

DE Carbonization through Bagasse Dryer For Captive Cogeneration Plants of Sugar Mills

:By Mr. Rajesh Verma

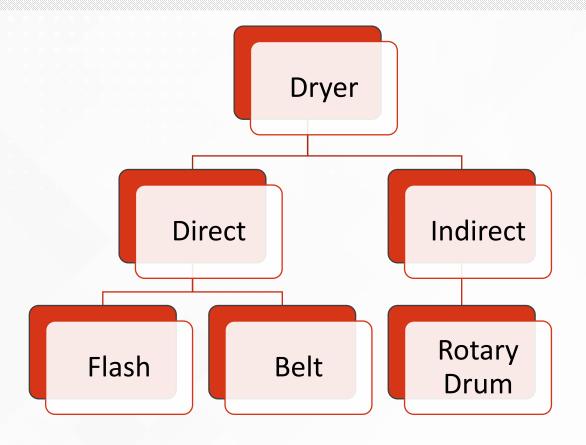
BEE & FCDO-ASPIRE Workshop — Best Practices in Energy Efficiency in Sugar Sector 21.03.2024

Why is the demand growing for Biomass Drying ???

- Net Zero Carbon emissions by 2070
- Mandate to replace fossils fuels by 20 %
- Usage of biomass for other applications
- Biomass densifications
- Sharp increase in price of Bagasse/ Biomass

Biomass Type.....

WOOD	SUGAR CANE	OTHERS - Primary	OTHERS -Secondary
Chipper dust	Bagasse	Coffee Husk	Tamarind Shell
Saw dust	Mill Bagasse	Groundnut Shell	Corn waste
Screen/ Knots rejects	Bagasse Pith	Coconut Shell	Julia flora
ETP Filter Cake	Horkel Pith	Coconut Fiber	
Bark		Rice Husk	Coir waste
Match stick waste	Cane Trash	Rice Straw	Mango seed
MLSS		Wheat Straw	

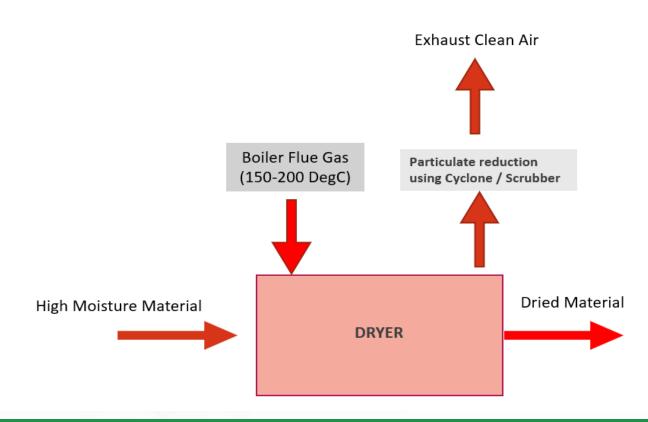

Sugar Cane Based Biomass- Moisture ,Ash and GCV

Parameter	Units	Bagasse	Bagasse Wet Pith	Bagasse Pith	Cane Trash
Total moisture	%	48-52	63	50.0	18 -20
Ash on Dry basis	%	2.5	4.1	4.5	18
GCV on Dry basis	k cal /kg	4540	4000	4035	4400
GCV on ARB	k cal /kg	2180-2360	1580	2020	3520- 3620

