

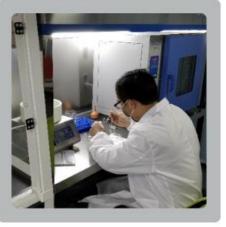
DIGITALIZING COMPRESSED AIR FOR ENERGY EFFICIENCY AND SUSTAINABILITY IN TYRE MANUFACTURING

Systel Energy Solutions (India) Pvt Ltd

Enhancing Compressed Air Performance

- 22 Years of Experience
- Over 1800 Compressed Air Projects
- Contributing to 50 Million MWH of Energy Savings
- ◆ ISO 11011

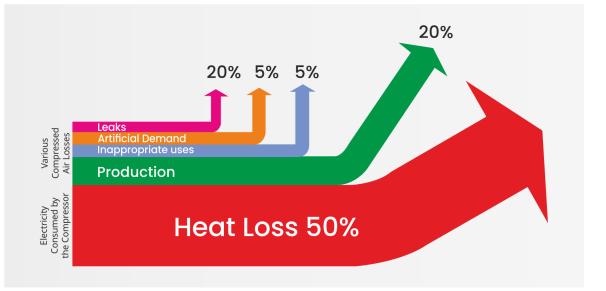
OUR FACILITIES



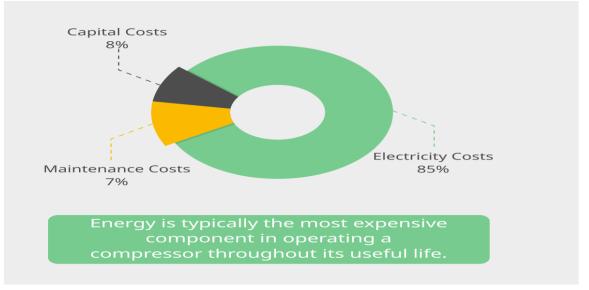
COPENHAGEN - DENMARK

INDIA CORPORATE OFFICE COIMBATORE SENSOR MANUFACTURING SHENZHEN SENSOR MANUFACTURING -KARLSRUHE - GERMANY

OUR HAPPY CLIENTS



At Systel, we are proud to have collaborated with over 1700 industries across the Asia Pacific region and made a significant impact in optimizing their compressed air energy efficiency. Our dedicated efforts, in partnership with our customers, have resulted in remarkable annual energy savings of up to 50 million MWH. We take great privilege in being a driving force behind the improvement and sustained peak performance of our clients' compressed air systems.


DO YOU KNOW THAT COMPRESSED AIR SYSTEMS ARE HIGHLY IN-EFFICIENT ?

Distribution Of Compressor Input Energy

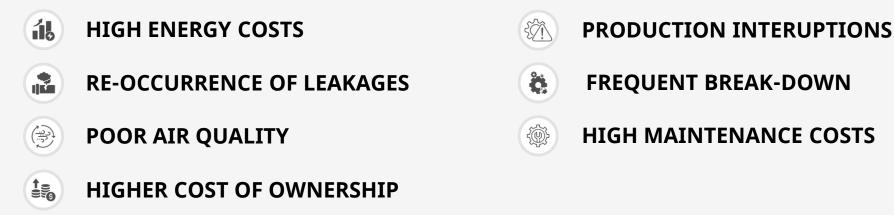
Compressor Life Cycle Costs

COMPRESSORS AND THEIR IMPACT ON SUSTAINABILITY

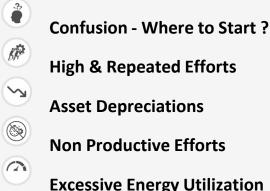
Importance of Compressed In Tyre Manufacturing:

- **Curing Presses:** Compressed air is essential for operating curing presses, which are crucial for vulcanizing rubber into durable tyres.
- **Pneumatic Tools:** Used extensively in tyre assembly, maintenance, and repair processes.
- **Conveying Systems:** Compressed air powers pneumatic conveying systems to transport materials within the manufacturing plant.

