

"Best Practices in Energy Efficiency at Kankroli Tyre Plant"

Venue : Energy Management Centre - Kerala Srikrishna Nagar, Sreekaryam Thiruvananthapuram 695017

07th August 2024

VIKRANT

Name: Gaurav Bohra Designation : Dy. General Manager (EE&I) Email : gbohra@jkmail.com Mobile No. : +91 9799999940

Location

• About the Organisation

- 1st Plant at Kankroli 1976
- Initial capacity 55 MT/ Day,
- Present Capacity 230 MT/Day

- 9 Plants in India Capacity 1569 MT/Day
- 3 Plants in Mexico Capacity 290 MT/Day

· 67 Kms from Udaipur

· 200 Kms from Ajmer

· 340 kms from Jaipur

700 kms from N.Delhi

- IATF- 16949 : 2016
- ISO- 14001:2015
- ISO- 45001:2018
- ISO- 50001 :2018
- SA- 8000:2014
- ISO- 27001:2015
 Many More

VIKRANT

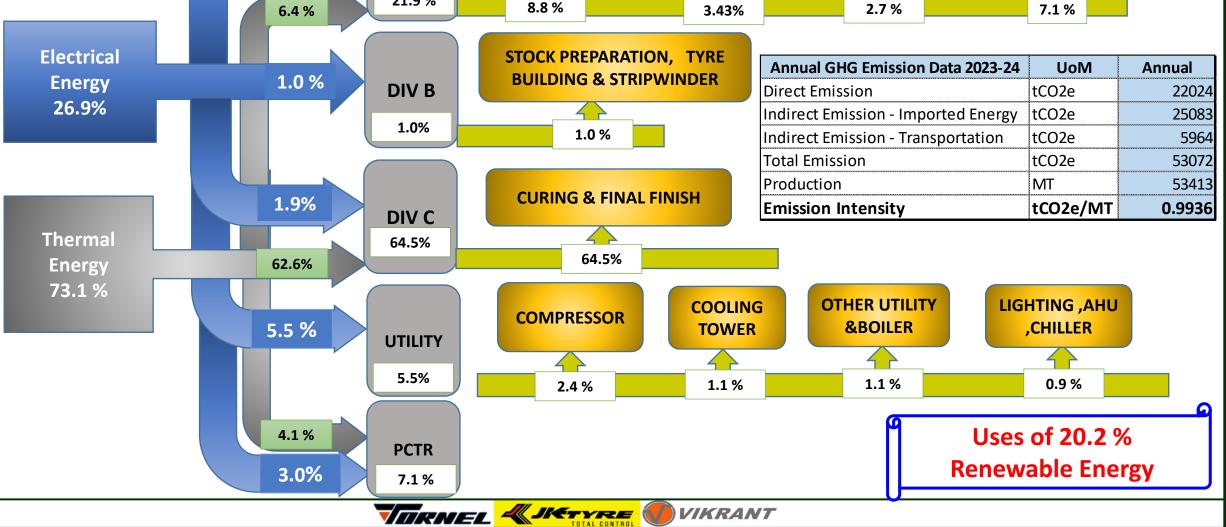
UEnM.01-PY.01

2

ENERGY POLICY

- We at JK Tyre are committed to design, manufacture and distribute our products & services in an energy efficient manner to meet our mission statement of becoming a green company. We will continually improve our energy performance for sustainable growth by:
- Complying with all applicable legal and other requirements related to our energy use, consumption and efficiency.
- Taking measure in Energy Management System by being proactive, innovative and cost effective including procurement of energy efficient product & services.
- Enhancing effectiveness of energy management system by ensuring the availability of information and necessary resources to achieve the objectives and targets.
- Integrating energy policy into our business planning, decision making and performance review at appropriate level.

We commit to communicate this policy to all our employees, persons working for and on our behalf and also will make it available to all interested parties on request.


Date Rev :01.01.2021 :01 Director & President (International Operations) & INDUSTRIES LTD.

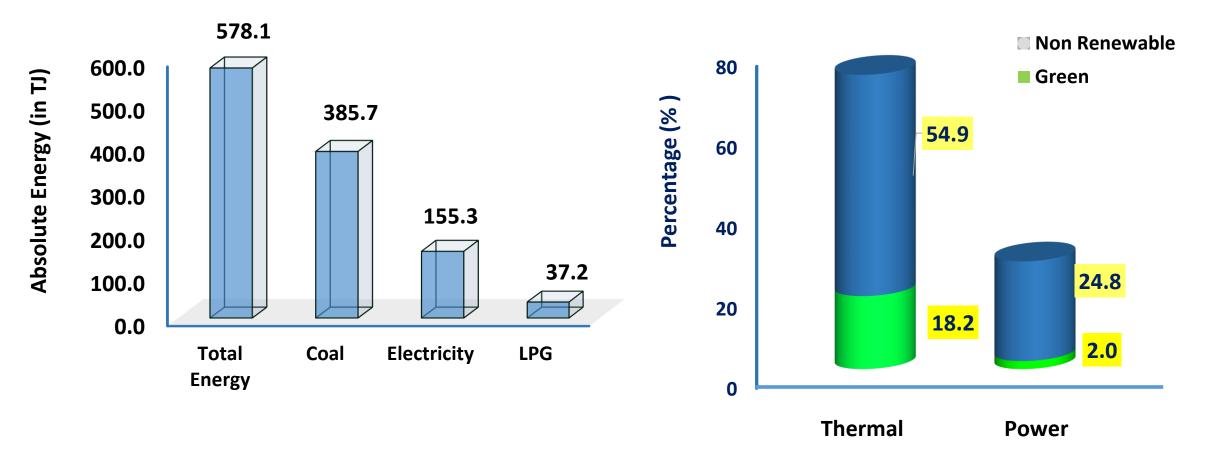
Certifications:-

- ISCC Plus FY 2024-25.
- Single Use Plastic Free FY 2024-25
- Management System From DNV FY2024-25.

Energy Mapping (2023-24) Total Energy Consumption-1944 K Cal/Kg of Product

EXTRUDER CALENDAR MIXER 15.5% **DIV A** 21.9 % 8.8 % 6.4 % 3.43% 2.7 % **STOCK PREPARATION, TYRE BUILDING & STRIPWINDER** 1.0 % **DIV B** Direct Emission 4

