROVING SFC – S:F

- ✓ Improving S:F by addressing
 - Boiler efficiency
 - <u>Load variations</u> depends on loading of presses
 - <u>Peak load –</u> (shift change, lunch time , dinner time)
 - Blow down
 - $\circ~$ Optimum TDS of blow down
 - Feed water temperature
 - <u>Condensate recovery factor</u> impact of correct trapping & backpressure on traps
 - <u>Trench wise condensate Recovery</u>depressurizing the line)
 - <u>Cooling water heat recovery (PHE)</u> cold blow down water temp about 60oC)
 - Blow down heat and flash recovery

www.forbesmarshall.co

14:00

TRENCHWISE CONDENSATE USING FJP

BENEFITS

- Improved CRF %
- Zero live steam injection in feed water tank
- Negligible back pressure on process trap
- Improved performance of process trap

Energy Conservation | Environment | Plocess Efficiency

Flash Jet Pump

Flash Jet Pump is ideal solution closed loop recovery of condensate and flash steam that ensures complete energy balance.

Features & Benefits

Dome press – Cavity and Bladder trap status Dome Press Trap Float trap 8, 1% Thermodyn 58, 5% amic trap 156, 14% Inverted bucket trap thermostat 874, 80% hic trap **Bladder Trap – Dome Press** No traps 100, 19% 261, 49% 81, 15% 87, 17% Float trap Thermodynamic trap

Platten press – Cavity and Bladder trap

OPTIMIZE

Heat recovery from contaminated condensate, flash steam recompression, Group Vs. individual trapping, Process cycle optimization, Shaping steam optimization, Boiler load management, Boiler efficiency enhancement, Boiler Water quality (Makeup water, Blow down water), Fuel quality

STOP WASTAGE

Selection of right steam trap based on application, Right quality of steam at right pressure (dry sat.), free of air and non condensable (Air vent on dome press), Condensate and flash recovery factor, condensate and flash steam line sizing and layout, leakages, Insulation of dome and platens, Valve monitoring system to ensure zero internal leak system

www.forbesmarshall.co

Thank You

www.forbesmarshall.com

Proprietary content