Prevailing -Type of Dryers for biomass

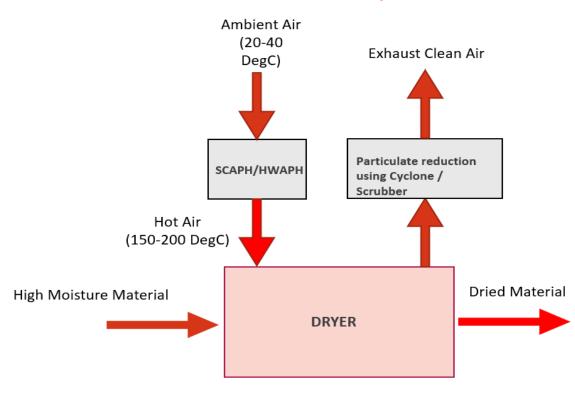
Prevailing -Type of Dryers

Flash Dryer


Belt Dryer

Rotary Dryer

Common Heat Sources available for Drying


Boiler Flue Gas (waste Heat)- Low temp Drying

Common Heat Sources for Drying

Hot –Waste water /Steam

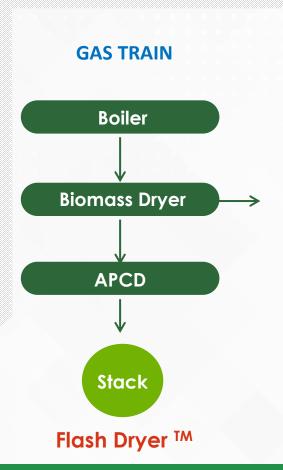
BAGASSE DRYER

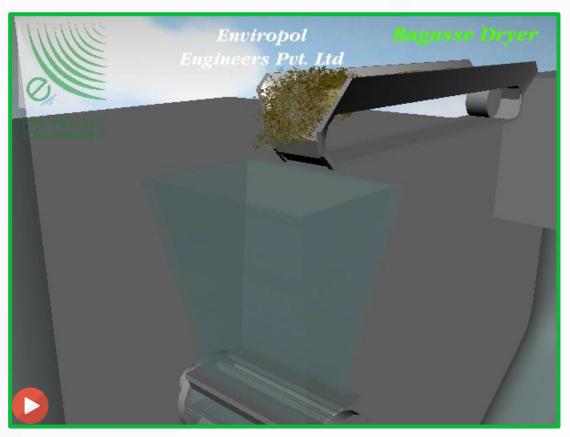
Gaining while Greening

New dimension- in Drying Technology

Prolonged Cogeneration

Fuel Saving


PAT EScerts


Credits

Improved Boiler Operations & Efficiency

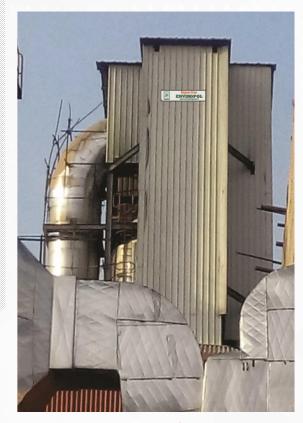
Stage-1: Flash Dryer- How it works ??

Special Features – Enviropol Flash Dryer

Performance Results from Dryer

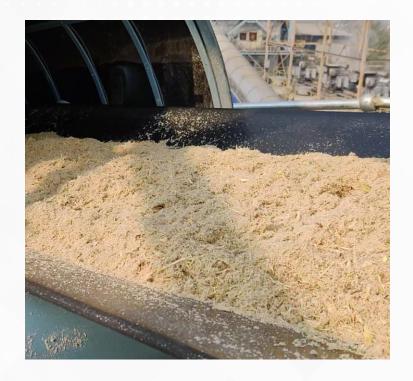
Particulars Ir	mprovement (%)
Moisture Reduction	20-27
<u>Fuel Saving</u>	06-10
Excess Air Reduction	20-30
Carbon Emission Reduction	09-12
Increase in dried Bagasse GCV	18-24
Increase in Boiler Thermal efficienc	у 09-12
Reduction in CO Concentration	80-90
Reduction in Particulate matter	90-95
Reduction in flue gas volume due to	o temp drop 30-35

Few of our Installations...


50 TPH Boiler

100 TPH Boiler

Few of our Installations...


70 TPH Boiler

210 TPH Boiler

90 TPH Boiler

Transport of Wet and Dry Bagasse...

Transport of wet bagasse

Transport of dry bagasse

Case Study: – Innovative Bagasse Dryer in HP Cogen Boiler

BAGASSE FIRED HP BOILER

Parameter	Design Value	Units
Fuel	Bagasse	
Moisture in Mill Bagasse	50	%
Steam Evaporation [MCR]	80	TPH
Steam outlet Pressure	87	Ksc
Steam outlet temperature	515	°C
Feed Water Temperature from HP heater to Economizer	180	°C
Draught system	Balanced- FD & ID Fans	
Flue gas temperature at APH out	145	°C
APC Device	ESP	
Back end Equipment	Economizer& APH	

DESIGN INPUT PARAMETERS				
Description	Unit	Value		
Boiler Steam Generation Capacity	TPH <	80		
Bagasse Dryer Capacity	TPH	31		
Bagasse moisture at inlet	%	49		
Temperature of inlet flue gas (*)	Deg C	140		
Quantity of inlet flue gas	m³/sec	60		
Particle size distribution	>>	Standard		
Quantity		1 Set		
DESIGN OUTPUT PARAMETERS				
Predicted moisture in Bagasse at outlet	%	39.5±0.2		
Predicted flue gas temperature at outlet	Deg C	70±2		
Predicted pressure drop across dryer	Mmwc	135±10		