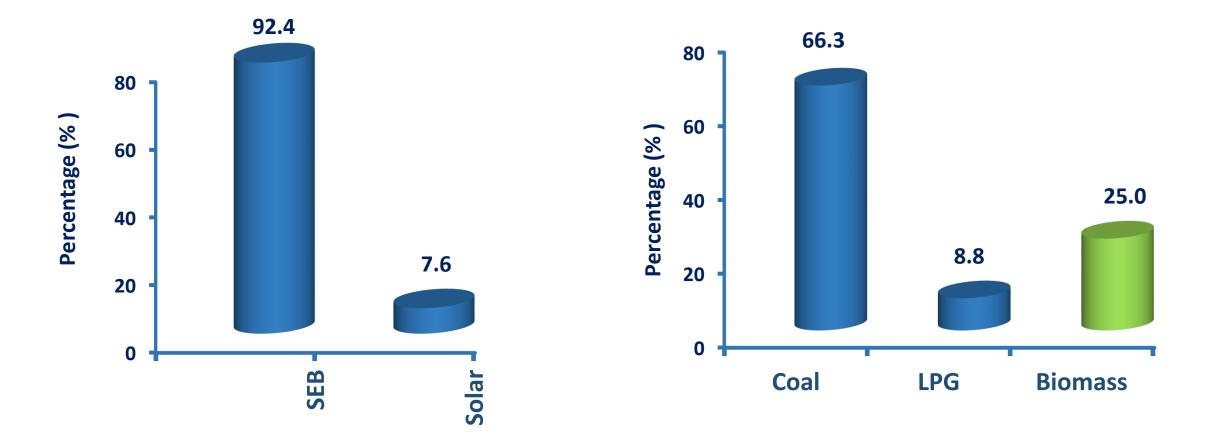
DIP UNIT

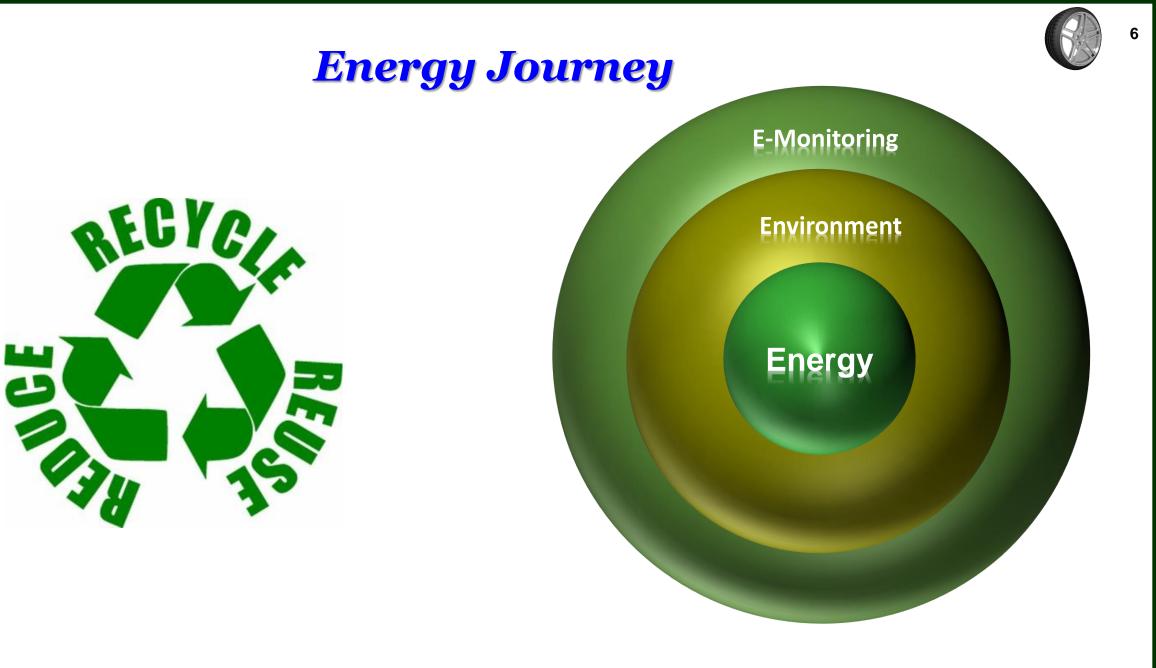


Present Energy Mix

Plant Energy consumption (TJ) FY 2023-24

Plant Energy Mix (%) FY 2023-24



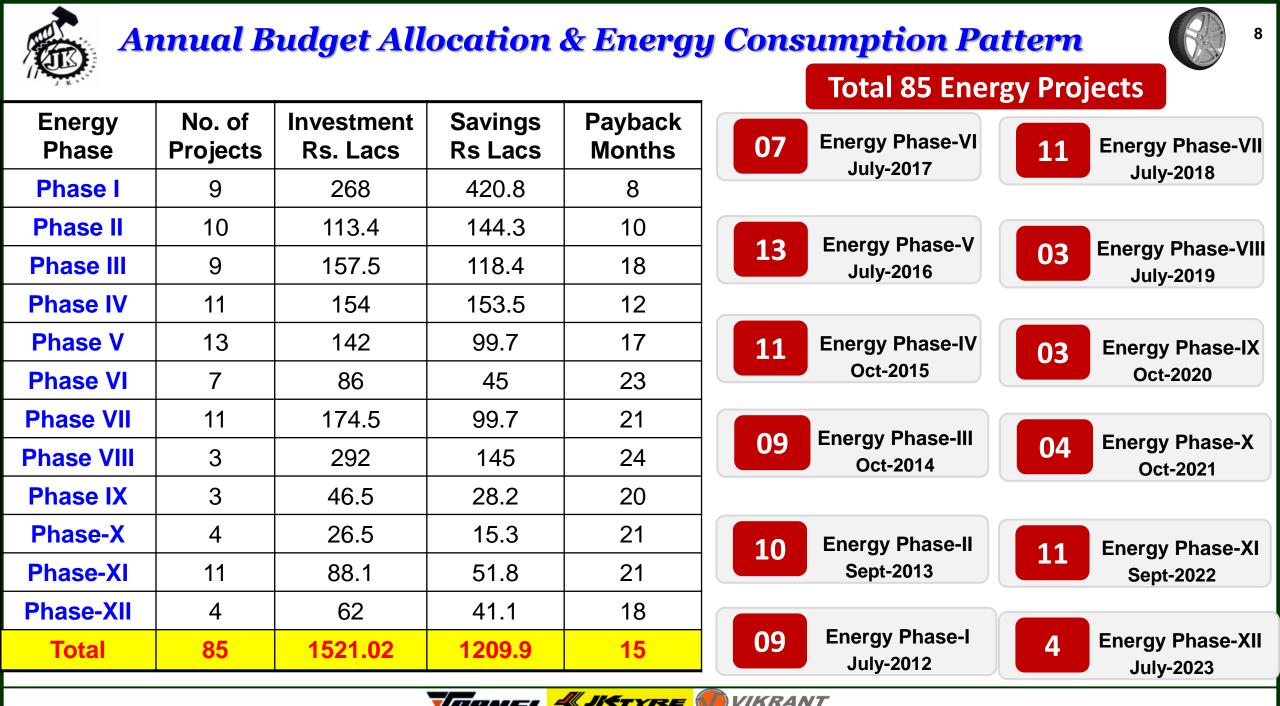


Electricity Sources FY 2023-24

TIRNEL A JETYRE VIKRANT

Focus Areas

Waste to Energy


Condition Based

Energy Monitoring

Zero Land Fill

- 1. Reduction in Specific Energy Consumption
- 2. Reduction in Specific Water Consumption
- 3. Reduction in Specific Steam Consumption
- 4. Reduction in Specific Coal Consumption
- 5. Reduction in Specific Naphtha Consumption
- 6. Reduction in Specific Nitrogen Consumption
- 7. Increase in Boiler Efficiency
- 8. Compliance to Energy Conservation Act
- 9. Compliance to Indian Electricity Rules
- **10.Reduction in Steam Cost**
- **11.Reduction in Power Cost**
- **12.Reduction in Fuel Cost**
- 13.Increase in Renewable Energy Use (%)
- 14.Reduction in GHG Intensity (tCo2 equivalent) -Direct and Indirect Emissions
- 15. Procurement of Energy Efficient Appliances/ Machines

4 JKTYRE TIRNEL

Energy Saving Projects Implemented (2019-20)

9

S No	Title of Project	Annual Electrical Saving (M kWh)	Annual Electrical Saving (Rs million)	Annual Thermal Saving (M Kcal)	Total Annual Savings (Rs million)	Total Annual Savings (Rs million)	Investment Made (Rs million)	Payback (Months)
1	Power Saving by conversion of a DC Motors with AC Motor and VFD on 3 Roll Calendar Line (Wind Up & Cooling Drum Motor)	0.025	0.20			0.20	0.35	21
2	Power Saving by conversion of a DC Motors with AC Motor and VFD on 3 Roll Calendar Main Motor	0.048	0.39			0.39	0.75	23
3	Reduction of Energy Consumption in Dip Unit Dryer Zone	0.000		1820	2.0	2.00	3.2	19
4	Power Saving by installation of Jet Nozzles (60 Points)	0.045	0.36			0.36	0.24	8

TORNEL A JETYRE VIKRANT

Energy Saving Projects Implemented (2020-21)

10

S No	Title of Project	Annual Electrical Saving (M kWh)	Annual Electrical Saving (Rs million)	Annual Thermal Saving (M Kcal)	Total Annual Savings (Rs million)	Total Annual Savings (Rs million)	Investmen t Made (Rs million)	Payback (Months)
1	Reduction of Energy Consumption in Utility for Tyre Curing	1.9	15.3	17912	29.7	13.6	20	18
2	Power Saving by Upgradation of Energy Efficient AHU AHU's (2 Nos)	0.2	1.6			1.6	5.2	39
3	Power Saving by installation of VFD on Mixer#5 TCU Pumps	0.0	0.2			0.2	0.5	22
4	Power Saving by installation of Jet Nozzles (250 Points)	0.1	0.9			0.9	1.3	17

TIRNEL A JETYRE VIKRANT

Energy Saving Projects Implemented (2021-22)

|--|

s N o	Title of Project	Annual Electrical Saving (M kWh)	Annual Electrical Saving (Rs million)	Annual Thermal Saving (M Kcal)	Total Annual Savings (Rs million)	Total Annual Savings (Rs million)	Investment Made (Rs million)	Payback (Months)
1	Power Saving by provision of VFD on Extruder & Calendar Roof ventilation Fan and Control Speed as per Seasonal Variation.	0.04	0.3			0.3	0.5	20
2	Power Saving by provision of VFD on Mixer Roof ventilation Fan and Control Speed as per Seasonal Variation.	0.02	0.2			0.2	0.3	23
3	Power Saving by provision of VFD on Tyre Building Roof ventilation Fan and Control Speed as per Seasonal Variation.	0.02	0.2			0.2	0.35	23
4	Power Saving by Upgradation of Energy Efficient AHU in place of old and inefficient AHU's (Plant- III AHU # 4)	0.10	0.8			0.8	1.5	22
6	Energy Saving by Direct Heating with LPG ipo In- direct Electrical Heating at Dryer Zone of 4 Roll Calendar		0.0	36.7	1.3	1.3	1.6	15
7	Power Saving by provision of Existing VFD along with IE-3 Motor on DUAL Extruder 8.5' FD Mill and 10" FD Mill	0.17	1.4			1.42	2.60	22
8	Power Saving by Upgradation of Energy Efficient AHU in place of old and inefficient AHU's (Plant-I AHU # 6)	0.05	0.4			0.4	1.0	27