PAIN POINTS IN OPERATING A COMPRESSED AIR SYSTEM



Annual Impact Of A 90 KW Screw Compressor


- > 870 MWH of Energy Consumption*
- > Rs 6.96 Million in Energy Costs
- > 648 Tons of Annual Green House Gas Emissions
- > 7,00,000 Litres of Cooling Water Required Annually**
- > 1,30,000 Litres of Condensate Produced Annually
- > 3,40,000 Btu/hr Equivalent of Thermal Energy * Considering Annual Operation of 8700 Hours ** In Case of Water Cooled Compressors

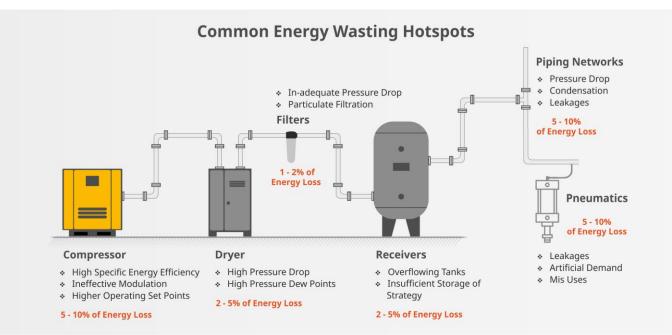
Every compressor, regardless of type, draws in contaminated air, concentrates the contamination by compression and, if no measures are taken to remove it, passes it on to the compressed air network. Listed Below are the Key Pain Points Users experience while Managing their Compressed Air System

ABSENCE OF SMART MONITORING SYSTEMS

Consequence of Not Monitoring your Compressed Air System

High & Repeated Efforts

Asset Depreciations


Non Productive Efforts **Excessive Energy Utilization**

ENERGY WASTING HOTSPOTS

Regular Audit & Inspection in Compressed Air System can lead to Identifying & Eliminating Energy Wasting Hotspots as illustrated below,

Eliminating leaks, misuse, over pressurization and pressure drop can ensure efficient Operation of compressed air systems.

Smart Measurement is a comprehensive and systematic approach to continuous improvement. It includes all actions taken to reduce energy consumption and costs, and it is used to create an institutional framework for identifying and capitalising on energy-saving opportunities.

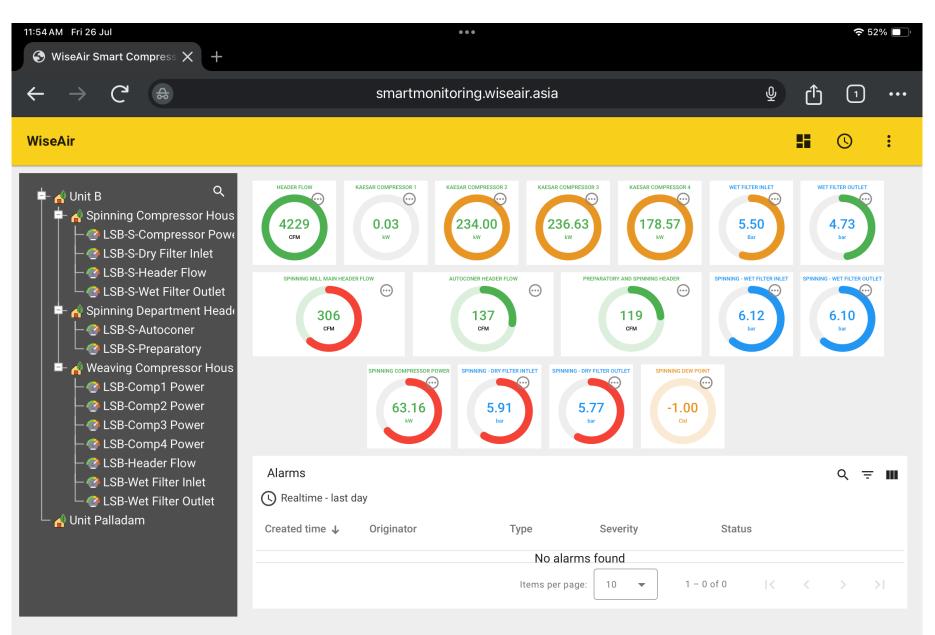
DIGITALIZE YOUR COMPRESSED AIR SYSTEMS, THE SYSTEL WAY...

We offer a complete, flexible and affordable way to adopt digitalisation of factories and to help our customers digitally transform their Compressed Air Systems, into a smart facility through connecting all aspects from Supply till Demand.