Data Collection-Avg. data from 4 tests

	For Healthy
•	Environment

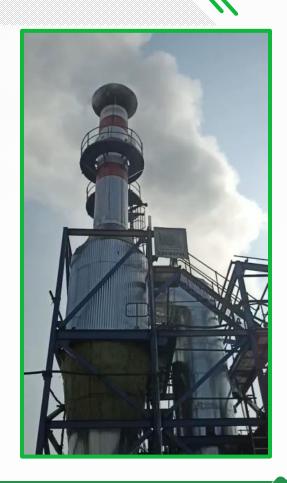
Parameter	Boiler- Design	With Dryer	Units
Steam Generation	80	*71 /87	TPH
Main Steam Pressure	86	86	kscg
Main Steam Temperature	515	517	°C
Feed water Temperature	180	186	°C
Flue gas outlet temp	133	72	°C
Fuel	Bagasse	Bagasse	
Moisture Content	48-50	38.0	%
GCV of Fuel	2375 - 2270	2825	Kcal/kg
Fuel Temperature to Boiler	30	50-65	°C

^(*) On the day of testing, steam demand was only 71 TPH on 24 hrs. average basis. However the Boiler steam generation capacity enhanced to about 87 TPH on account of reduced moisture in bagasse

Performance Results---

■ \ BCML-PERFORMANCE WITH DRYER

Paraméter	Without Dryer in operation	Energy Gains with Dryer	Increase/ Reduction
Bagasse Moisture	47.63 %	38 %	9.63 pp [20%]
Bagasse GCV	2375 kcal/kg	2810 kcal/kg	18%
Boiler Thermal Efficiency	70 %	76 %	6 % point
Steam Economy Upgrade	2.4 -2.5	3.1- 3.2*	11-12%
Flue Gas Temp to Stack	133°C	72°C	61°C
Excess Air Reduction			~20%
CO ₂ Reduction			33-35 t/CO2e/day
SPM reduction in FG			80- 90%
NOx reduction est.			15-20%
N2O reduction est.			5-10%


^(*) Considering reduced weight of bagasse after dryer.

R.O.I

If we follow the power generation route, the net saving works out to INR 1, 12,390per day considering current power tariff of INR 3.0 /kWh to the grid.

The savings, on account of sale of bagasse to other industry is calculated to INR 92,400per day considering the current rate of bagasse as INR 1750 / Ton.

The above figure represents a Return on Investment well within less than 500 working days.

Short Video of BCML installation during commissioing

Common Fears /Queries in the Mind of End Users before Installation

- Fire Hazard
- Jamming /Choking
- Temp Range of heat source
- Loss of Volatiles Matters
- Weather to install in suction/Pressure
- Operations and Maintenance
- Adaptability of dried bagasse
- Return on Investment
- Operations and Maintenance
- Decarbonization –Carbon Credits and Es certs
- Outlet Emissions