Energy Saving Projects Implemented (2022-23)

S N o	Title of Project	Annual Electrical Saving (M kWh)	Annual Electrical Saving (Rs million)	Annual Thermal Saving (M Kcal)	Total Annual Savings (Rs million)	Total Annual Savings (Rs million)	Investment Made (Rs million)	Payback (Months)
1	Power Saving by provision of VFD on DIP Unit Roof ventilation Fan and Control Speed as per Seasonal Variation.	0.02	0.16			0.16	0.30	23
2	Power Saving by Provision of VFD in DIP Unit Exhaust Blower (Dryer Zone, Normalising Zone & Heat Set Zone)	0.02	0.12			0.12	0.24	24
3	Power Saving by Provision of PCI Air Recovery from Truck Sizes	0.01	0.10			0.10	0.20	24
4	Power Saving in Compressed Area by New Air Meter Installation(Area Wise) and optimise the Air Consumption	0.04	0.34			0.34	0.50	18
5	Power Saving by Energy Efficient Pump with VFD on Cooling Tower Supply & Return Pump	0.12	0.98			0.98	1.92	23
6	Power Saving by provision of VFD along with Energy efficient IE-3 Motor on 3 Roll Calendar Feed Mill	0.13	1.05			1.05	1.80	21
7	Steam saving by provison of insulation on Platen Outer Cavity on Tyre Curing presses (Phase-I for 10 Nos of Platen Presses)			177.0	0.33	0.33	0.35	13
8	Steam saving by provision of insulation on HP Piston Valve (Phase-I for 45 Nos of HP Valve)			95.6	0.22	0.22	0.25	14
9	Steam saving by provision of insulation on Platen Outer Cavity on Tyre Curing presses (Phase-II for 11 Nos of Platen Presses & 76 Nos of HP Valve)			345.1	0.8	0.8	0.80	12

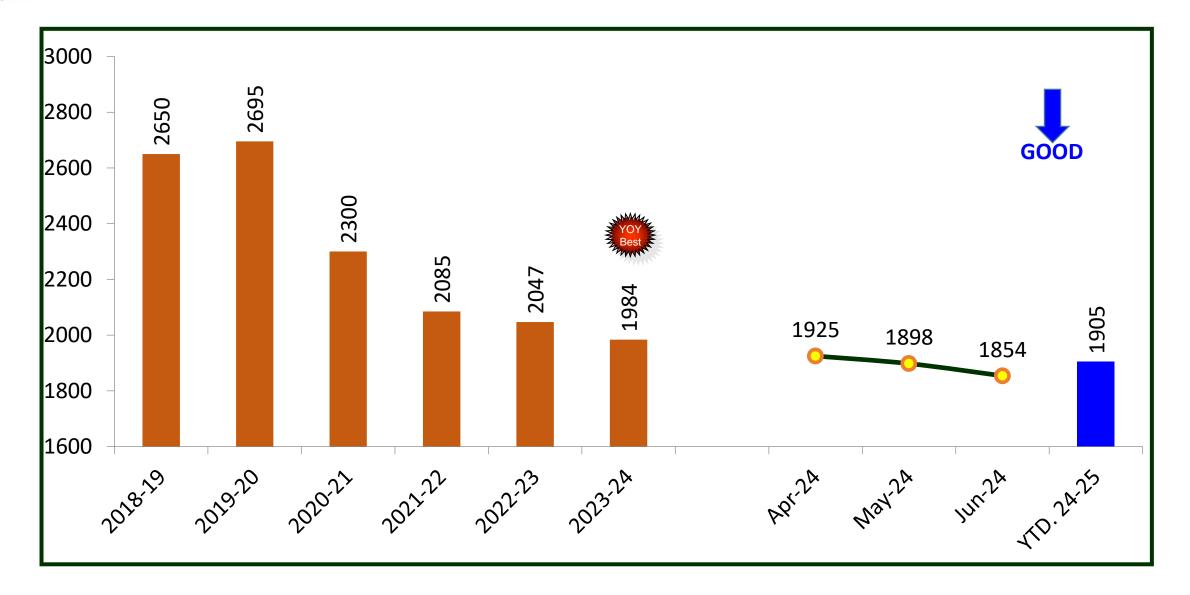
TIRNEL A JETYPE

Energy Saving Projects Implemented (2023-24)

S No	Title of Project	Annual Electrical Saving (M kWh)	Annual Electrical Saving (Rs million)	Annual Thermal Saving (M Kcal)	Total Annual Savings (Rs million)	Total Annual Savings (Rs million)	Investment Made (Rs million)	Payback (Months)
1	Power Saving by provision of VFD on Curing Section Ventilation Fan (Roof Exhaust Fans) & Control spped as per seasonal variation	0.11	0.89			0.89	1.7	23
2	Reduction in Air Power Consumption by Air Pressure Optimisation in Mixing Section	0.03	0.23			0.23	0.4	21
3	Power Saving by Replacement of conventional Pump with Energy Effcient Pump for STP Section	0.06	0.45			0.45	0.90	24
4	Power Saving by Replacement of Old & Inefficient Pump with VFD on Cooling Tower Supply & Return Pump along with VFD in PCTR	0.11	0.87			0.87	1.7	23
5	Fuel Saving by increase in Condesate Recovery from Curing by provision of Jet Pump and use it in to Boiler Derator (Phase-I)			908	2.6	2.6	3.2	15
6	Steam saving by provison of insulation on Platen Outer Cavity on Tyre Curing presses (Phase-III for 22 Nos of Platen Presses)			345.3	0.97	0.97	0.8	10

Summary of Energy Saving Projects Implemented in Last 5 Years

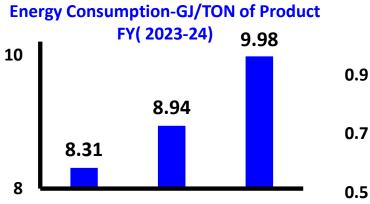
Year	No of Energy Saving Projects	Investment (INR Million)	Electrical Saving (Million kWh)	Thermal Savings (Million K Cal)	Savings (INR Million)	Impact on SEC GJ/Ton
FY 2019-20	4	4.5	0.12	1820	3.0	0.15
FY 2020-21	7	27.0	2.3	17912	16.5	1.45
FY 2021-22	8	4.6	0.41	36.7	7.9	0.03
FY 2022-23	9	6.4	0.34	617.6	4.08	0.07
FY 2023-24	6	8.7	2.43	1254	6.0	0.09

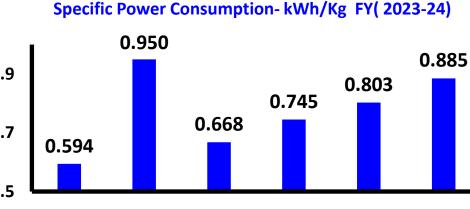

Identification of Energy Projects based on:

- ✓ Technological Up gradation
- ✓ Plant Internal Findings
- $\checkmark\,$ Horizontal Deployment from other JK Tyre $\,$ plants $\,$
- ✓ External Audit Finding

TIRNEL A JETYRE VIKRANT

Energy Consumption (Kcal/Kg.) - Cured Tyre Consumption


15



TIRNEL A JETYRE

Benchmarking & Energy Saving Projects Implemented

Internal Benchmarking

Kankroli Tyre Plant:

- Lowest Among Bias Tyre
 Manufacturing Plant for Specific
 Energy Consumption.
- Lowest Among All JK Tyre Plant for Specific Power Consumption.

KTP LTP VTP-I KTP BTP VTP-I & VTP-II CTP LTP-TBB Bias Tyre Manufacturing Plant Energy Saving Projects Implemented in Last Three Years

Year	No of Energy Saving Projects	Investment (INR Million)	Electrical Saving (Million kWh)	Thermal Savings (Million K Cal)	Savings (INR Million)	Impact on SEC GJ/Ton
FY 2019-20	4	4.5	0.12	1820	3.0	0.15
FY 2020-21	7	27.0	2.3	17912	16.5	1.45
FY 2021-22	8	4.6	0.41	36.7	7.9	0.03
FY 2022-23	9	6.4	0.34	617.6	4.08	0.07
FY 2023-24	6	8.7	2.43	1254	6.0	0.09

TIRNEL A JETTRE VIKRANT

Project : Reduce CO2 emission by using Horticulture waste as a fuel to 30 Ton Boiler

Problem Definition : Kankroli Tyre Plant is situated in 302 Acre of land and this land is completely covered with greeneries. On daily basis 0.75MT horticulture waste/tree leaves are generated and were being disposed as land fill.