WAFS-13 Differential Pressure Prior Tube Flow Mare Wars-501 Wa

BENEFITS OF COMPRESSED AIR SYSTEM DIGITALIZATION

Real-time Monitoring: Continuous tracking of system performance and air usage.
Predictive Maintenance: Using data analytics to predict and prevent failures before they occur.
Energy Optimization: Identifying and addressing inefficiencies to reduce energy consumption.
Cost Savings: Lower operational costs through reduced energy usage and maintenance needs.
Sustainability Goals: Reducing carbon footprint and supporting corporate sustainability initiatives.


CREATE A PERFECT AIR BALANCE

デ Compressed Air Ger) History - Yesterday	neration			
Compressor Ref	Date	Rated Capacity	Actual Average Flow	Actual Average Pressure
AMI-Compressor 1	06/08/2024	4000 SCFM	3799 SCFM	6.67 Bar
AMI-Compressor 2	06/08/2024	6310 SCFM	5072 SCFM	6.62 Bar
AMI-Compressor 3				
AMI-Compressor 4	06/08/2024	6310 SCFM	0 \$CFM	-0.01 Bar
AMI-Compressor 5	06/08/2024	10000 S CFM	8515 SCFM	6.68 Bar
AMI-Compressor 6	06/08/2024	10000 S CFM	9026 SCFM	6.70 Bar
AMI-Compressor 7	06/08/2024	6310 SCFM	5652 SCF M	6.53 Bar
Fotal		42930 S CFM	32065 S CFM	6.64 Bar
		4230 3 CPM	32005 S C F M	6.04 Bar
身 Compressed Air Cor)Hatory - Yesterday	sanga kasing 🖕 kutakon Ing			
み Compressed Air Cor)History - Yesterday	nsumption Date	Rated Capacity	Actual Average Flow	6.04 Bar Actual Average Pressure
Compressed Air Cor History - Yesterday Compressor Ref	sanga kasing 🖕 kutakon Ing			
Compressed Air Cor History - Yesterday Compressor Ref Balaji Weaving Bhagyalakshmi	Date	Rated Capacity	Actual Average Flow	Actual Average Pressure
B Compressed Air Cor History - Yesterday Compressor Ref Bataji Weaving	Date 06/08/2024	Rated Capacity 5400 SCFM	Actual Average Flow 5601 SCFM	Actual Average Pressure 6.16 Bar
B Compressed Air Cor History - Yesterday Compressor Ref Balaji Weaving Bhagyalakshmi	Date 06/08/2024 06/08/2024	Rated Capacity 5400 SCFM 4500 SCFM	Actual Average Flow 5601 SCFM 4808 SCFM	Actual Average Pressure 6.16 Bar 6.21 Bar
B Compressed Air Cor History - Yesterday Compressor Ref Balaji Weaving Bhagyalakshmi Gayathri Flow	Date 06/08/2024 06/08/2024 06/08/2024	Rated Capacity 5400 SCFM 4500 SCFM 4500 SCFM	Actual Average Flow 5601 SCFM 4808 SCFM 4678 SCFM	Actual Average Pressure 6.16 Bar 6.21 Bar 6.22 Bar
β Compressed Air Cor History - Yesterday Compressor Ref Balaji Weaving Bhagyalakshmi Gayathri Flow	Date 06/08/2024 06/08/2024 06/08/2024 06/08/2024	Rated Capacity 5400 SCFM 4500 SCFM 4500 SCFM 5120 SCFM	Actual Average Flow 5601 SCFM 4808 SCFM 4678 SCFM 5315 SCFM	Actual Average Pressure 6.16 Bar 6.21 Bar 6.22 Bar 6.22 Bar
β Compressed Air Cor History - Yesterday Compressor Ref Balaji Weaving Bhagyalakshmi Gayathri Flow Niharika Flow Saroj	Date 06/08/2024 06/08/2024 06/08/2024 06/08/2024 06/08/2024	Rated Capacity 5400 SCFM 4500 SCFM 5120 SCFM 4500 SCFM	Actual Average Flow 5601 SCFM 4808 SCFM 4678 SCFM 5315 SCFM 4829 SCFM	Actual Average Pressure 6.16 Bar 6.21 Bar 6.22 Bar 6.27 Bar 6.18 Bar

VIEW KEY METRICS IN A SNAPSHOT

SMART IIOT SENSORS:

- Flow Sensors: Measure the volume of compressed air being used.
- **Pressure Sensors:** Monitor system pressure to ensure optimal operation.
- **Power Sensors:** Track energy consumption of compressors and other equipment.
- **Dew Point Sensors:** Measure moisture levels in compressed air to prevent equipment damage and product defects.