HYBRID DRYER

BAGASSE DRYING & FLUE GAS CLEANING

Innovative Hybrid Model of Bagasse Dryer

Milled
Bagasse
Moisture
reduced to
38-40 %
from 50 %

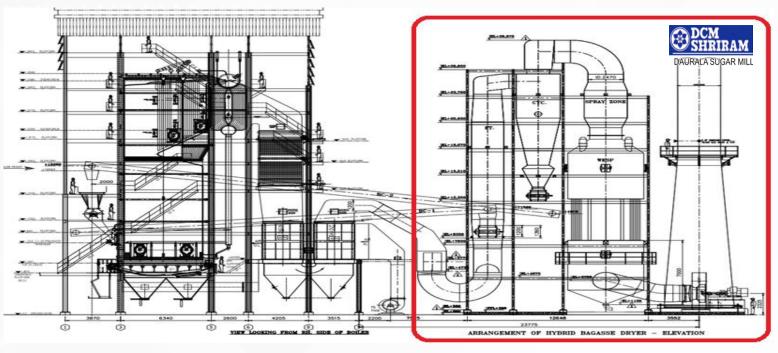
HYBRID DESIGN

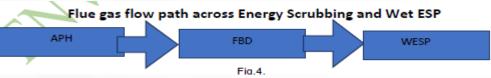
New Age Technology

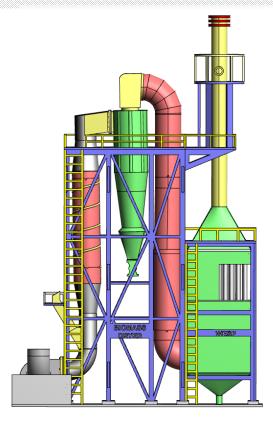
Emission Up to 10 mg/Nm3

First Installation in the World.. Commercialized in 2019

WESP as part of Hybrid Model at DSW


- Gas flow- 220,000 m3/hr @ 140 deg c
- Outlet particulate emissions- < 50 mg/Nm3
- Bagasse Moisture drop 22 %
- Net Bagasse Saving- 7 %
- Year of Commissioning- 2019


HYBRID DESIGN


Case Study: Innovative Hybrid Model on Cogen Boiler

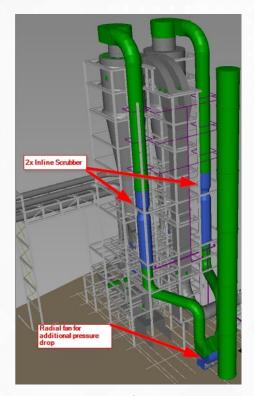
Hybrid Model -Bagasse Drying and Flue gas cleaning

DESP can be eliminated with this- Gaining while Greening concept

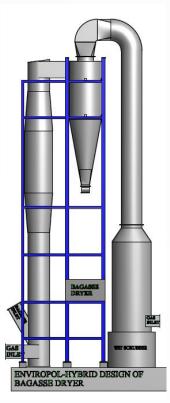
... Summary of Tests conducted during the season

Average of 4 Tests conducted during the season

Particulars	Unit	APH outlet- Dryer inlet	Dryer outlet- WESP inlet	WESP outlet- Stack
Flue gas Temp	° C	135	72	68
Bagasse Moisture	%	50	39	-
Particulate in gas Emission	mg/Nm3	4000	195	32-35
Flue gas Draught	mmWC	130	260	280


Major Take Away from Hybrid technology

- Flue gas cleaning with Bagasse Drying
- Revenue Generation through bagasse saving
- Smaller foot prints & Compact lay-out
- Capability to reduce emissions <10 mg/Nm3</p>
- ➤ Gas Cleaning efficiency >99.5 %
- Significant GHG Emission reduction [offset)
- > Low Power consumption
- Substantial Control on aerosols



Dryer Integrated with Mild Scrubber

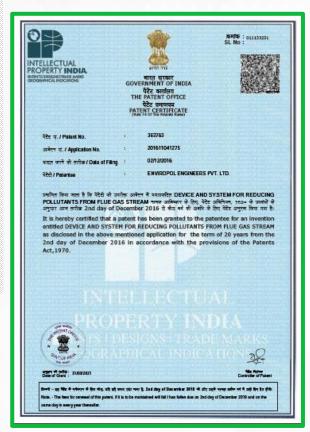
To keep a check on fugitive emission if any during Dryer Malfunction

Option-2 –WS-LPD

Optio-1- Inline WS

Hybrid Model- An Overview

Meet Future Emissions Norm With Return on Capital Investment


Certification & Awards....

Certification & Awards....

Patent Awarded

Appreciation from end users

CII Award for Most Innovative product of year 2021

Excellence Award from STAI

Environment

Summary...

What all a Hybrid Model can Deliver for 20 MW Bagasse Based Cogeneration Plant

Extra Green Energy Produced: 1.2-1.5 MWh

Particulate emissions: 10-50 mg/Nm3

Other Pollutants Reduction...

Stack Flue Gas	Other Pollutants
SO2	Absent
Hg Compounds	Absent
Amino-acid	Countered with Alkaline water scrubbing

Gaseous pollutants Reduction...

Location	GHG Emission Reduction
	tCO2e/m
Additional Green Power	900-1200
N ₂ O reduction	100-150
Overall Emission reduction	1000-1350

PAT [Perform, Achieve & Trade] & Min. of Power Carbon Credit Trading Scheme 2023

 With Sugar sector coming under PAT [as per the Min.of Power Notification of May 2023], the increase in specific steam generation in boilers with dried bagasse firing would be availing of EsCerts.