Major challenge with this materials how to best utilise in the direction of Zero land fill and reduce CO2 in line with company mission of reduce carbon emission intensity to 50% by 2030

Project Start Date Nov-21

Project Completion Date

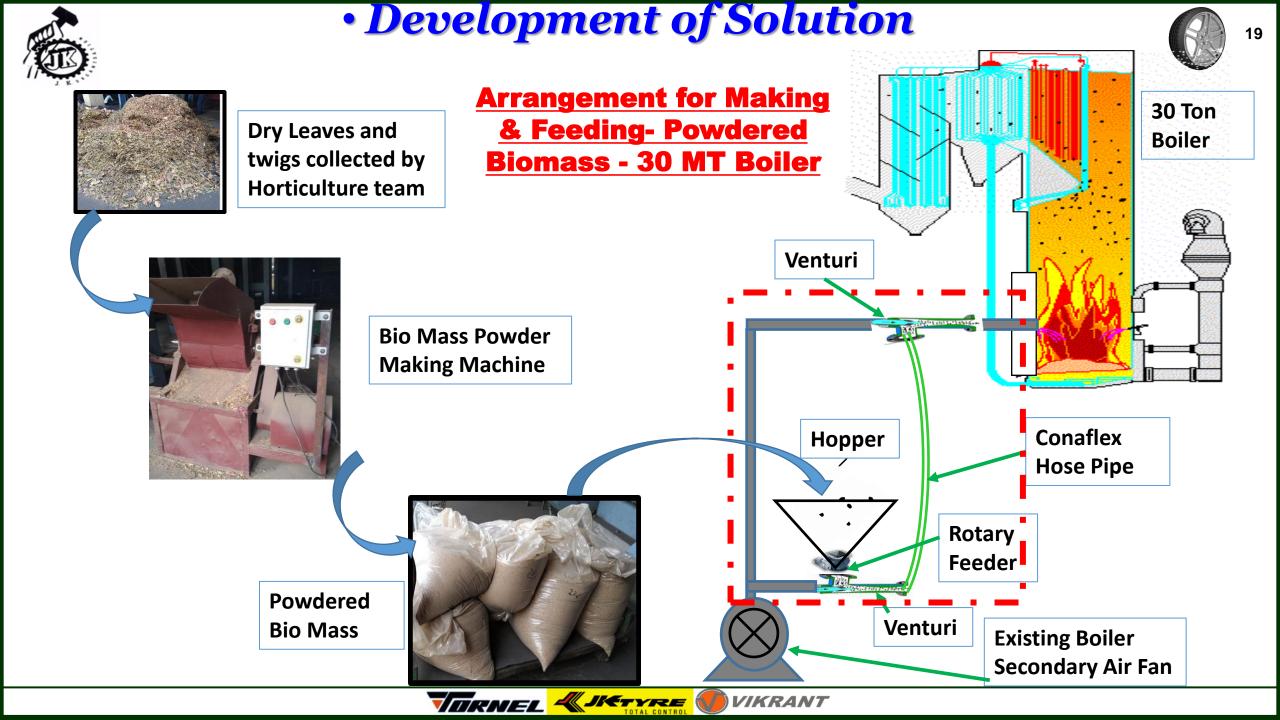
Jan-22

To Convert horticulture waste generated in KTP premises as Fuel Suitable for 30 Ton Boiler. For this Plant Team need to prepare solution for :

- Arrangement to make powder from dry leaves & twigs.
- Arrangement to feed powdered material/ Fuel in 30 ton Boiler.

Development of Solution

In- House Assembly of Components with available Resources



TRNEL

Measurement Of Benefits

Standardization:-

TORNEL A JETYRE

Training to Operatives

VIKRANT

20

Total Availability of Horticulture Waste= 0.75 MT/Day

Effectiveness & Sustenance of action:

 Horticulture waste is being measured in quantity before using and the same reduction trend is observed in Equivalent Coal Quantity.

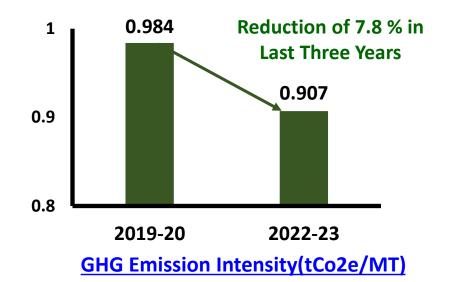
Tangible Benefits :-

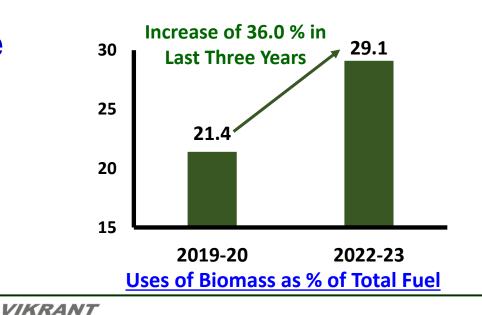
- Saving of Rs. 3.0 Lacs / Year
- Payback : Immediate (Used In-house Resource)

Intangible Benefits :-

• Saved Natural Resources.

antity	S No	FY	Quantity (MT/Year)	Percentage of Total Fuel
nd is	1	2021-22	29.8	0.1%
	2	2022-23	240.3	1.1 %




Uniqueness of the Project & Continual Improvement

21

Uniqueness of the Project

- Reduction in Zero land fill.
- Developed in-house alternate fuel for Boiler.
- Development of Solution with in-house Resources

Project: Fuel saving by increase in condensate recovery from curing by provision of jet pump

Problem Definition

On GH line There are Total 30 Curing Presses Condensate and Flash Steam Generated During Process is Collected in One Header and then Flow Through Self Pressure and Collected in One Common Collection Tank Where Condensate is Pumped to Deaerator. Condensate Flow From GH Trench Get Disturb Due to Back Pressure From Other Trench, There is Leakages in Header Line, Improper Line Sizing, Flash Steam Venting in Collection Tank, Also Observed That Bypass Valve of Presses Opened For Removing Condensate From Presses Because Old Traps is not Capable to Handle Large Flow of Condensate. Due to All These Causes Condensate Recovery is Less. *Project Start Date :* April-2023

Why Why Analysis

Data Collection

Condensate i	ecover	y befo	re		Condensate recovery not good
	Apr-23	May-23	Jun-23	Jul-23	
Total steam sent (MT)	7066	7345	8056	8528	
Total conden sent recover (KL)	1749	1814	1848	2048	Condensate collection through self pressure
Avg Plant condensate recovery (%)	24.75	24.70	22.94	24.02	
Avg recovery of 4 months		24.:	10		
Data Collection Tools:- 1. Condensate recovery meter					Wrong method selection of condensate recovery
			RNEL		

TORNEL <mark>A JETYRE</mark>

Counter Measure

 For collection of GH line condensate new flash jet pump to be install in which flash steam and condensate get separated in different lines and condensate force fully send to directly deaerator.

Validation

 Flash steam and condensate is flowing through single line and partially flash steam venting in common condensate tank so flash steam and condensate line temporary separated by pilot project and all parameters were collected and found beneficiary.

Solution Implemented

Condensate recovery before

Condensate recovery after

- Condensate recovery increased by 4.99 %
- Total cost saving in 3 months = 155591 Rs.

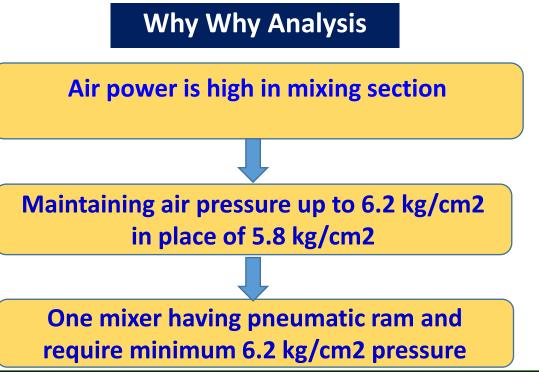
Conden	sate recover	·v Λfto	r			Increase in Condensate recovery (%)		4.99	%
		yAlle				We get recovery if dont modify		5970	KL
	From 08 Aug-23	Sep-23	Oct-23	Total		recovered extra condensate after modification	diffrence	1227	KL
Total steam sent	6748	9529	8492	24769		Enthalpy of comdensate		100	Kcal/Kg
Total condensate recover (KL)	1943	2631	2622.29	7196.29		Enthalpy of DM feed water		52	Kcal/Kg
Avg Plant condensate recovery %	28.79	27.61	30.88			Enthalpy diff		48	Kcal/Kg
Avg recovery of 3 months					Total enthalpy saving from recovered condensate		58882710	Kcal/Kg	
Average GCV of coal considered fo	r saving	<u> </u>		3406	Kcal/Kg	Average prize of coal per MT		9000	Rs
Total saving from recovered condensate in terms of coal 17.29					MT	Total Cost saving 1			Rs

4 JKTYRE

VIKRANT

TTRNEL

Project: Air power saving by optimising air pressure in mixing section.