ADVANCED DATA ANALYTICS AND AI:

- **Predictive Maintenance:** AI algorithms analyze data to predict potential system failures and maintenance needs.
- **Energy Optimization:** Data-driven insights to fine-tune system performance and reduce energy consumption.

CLOUD-BASED MONITORING PLATFORMS:

- **Real-time Data Access:** Access system data from anywhere for informed decision-making.
- Alerts and Notifications: Immediate alerts for any anomalies or issues detected in the system.

CASE STUDY - JSW STEEL LIMITED - SALEM WORKS

Context:

- Specialty Steel Manufacturing Plant in India with high energy usage due to compressed air systems.
- Operating 3 Centrifugal Compressors, total capacity of 14,700 CFM.

Key Challenges:

 Inaccurate flow measurements from existing Orifice Plate Flow Sensors.

DIAGNOSING SYSTEM INEFFICIENCIES

- Compressors consuming approximately 75,000 kWh per day.
- Refrigerant Compressors used for drying air were not effectively measuring Pressure Dew Point (PDP).
- Frequent leaks (750 CFM) due to high moisture damaging pneumatic equipment.
- Misaligned supply and demand sides, resulting in increased system pressures and artificial demand.

CASE STUDY - JSW STEEL LIMITED - SALEM WORKS

TRANSFORMATIVE STEPS TO EFFICIENCY

Solutions Deployed:

- Step 1: Replaced Orifice Plate Flow Sensors with Systel
 WAFS 103 Model Pitot Tube Flow Sensors, eliminating
 pressure drops and saving 1,104 kWh/day.
- Step 2: Installation of WADS 205 Pressure Dew Point Sensors to accurately monitor air quality, reducing moisture-related issues.
- Step 3: Replaced 21 Vortex Flow Sensors with Systel WAFS
 106 Thermal Mass Flow Sensors, stabilizing pressure
 fluctuations and reducing energy loss.
- Step 4: Integrated complete system with Systel's Real Time Monitoring Software for data analysis and immediate alerts on abnormalities.

CASE STUDY - JSW STEEL LIMITED - SALEM WORKS

ISW Steel Limited	JSW Stee
	04.02.2022
Го,	
Mr. Hidhay. Managing Director, M/s Systel Energy Solutions (India) Pvt Ltd,No. 2, Systel Business Centre, # 12 Sri Venkatalakshmi Nagar, Singanallur, Coimbatore – 641005	
Dear Sir, Sub : Confirmation of Energy Savings through	Systel's Compressed
	Systel's Compressed
Sub : Confirmation of Energy Savings through	Energy Savings of Upto 432 / Consumption after installing stem and implementing the

G.Mahendran Sr.Manager - Utility

Salem Works: P.O.Pottaneri, Mecheri Mettur Tk, Salem Dist.-636 453 Tamilnadu, India CIN No. L27102MH199PLC152925 Phone : 04298 272000 Website : www.jsw.in Registered Office : JSW Centre, Bandra Kurla Complex Bandra (East), Mumbai – 400 051 T +91 22 4286 1000

Achieving Significant Energy Savings

- Immediate energy savings of 1,104 kWh/day post sensor replacement.
- Reduced leaks by 60%, saving up to 1,718 kWh/day.
- Stable system pressure and improved air quality across the plant.
- Overall energy cost savings of over Rs 2.32 Crores with an investment of Rs 75 Lacs.
- Return on Investment (ROI) achieved in under 4 months.
- Significantly reduced maintenance and repair costs.
- Enhanced control over the compressed air system for the plant's technical team.

OUR NETWORK

ASIA REGIONAL OFFICE

SYSTEL ENERGY SOLUTIONS (INDIA) PVT LTD

#12 Sri Venkatalakshmi Nagar, Singanallur, Coimbatore - 641 005. India Mob : +91 - 096550 28715

EUROPE REGIONAL OFFICE

SYSTEL TECHNOLOGIES EUROPE ApS

Pilestraede 58, 112 Copenhagen, Denmark. Ph:+45 36990422