 Over & above, the very recent Min. of Power Gazette notification on Carbon Credit Trading Scheme [June 2023], the above renewable energy gains can be related to displacement of equivalent imported coal firing in boilers elsewhere. In essence, Flash Biomass Dryer would contribute to EsCerts & Decarbonization.

Having 15+ Installations of Bagasse Dryers Worldwide, what Opportunity lies for The Sugar Mills

Potential For Replication...

Considering (+) 530 sugar Mills & (+) 10,000 MW of Bagasse based cogeneration presently available in India, Hybrid model of bagasse dryer has a great potential for replication to produce

Additional Clean Green Energy: 2500 GW

Reduction in GHG: +2.5 million tCo2e

on yearly basis

(considering 170 days of sugar cane crushing season /Year)

Performance Certificate

P. O. BOX 3115, KISUMU, KENYA Post Code 40100, Tel.: +254 725 652 555 / +254 736 157 777 Email: headoffice@kibossugar.com KENYA - EAST AFRICA

28/2/2023

Ref: KSAIL/Co-gen/01/2022-23

TO WHOMSOEVER IT MAY CONCERN

This is to certify that M/s Enviropol Engineers Pvt Ltd., Noida have supplied Flash Dryer™ for Bagasse for our 48 and 100 TPH Boilers. The Dryer is running successfully on regular basis meeting the design parameters. The Moisture in mill bagasse is reduced from 49 to 38 $\pm 1\%$ at the rated drying capacity 45 & 25 TPH. We are satisfied with the Installation.

We appreciate their execution methodology and prompt after sales services.

G. SURYANARAYANA MURTY

GENERAL MANAGER

FACTORY: UNIT-BALRMPUR, VIII. & P.O. BALRAMPUR, DISTT.: BALRAMPUR, UTTAR PRADESH, PIN-271201
PHONE: 05263-235052, 235053, 235419 ◆ FAX: 05263-235051 ◆ GSTIN: 09AAACB9373Q1ZW

Date: 14.04.2021

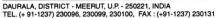
TO WHOMSOEVER IT MAY CONCERN

This is to certify that M/s Enviropol Engineers Pvt. Ltd., Noida have Design, Engineering, Manufacturing, Supply of Bagasse Flash Dryer system for 80 TPH, Bagasse Fired Boiler at M/s Balrampur Chini Mills Ltd, Balrampur (UP) in the year 2020-21.

The system is running satisfactory since the commissioning.

For BALRAMPUR CHINI MILLS LTD.

AUTHORIZED SIGNATORY


Performance Certificate

Date: 14 / 07 / 2016

DCM SHRIRAM INDUSTRIES LTD.

UNIT: DAURALA SUGAR WORKS

Ref. No. SUD

Date: 24.01.2020

TO WHOMSOEVER IT MAY CONCERN

HYBRID - WESP/BAGASSE DRYER

This is to certify that M/s. Enviropol Engineers Pvt. Ltd., Noida have successfully commissioned Hybrid Model of Bagasse Dryer (Bagasse Dryer with integrated Wet Electrostatic Precipitator (WESP) on our 90 TPH Bagasse fired Boiler installed last year.

The performance of Hybrid Dryer has been found satisfactory. It is cleaning the Flue Gases to below 50 mg/Nm³ SPM while reducing the moisture in Bagasse by 11 units (from 50% to 39%).

The WESP Integrated with Dryer is also a High Efficiency Polishing Filter to capture ultra fine particulate matter.

With space constraints and especially after bagasse drier, this appears to be a good technical achievement in controlling the environment pollution.

AUTHORIZED STANATORY

Ref.: SGSL / Co-gen/ 4 7 / 2016-17

TO WHOMSOEVER IT MAY CONCERN

This is to certify that M/s. Enviropol Engineers Pvt. Ltd., Noida have supplied Flash DryerTM for Bagasse for our 70 TPH Boiler. The Dryer is running successfully on regular basis meeting the design parameters. The moisture in Mill bagasse is reduced from 48 to $38 \pm 1\%$ at the rated drying capacity of 32 T/hr. We are satisfied with the installation.

We appreciate their execution methodology and prompt after Sales Services.

CHIEF ENGINEER
SHRI GURUDATTA SUGARS LTD.

Our Offices...

Overseas Branches:

Thailand

Vietnam

Philippine

- Indonesia
- Kenya

• Sri Lanka