Problem Definition

In our plant mixing section area one mixer having pneumatic ram which is required minimum 6.2 kg/cm2 air pressure for operation, while in plant operation require 5.8 kg/cm2 air pressure. Air power consumption is high in mixing area due to maintain air pressure up to 6.2 kg/cm2 in all mixing section. *Project Start Date*: June-2023 *Project Completion Date*: Dec-2023

Data Collection

Air power compressor 7 & 8 Before					
Month	Jun-23	Jul-23	Aug-23	Sep-23	
Air power consumption (kWh)	1720	1722	1742	1702	

Data Collection Tools:-Energy Meters from IoT based System

B

E

B

0

R

A

F

Ε

R

Counter Measure

 Air power reduction by using pressure reducing control valve for plant process air (air pressure 5.8 kg/cm2) and separate air line for mixer (air pressure 6.2 kg/cm2).

Validation

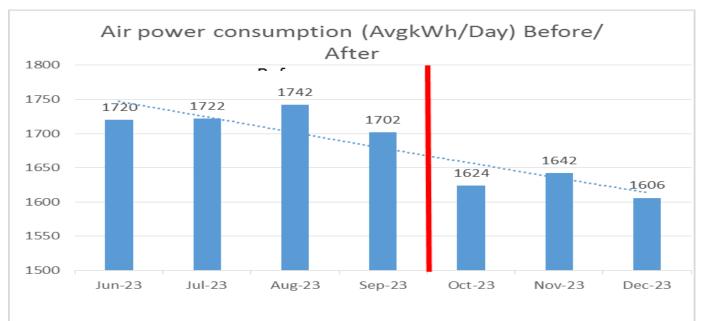
A Pilot Project – Using Old air pressure reducing control valve Modification of System compatible for plant process air (air pressure 5.8 kg/cm2) with arrangement. Energy Consumption and Process Parameter Validated .

Solution Implemented

Air Line in Mixing Section Before

Air Line in Mixing Section After Modification

TIRNEL **UKR**


VIKRANT

- Air power consumption reduction in mixing section = 97 kWh/ Day
- Total cost saving in 3 months = 62041 Rs.

Air power compressor 7 & 8 ((Avg kWh/Day) Before					
Month	Jun-23	Jul-23	Aug-23	Sep-23	
Air power consumption (kWh)	1720	1722	1742	1702	

Air power compressor 7 & 8 (Avg kWh/Day) After					
Month	Oct-23	Nov-23	Dec-23		
Air power consumption (kWh)	1624	1642	1606		

Project: Power saving by process optimization on cooling tower supply & return pump.

Problem Definition

At Kankroli Tyre Plant on Cooling Tower Supply & Return Pump Power Consumption is High Because Multiple Pumps are Running to Achieve Specific Pressure Requirement With Manual Bypass Adjustment. Pumps are Running With Starter System so Speed Control Also Not Available. **Project Start Date** : April-2023

Project Completion Date : March-24

Data Collection

High Power Consumption of Cooling Tower Supply & Return Pump **Multiple Pumps were running along with Open Loop Control & Manual bypass solution Equipment is running with Old Technology** TORNEL A JETYRE VIKRANT

Energy Used For Cooling Tower(FY 2022-23)

S No	Particulars	UOM	Quantity
1	Power Consumption for Cooling	Kwh/Day	4684
	Tower Supply & Return Pumping		
2	Power Consumption for Cooling	Kwh/Year	1405200
	Tower Supply & Return Pumping		

Data Collection Tools:-

1. Energy Meters from IoT based System

Why Why Analysis

B

Ε

0

R

A

E

R

4 JIETYRE

TRNEL

Counter Measure

- To Use Single Energy Efficient on Cooling Tower Supply & Return Pump with IE3 Energy Efficient Motor and maintain pressure as per Process requirement
- Modify Existing System for Closed Loop Control through VFD for Power Optimization

Validation

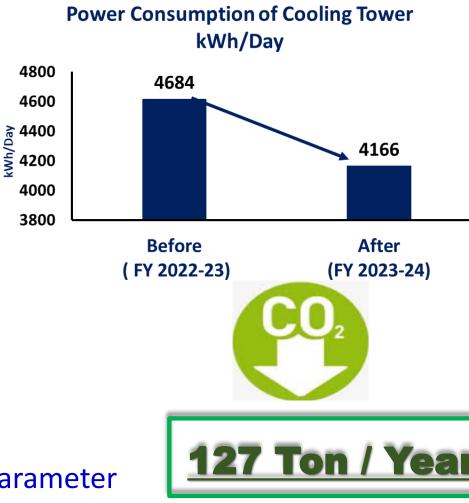
 A Pilot Project – Using Old available Single High Efficiency Pump process parameters achieved but still manual bypass need to be open frequently so Modification of System compatible for closed loop control with arrangement of available VFD. Energy Consumption and Process Parameter Validated.

Solution Implemented

E Multiple Pumps on Cooling Tower Supply Pumps with Fixed Starter Panel

Single Energy Efficient Pump on Cooling Tower Supply Pumps with VFD

- 10.0 % Reduction in absolute Power Consumption= 518 kWh/Day
- Saving in Energy Consumption= 133.6 M Kcal/Year


Monthly Average Power Consumption Trend of Cooling Tower (kWh/ Day)					
YTD 22-23	Apr-23	May-23	Jun-23	YTD 23-24	
4684	3968	4092	4438	4166	

Tangible Benefits :-

- Saving of Rs. 12.6 Lacs / Year
- Simple Payback of 1.6 Years Intangible Benefits :-
- Consistent Pressure & Process Water Temperature
- Ease of Maintenance.

Standardization:-

- Changes in SOP
- Revised Process Parameter

TIRNEL A JETYRE VIKRANT

Project: Power saving by process optimization on STP section in pump house.

Problem Definition

At Kankroli Tyre Plant on STP Section in Pump House Power Consumption is high Because High Power Pump is Used to Achieve Desired Pressure With Manual Bypass Adjustment. Pumps is Running With Starter System so Speed Control Also Not Available.

Project Start Date : June-2023

Project Completion Date : March-24

Data Collection

High Power Consumption of STP Section in ty **Pump House** Pumps were running along with Open Loop **Control and Manual bypass solution** N **Equipment is running with Old Technology** TIRNEL <mark>& JETYRE</mark>

VIKRANT

Energy Used For Cooling Tower(FY 2022-23)

S No	Particulars	UOM	Quantit
1	Power Consumption for Cooling	Kwh/Day	530
	Tower Supply & Return Pumping		
2	Power Consumption for Cooling	Kwh/Year	158400
	Tower Supply & Return Pumping		

Data Collection Tools:-

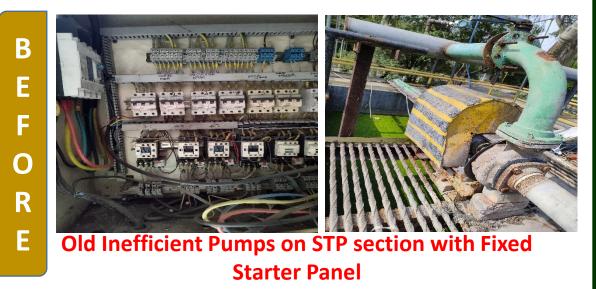
1. Energy Meters from IoT based System

Why Why Analysis

Solution Implemented

Counter Measure

- To Use Energy Efficient on STP pump with IE3 Energy Efficient Motor and maintain pressure as per Process requirement
- Modify Existing System for Closed Loop Control through VFD for Power Optimization


Validation

 A Pilot Project – Using Old available Low Power Pump and process parameters achieved and Modification of System compatible for closed loop control with arrangement of available VFD. Energy Consumption and Process Parameter Validated .

TORNEL

4 JIETYRE

VIKRANT

Single Energy Efficient Pump on STP Section Pump with VFD

- Reduction in absolute Power Consumption= 153 kWh/Day •
- Saving in Energy Consumption= 39.49 M Kcal/Year •

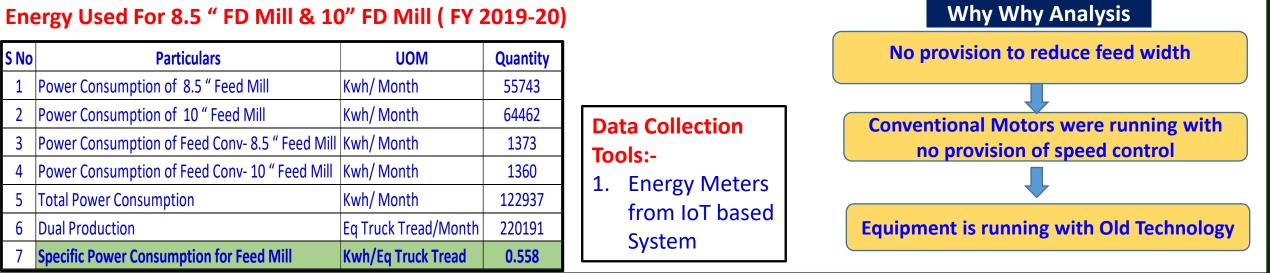
STP Power Consumption(Avg/Day) Before					
Month Jun-23 Jul-23 Aug-23 Sep-23 Oct-2					
STP power consumption (kWh)	500	528	542	538	544

STP Power Consumption(Avg/Day) After					
Month Nov-23 Dec-23 Jan-24 Feb-24 Mar-24					
STP power consumption (kWh)	380	377	385	379	365

Tangible Benefits :-

- Saving of Rs. 3.70 Lacs / Year
- Simple Payback of 1.9 Years **Intangible Benefits :-**
- **Consistent Pressure & Process** Water Temperature
- Ease of Maintenance.

STP power consumption (Avg/Day kWh) 600 530 500 380 400 300 200 100 ſ Before(jun23-oct23) After(nov23-mar24) **Standardization:-**Changes in SOP **Revised Process Parameter**


Project: Optimising The Process to reduce Power consumption by provision of VFD with

IE-3 Motor on DUAL Extruder 8.5" Feed Mill and 10" Feed Mill **Problem Definition**

At Kankroli Tyre Plant at Dual Extruder Feeding conveyor system from Mill to Extruder required feed width is fixed as motor is running with constant speed leading to high temperature of compound as there is no provision to reduce the width leading to lumpy generation that further produces defective product. In addition to this Power Consumption of 10" Extruder & 8.5" Extruder Feed Mill is High due to running of Inefficient Induction Motors with no provision of speed control.

Data Collection

S No	Particulars	UOM	Quantity			
1	Power Consumption of 8.5 "Feed Mill	Kwh/ Month	55743			
2	Power Consumption of 10 "Feed Mill	Kwh/ Month	64462	Data Colle		
3	Power Consumption of Feed Conv- 8.5 " Feed Mill	Kwh/ Month	1373	Tools:-		
4	Power Consumption of Feed Conv- 10 " Feed Mill	Kwh/ Month	1360	1. Energy		
5	Total Power Consumption	Kwh/ Month	122937	from I		
6	Dual Production	Eq Truck Tread/Month	220191	_		
7	Specific Power Consumption for Feed Mill	Kwh/Eq Truck Tread	0.558	Systen		

VIKRANT

B

Ε

F

0

R

Ε

4 JETYRE

TIRNEL

Counter Measure

- To Use Energy Efficient (IE-3) Motor (160 KW) in place of Conventional Motor along with VFD to Control the Speed of the process.
- Modify Existing System and increase the Existing feed width of the Extruder by Reducing the Mill Speed keeping the feed volume Constant.

Validation

 A Pilot Project – Trial Taken of Increase in Feed width by Rubber Technology team by arranging Local VFD Panel and establish the process . All Process & Energy Data Validated with respect to 20 % reduction in Motor Speed.

Solution Implemented

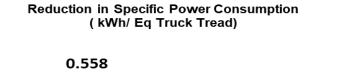
Conventional Motor with Fixed Starter Panel

Energy Efficient IE-3 Motor with VFD Panel

Results Achieved

Energy Benefits

- Saving in Power Consumption= 2.08 Lacs Kwh/Year
- 18.3 % Reduction in kWh/Eq. truck Tread of Product
- Elimination of Compound Lumpiness


Tangible Benefits

• Saving of Rs. 17.1 Lacs / Year

Uniqueness of the Project

Intangible Benefits

- Lower Maintenance Cost.
- Better Process Control & Reduction in fatigue

0.60

0.50

0.40

Before After Standardization

- Change in SOP.
- Revised Process Parameter

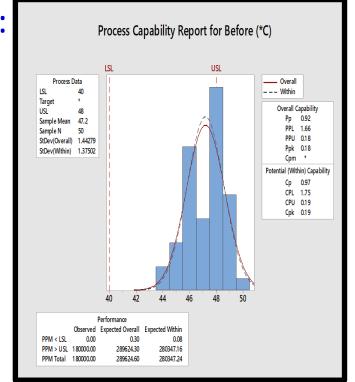
0.456

- •Optimization of feed temperature and product quality along with energy saving.
- •Easy Maintenance of VFD Panel & Motor.
- •Reduction in idling Losses by Reducing the Mill Speed.
- •Simple Payback on Investment is 1.5 Years

TIRNEL **UKTYRE W**VKA

Best Practice # 7

Energy Saving by Process Optimization at Pre Cured Tread Rubber - Extruder


- At Kankroli Tyre Plant, Pre-Cured Tread Rubber Section, Extruder Tread booking temperature variation (Specification : 46 ± 2 Deg C) is there due to variation in Cooling Water Pressure. There is no pressure control from cooling tower and Fix pressure (4.0 ± 0.2 Kg/cm2) is running
- on all equipment's irrespective of machine requirement . In addition to this Old, Inefficient &
- Multiple Pumps were running with conventional motors on Cooling Tower Supply & Return
- Pump without any speed control.
- Above process is based on old technology and need to upgrade
- for Improvement of Energy Efficiency & Process optimization.
- **Project Start Date** : April-23
- **Project Completion Date** : March-24

Problem Definition

- Specific Power Consumption of PCTR Process : 0.218 kWh/Kg of Product
- □ Major Energy Loss at PCTR Extruder is Evident Through :
 - •Conventional Motors & Pumps on Cooling Tower without any Speed control/ Open Loop Control.
 - •Layout of Cooling Pipeline is not as per Machine Pressure Requirement.
 - •High Scrap Generation due to inconsistent Booking
 - Temperature

Extruder Booking Temperature-Process Capability Report (Before)

Due to above Inefficiency in Existing Process there is High Energy Consumption.

VIKRANT

WIRNEL A JIETYRE

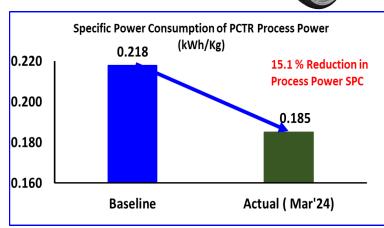
- To Use Single Energy Efficient on Cooling Tower Supply & Return Pump with IE3 Energy Efficient Motor and maintain pressure as per Process requirement.
- Modify Existing System for Closed Loop Control using Pressure Transmitter in line with VFD for Power Optimization.
- Pipe Line Modification based on Equipment Pressure Requirement.
 Validation
- A Pilot Project Using Old available Pump and Modification of System compatible for closed loop control with arrangement of available VFD.
 Energy Consumption and Process Parameter Validated.

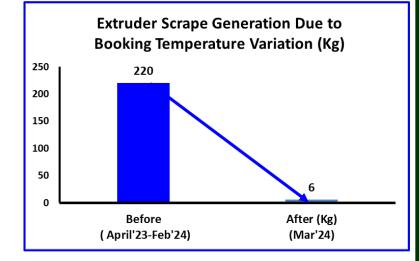
Solution Implemented

Solution Implemented -1

Solution Implemented -2 Solution Implemented -3

Energy Efficient Pump & Motor with VFD at-1.Cooling Tower Supply Pump 2.Cooling Tower Return Pump Optimize PCTR Pressure by Relaying of Pipeline and Separate Circuit of 4.0 kg/cm² & 2.0 Kg/cm²


Provision of Piston Valve to Stop Idle Consumption when Equipment Not in Use


TIRNEL A JETYRE VIKRANT

Results Achieved

- Reduction in Specific Power Consumption=15.1%
- Saving in Power Consumption= 2.15 Lacs kWh/Year
- Elimination of Scrape due to Inconsistent Temperature

Tangible Benefits :-

Saving of 17.4 Rs Lacs/year

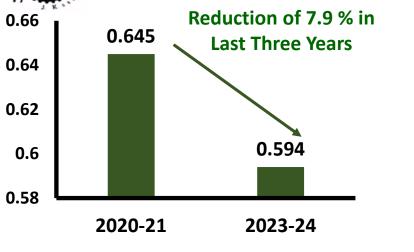
Intangible Benefits :-

- Lower Maintenance
 - Horizontal Deployment :-Cooling Tower # 3

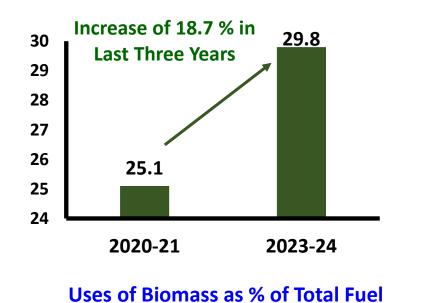
Standardization :-

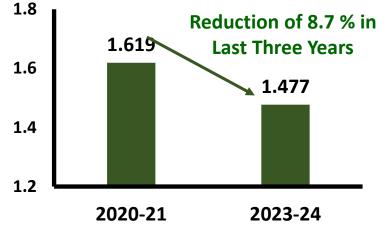
SOP provided to Operator's Training to Operator's

4 JIETYRE

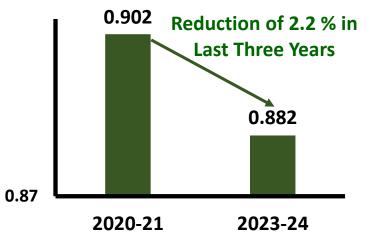

VIKRANT

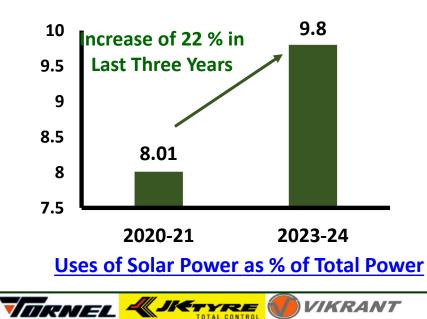
262 Ton / Year

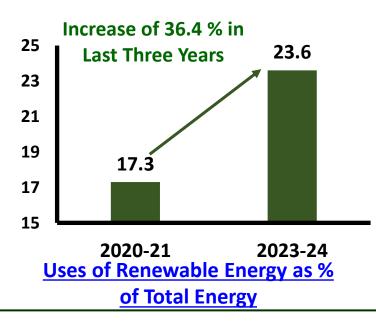

Change Log Instruction


TURNEL

Continual Improvement Over Last 3 Years







Specific Steam Consumption (kg/Kg)

GHG Emission Intensity(tCo2e/MT)

42

Understanding about Low carbon / Carbon Neutrality

TORNEL <mark>& JETYRE</mark>

A. Major Source of CO2 Emission at Kankroli Tyre Plant :

- 1. Fuel for Boiler
- 2. Power for Process Equipment
- 3. LPG for DIP Unit Process

Carbon Neutrality Technique Used in Plant

<u>Solar Plant Capacity – 3 MWp</u>

Bio Mass – Briqutee

B. Existing Boiler is Chain Grate Stocker Coal Fired Boiler & Present Use of Fuel :

- 75% Coal
- 25 % Bio Briquettes

Carbon Sequestration

VIKRANT

Horticulture Waste

Continual Improvement- Initiative on carbon Capture

VIKRANT

Estimated Carbon sink, Carbon sequestration and Carbon capture

Parameter	Unit	Value
a. Estimated total volume of wood in bole / trunk (Green)	cum (m³)	9,976.74
b. Estimated total weight of wood in bole / trunk (cum x 0.8 t)	tonnes (t)	7,981.39
c. Estimated total woody biomass (@1.71)*	tonnes (t)	1,364.18
d. Less moisture. Dry Biomass (c/2)	tonnes (t)	6,824.09
e. Estimated carbon in biomass (c/2)	tonnes (tc)	3,412.05
f. Carbon capture (e x 44/12)	tonnes (tCO ₂)	12,510.8

* Biomass Expansion Factor (BEF) = Root 26% + Branches, Leaves, Bark, leaf litter 45% of the bole/trunk =71%

The carbon sequestration of 12,510.8 tCO₂ is estimated from 423,154 standing biomass from 69.974 ha (174.937 ac) of JKTIL Kankroli Tyre plant. 178.79 tonnes of CO₂ Per ha (71.51 tonnes of CO₂ per ac)CO₂ is offset by plantation.

Way forward

Way forward:

1. Installation of New Boiler compatible for 100 % uses of Biomass

2. Road Map for Reduction In Carbon Emission Intensity (e tCo2/ MT)-(Scope1+ Scope2)

2022-23	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30
0.907	0.858	0.812	0.769	0.728	0.689	0.652	0.617

46

Key Actions Taken

2019-20

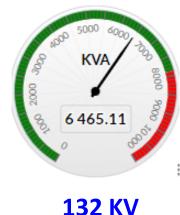
2020-21

2021-22

2022-23

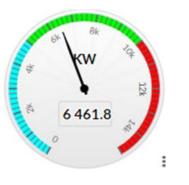
Conversion of Conventional
Motors to Energy Efficient
MotorsFYEnergy
Efficient
Motors kW2017-181122018-19344

1644


100

1850

305

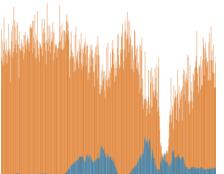

Elec	trical Energy Audit	Reduction in Contact Demand			
FY	Vendor	FY	Contract Demand		
2013-14	M/s Schneider	2020-21	10500 MVA		
2017-18	M/s First Enterprises	2021-22	9000 MVA		
2021-22	M/s Siemens	2022-23	8500 MVA		

Key Electrical Parameters for Monitor & Control

Incomer KVA

TORNEL A SKTYRE

132 KV


Incomer Power

VIKRANT

Incoming

P.F.

Solar v/s DISCOM Generation

Employee Training & Development on Energy Efficiency

Employee Awareness & Training

	ENERGY AWARENESS	ISO - 5000 EWAS	
	 एक यूनिट बिजली की बचत का अर्थ 2 यूनिट बिजली का उत्पादन। 60 RPM (H.T) की मोटर 15 मिनट के व्यर्थ से चलने पर <750 का नुकसान तथा 30 RPM (H.T) की मोटर पर 350 र का नुकसान होता है। मिल मोटर के 15 मिनट व्यर्थ चलने पर <110 का नुकसान । दीवार पंखे के 15 मिनट व्यर्थ चलने पर <7.5 का नुकसान पीसीआई एयर का% इंच के छेद से प्रतिदिन व्यर्थ रिसाद होने पर <3600 का नुकसान होता है। 7 किलोग्राम/सेंटीमीटर* स्टीम पाइप लाईन में 3 मिलीमीटर के छेद से व्यर्थ रिसाद होने पर 187 MT स्टीम का प्रतिवर्ध (<3.74 लाख) का नुकसान होता है। 7 किलोग्राम/सेंटीमीटर* स्टीम पाइप लाईन में 3 मिलीमीटर के छेद से व्यर्थ रिसाद होने पर 187 MT स्टीम का प्रतिवर्ध (<3.74 लाख) का नुकसान होता है। तेल की एक बूंद प्रति सेकंड अपव्यय होने का अर्थ 4000 लीटर प्रति वर्ष का नुकसान जिसकी कीमत <4.00 लाख होती है। पानी की एक बूंद प्रति सेकंड अपव्यय होने का अर्थ 1460 लीटर प्रति वर्ष का नुकसान। 	GHG EMISSION FOR ENERGY SOURCES > GHG Emission of 1 kWh / Day = 0.30 t CO2 / Year > GHG Emission of 1 kg of Coal / Day = 0.6 t CO2 / Year > GHG Emission of 1 kg of Coal / Day = 0.6 t CO2 / Year > Store (100) Condition (100) Condit (100) Condition (100) </th <th>Energy Mary Charles Model M: 22011 2021 TO: 201012021 Down (RING) 11.1 & AN TO: 100 Mar) 2 2000 Down (RING) 11.1 & AN TO: 100 Mar) 2 2000 Name River (Drawburg) Name River (Drawburg) Draw</th>	Energy Mary Charles Model M: 22011 2021 TO: 201012021 Down (RING) 11.1 & AN TO: 100 Mar) 2 2000 Down (RING) 11.1 & AN TO: 100 Mar) 2 2000 Name River (Drawburg) Name River (Drawburg) Draw
IATF 16949	SO 9001 ISO 14001 ISO 50001 ISO 45001 ISO27001 ISO/IEC 17025	IATF 16949 ISO 9001 ISO 14001 ISO 50001 ISO 45001 ISO 27001 ISO/IEC 17025 ISO ISO ISO 10058 XCIOSHI 3HOURS 24.08.2021	

Energy Awareness Displays Inside Plant

Development on Energy Efficiency

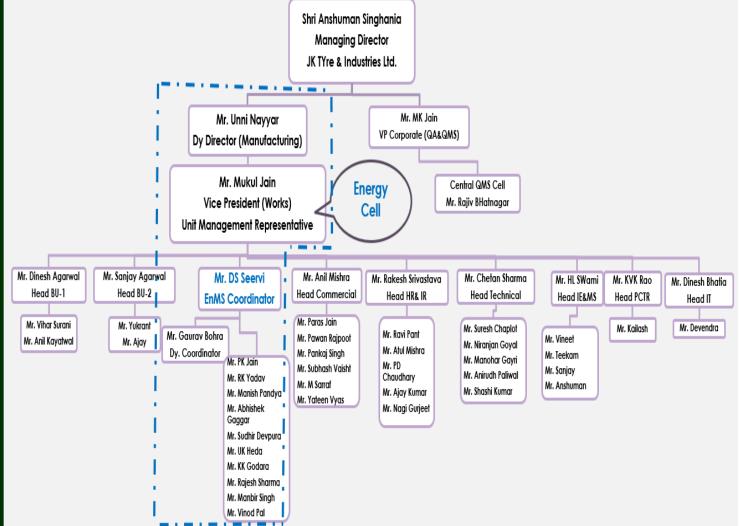
Development en Liters, Littereney								
Conversion of Conventional Motors to Energy Efficient Motors		Electrical Energy Audit		HOW TO DIGITIZE OUR MONITORING SYSTEM?				
		FY	Vendor	Sense A				
FY	Energy Efficient Motors kW	• •	Vender	Manufacturing Factory DXIBACIS DATA TOCTOUD				
		2013-14	M/s Schneider	Energy meters Water Meters				
2020-21	100							
2021-22	1850	2017-18	M/s First Enterprises	Smart Sense Devices				
2021-22	1850		/	Real Time Energy Monitoring at 377				
2022-23	305	2021-22	M/s Siemens	Numbers Energy Meters Using Smart Sense				
	305		•	Numbers Energy Meters Using Sinart Sense				

VIKRANT

Energy Management Training to MCS & Operatives

Energy Management ISO 50001

48 Tyre & Industries Ltd. Integrated Procedure **EnMS Apex Manual** PR-01 Document Data Control Feb.2020 **Process** PR-02 Control of Record Feb.2020 ENERGY MANAGEMENT SYSTEM Doc No.UEnM.00-AM.01 & JIETYRE Page 1 of 66 **APEX EnMS MANUAL** PR-03 Internal Audit Feb.20 **Base Line** PR-04 Control of Non Confirming Product Feb.20 PR-05 Corrective Action Feb.20 PR-06 Preventive Action Feb.20 PR-07 Training Feb.20 **Review** Analysis 👼 PR-08 Mgmt. Review Feb.20 EnMS Common Procedure 1 Legal-UEnM.01-PR-1 Feb.20 2 Energy Review Baseline EnPI UEnM 01-PR 02 Feb.20 PRODUCT RANGE: AUTOMOTIVE TYRES (BIAS & RADIAL), TUBES & FLAPS PDF 3 Objectives, Targets & MAP UEnM.01-PR.03 Feb.20 Implement **Energy Project** 4 Int Comm UEnM.01-PR.04 Feb.20 Identification ation 5 External communication_UEnM.01-PR.05 Feb.20 AND CAVENDISH PDF 6 Operation Control UEnM.01-PR.06 Feb.20 (A JK TYRE ASSOCIATE) 7 Design_UEnM.01-PR.07 Feb.20 8 Procurement UEnM.01-PR.08 Feb.20 This EnMS Apex Manual is the property of JK Tyre & Industries Ltd., Patriot House. 3 Bahadur Shah Zafar Marg, New Delhi. This must not be reproduced by anybody in part or in full without the permission of Corporate Management Representative. 9 Monitoring_UEnM.01-PR.09 Feb.20


TIRNEL A JICTYRE VIKRANT

EnMS at KTP and Involvement of Stakeholders

KTP EnMS 50001

External Stakeholders -Best Practices: Vendor/Supplier/Contractor

- Energy Efficiency Parameter is part of Technical specification before procurement
- Classification of Material based on Energy Efficiency parameter.
- ✓ After received of material all the energy efficiency parameter verified by vendor and it is linked with payment terms and condition.
- Product LCA Study Done for High
 Volume Product (Tyre Size 10.00-20_JET
 XTRA XLM_16PR_J_TT) and
 Improvement Initiative Started by
 Design Team .

TIRNEL KITTE WVIKRANT

Energy Policy & ISO 50001

OUR

UMSS 01-PY0

ENERGY POLICY We at JK Tyre are committed to design, manufacture and distribute our products & services in an energy efficient

UEnM 01-PY 01

manner to become a green company. We will continually improve our energy performance for sustainable growth by:

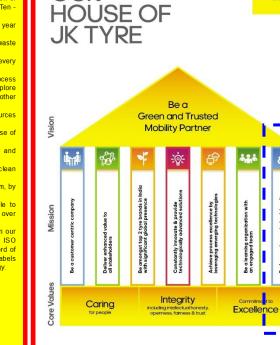
- Complying with all applicable legal and other requirements related to our energy use, consumption and efficiency.
- Taking measure in Energy Management System by being proactive, innovative and cost effective including procurement of energy efficient product & services.
- Enhancing effectiveness of energy management system by ensuring the availability of information and necessary resources to achieve the objectives and targets.
- Integrating energy policy into our business planning, decision making and performance review at appropriate level.

We commit to communicate this policy to all our employees. persons working for and on our behalf and also will make it available to all interested parties on request

#KP22105US -Authorised and Approved by Date: 08 11 2021 Arun K. Baioria Rev: 02 **Director & President** (International Operations)

& INDUSTRIES LTD

- Being cognizant of the need of sustainable growth and dwindling stock of natural capital, we commit ourselves to the attainment of the following Ten Natural Capital Commandments Reduce specific consumption of energy and water by 2-5% every year
- over next ten years. Reduce specific generation of waste and reduce the quantum of waste
- going to land fills by 2-5% every year over next ten years. Increase use of renewable, including renewable energy by 2-5% every
- year in place of non-renewable over next ten years. Reduce specific green house gas emissions and other process
- emissions by 2-5% every year over next ten years and explore opportunities through Clean Development Mechanism (CDM) & other Carbon Exchange Programs
- Increase use of recyclables and enhance recyclables of resources
- embedded in the product by 2-5% every year over next ten years. Increase the share of harvested rainwater in the overall annual use of water by 2-5% every year over next ten years.
- Incorporate life cycle assessment criteria for evaluating new and alternative technologies & products. Strive to adopt green purchase policy and incorporate latest clean
- technologies
- Take lead in promoting and managing product stewardship program, by forging partnerships with businesses and communities.
- 10. Reduce depletion of natural capital, which is directly attributable to company's activities, products and services by 2-5% every year over next ten years We also commit to demonstrate attainment of these commandments in our


pursuit to certifications such as IATE 16949, ISO 9001, ISO 14001, ISO 45001, SA 8000, ISO 50001, ISO 27001, British Safety Council - Sword of Honor & Globe of Honor Award, ISO 22301, Green Buildings, Eco Labels Sustainability reporting, Water Positivity and 100% use of renewal energy.

Date

Rev

the alogue Authorised and Approved by : 01.01.2021 Arun K. Bajoria Director & President

(International Operations)

TIRNEL 🕂 JKTYRE 🚺 VIKRANT

4

KTYRE

STADOREJ GREEN BUSINESS CENTRE, INDIA

JK Tyre & Industries Ltd Kankroli, Rajasthan

> PLATINUM 2022 -2025

STEM

Kankroli Tyre Plant is Asia's First & World's Second Tyre Plant to get ISO 50001 Certification

Energy Efficiency as Branding of Organisation

CII GreenCo Platinum Rating 2022-2025

BEE - National Energy Conservation Awards 2021

BSC-Globe of Honor-Five Star Rating

Rajasthan Energy Conservation Award-2022

6th Edition of CII National Energy Efficiency Circle

Competition held on 14-16 July 2022.

CII National Energy Efficiency

Dr Sudhir Kapor

Chief Jury,

Mr Shreekant Somany

CII Confederation of Indian Indu Certificate of Award This is to certify that JK Tvre & Industries Ltd, Kankroli has been awarded as the 2nd Runner Up (Large Sector under Effective Implementation of ISO 50001 Energy Management System Category in the

CII- Energy Efficient Unit-2022

CII- Young & Emerging Leader-2022 - Mr Abhishek Gaggar "2nd Runner Up "

TIRNEL A JETYRE

6th CII National Energy Efficiency **Circle Competition'2022-Appreciation(Large Sector)**

VIKRANT

6th CII National Energy Efficiency **Circle Competition'2022-**2nd Runner Up(Large Sector)

Mr Pikender Pal Singl

infederation of Indian

Date: 16-07-202

6th Edition of CII National

Energy Efficiency Circle

Competition

Certificate No. EC22/A23

PAT : Designated Consumer (DC)

As per the Ministry of Power's (MoP) notification dated 6th June 2023, tyre manufacturing plants with energy consumption of 7,000 MTOE per year or more are expected to qualify as a Designated Consumer (DC) under the Bureau of Energy Efficiency's (BEE) flagship Perform Achieve and Trade (PAT) scheme.

TOE Calculation Total FY-2023-24 (Conventional+Renewable)			TOE Calculation Total (Conventional) FY-2023-24				
			TOE				TOE
Total Power	kWh	38270219	3291	Total Power	kWh	34643456	2979
Coal	MT	24907		Coal	MT	17031	
GCV	Kcal/Kg	3453	8601	GCV	Kcal/Kg	3453	5881
LPG	MT	746		LPG	MT	746	
GCV	Kcal Kg	3453	258	GCV	Kcal Kg	3453	258
Total			12150	Total			9118

Query:-

- > Does the Scope of TOE for PAT only production & process or all other support services(Canteen/MHE etc.)?
- How the benchmarking data is been calculated for tyre industries ?
- ➢ In TOE calculation Renewable energy to be be included or not ?
- > Do we have to consider GHG Scope 1,2,3 for calculation of TOE ?

Thank you !

JK Tyre & Industries Ltd. Kankroli Tyre Plant PO – Tyre Factory Jay kay Gram , Kankroli Dist:- Rajasamand – Rajasthan Pin - 313342

TIRNEL A JETYRE VIKRANT