22nd NATIONAL CERTIFICATION EXAMINATION FOR

ENERGY MANAGERS & ENERGY AUDITORS - JULY, 2022

PAPER - 2: ENERGY EFFICIENCY IN THERMAL UTILITIES

Date: 30.07.2022 Timings: 14:00-17:00 HRS Duration: 3 HRS Max. Marks: 150

Section – I: OBJECTIVE TYPE Marks: 50 x 1 = 50

1.	Which	of the following is correct for 'Viscosity'.		
	a)	Increases with temperature		
	b)	Increase with pressure and temperature		
	c)	Decreases with temperature		
	d)	None of the above		
2.	'Specif	ic Heat' is measured with which unit.		
	a)	Kcal/Kg		
	b)	kcal/°C		
	c)	Kg/cubic meter		
	d)	None of the above		
3.	How m	uch Energy is released from burning of 1 kg Hydrogen.		
	a)	28922 Kcal/Kg		
	b)	36200 Kcal/kg		
	c)	8084 Kcal/Kg		
	d)	2225 Kcal/Kg		
4.	How m	uch air is required for burning of 3 kg of Carbon in fuel.		
	a)	8.0 Kg		
	b)	34.7 Kg		
	c)	3.6 Kg		
	d)	47.8 Kg		
5.	Which	of the following refers to External Water Treatment Methods.		
	a)	Ion Exchange Process		
	b)	De-aeration		
	c)	Reverse Osmosis		
	d)	All of the above		
6.	Which	of the following is correct related to critical point of water?		
		221.2 bar absolute pressure and 374.18 Deg C		
	b)	Latent heat is zero.		
	c)	Super critical boilers operate above critical conditions		
		All of the above		
7.		crease in steam pressure, which of the following is correct for 'Latent Heat' of water.		
	a)	Latent heat decreases		
	b)	Sensible heat decreases		
	c)	Boiling point decreases		
	d) Total enthalpy decreases			
8.	If h _f is 1	159 kcal/Kg, h _{fg} is 498 kcal/Kg , what will be total heat of steam with 5% Moisture.		
	a)	649 Kcal/Kg		
	b)	632 Kcal/Kg		
	c)	657 Kcal/kg		
	d)	624 Kcal/Kg		

9.	Which	of the following is function of steam trap :
	a)	To discharge condensate as soon as it is formed.
	b)	Not to allow steam to escape
	c)	To discharge air and other non-condensable gases
	d)	All of the above.
10.	Which	of the following trap is suited for steam tracing applications.
	a)	Inverted Bucket trap
	b)	Ball Float trap
	c)	Thermostatic trap.
	d)	Thermodynamic trap.
11.	Recupe	erators are used for .
	a)	Preheating of combustion air
	b)	Preheating of Fuel
	c)	Preheating of water.
	d)	Preheating the stock.
12.	The wa	Ill losses of furnace depends on :
	a)	Emissivity of wall
	b)	Thermal conductivity of refractories
	c)	wall thickness
	d)	All of the above
13.	Detern	nination of economic thickness of insulation depends on
	a)	Cost and heat content of fuel
	b)	Estimated cost of insulation and hours of operation
	c)	Boiler efficiency
	d)	All of the above
14.	The un	it of surface heat loss is
	a)	kcal/hr m
	b)	kcal/hr m²
	c)	kcal/hr Deg C
	d)	None of the above
15.	Electro	static Precipitators can remove ash upto:
	a)	60-85 % of fly ash
	b)	70-95 % of fly ash
	c)	95-99% of fly ash
	d)	50-80% of fly ash
16.	Which	of the following boiler will have lowest size for 500 MW generation.
	a)	CFBC Boiler
	b)	AFBC Boiler
	c)	PFBC Boiler
	d)	None of the above
17.	A co-ge	eneration system configuration in which heat is utilized and power is produced in next stage
	a)	Combined cycle
	b)	Bottoming Cycle
	c)	Topping Cycle
	d)	None of the above
18.	Simulta	aneous generation of steam, power and refrigeration refers to:
	a)	Triple point
	b)	Trigeneration
	c)	Combined cycle generation
	d)	Bottoming cycle cogeneration

19.	For every 15° C rise in feed water temperature of boiler v	vill result into overall thermal efficiency
	improvement by	
	a) 6%	
	b) 1%	
	c) 3%	
	d) 5%	
20.	·	
20.		
	a) Reboiler/Kettle	
	b) Heat Pipe	
	c) Deaerator	
	d) Heat Pump	
21.	A pinch analysis can result in	
	a) Reduction in cooling water	
	b) Increase in cooling water	
	c) reduction in steam	
	d) both a & c	
22.	· ·	
		Steel
		Aluminium
23.	' ' ' '	ition to the electric power. The most suitable
	cogeneration choice among the following will be	
	a. Condensing turbine b.	Back pressure turbine
	c. Extraction cum back pressure turbine d.	Bottoming cycle
24.	Low combustion temperature in FBC boiler results in red	uction of
	a. Sox b.	NOx
	c. CO ₂ d.	O ₂
25.	An increase in bulk density of refractory increases its	
		Heat capacity
	,	All of the above
26.		
20.	kg/hour for reheating the material from 40 °C-1100 °C (co	
	°C and calorific value of furnace oil is 10000 kcal/kg) is	 60
		70
27.		
27.		
	a. Heat pipe b.	Heat pump
	c. Plate heat exchanger d.	economiser
20	The difference between mean called and mean gas velocit	v in EBC hailars is called
28.		
		Slip velocity
		None of the above
29.	Which of the following is not a property of ceramic fibre	insulation?
	a. Low thermal conductivity b.	Light weight
	c. High heat capacity d.	Thermal shock resistant
30.		
	Furnace wall heat loss does not depend on	
	a. Temperature of external wall surfaces b.	Velocity of air around the furnace
	c. Temperature of combustion air d.	None of the above

	~		
31.	Which among the following is most viscous fluid?		
	a. LDO	b. Kerosene	
	c. HSD	d. Furnace oil	
32.	Hot condensate at 4 bar g pressure has heat content	of about 600 kl/kg, when it released to	
32.	atmospheric pressure (0 bar g), each kilogram of wat		atent
	heat of flash steam is 2134 kJ/kg, then percentage (9		atent
	a. 11.48 %	b. 12.48 %	
	c. 8.48 %	d. 14.48 %	
33.	C C . C .AATD: II II C		
	Correction factor for LMTD is applicable for	b Danallal flass	
	a. Counter current c. Cross flow	b. Parallel flow d. Both a & b	
	c. cross now	u. Botti a & b	
34.	 Which one is the preferred waste heat recovery system	em in large gas turbine?	
	a. Economiser	b. Air pre heater	
	c. HRSG	d. Heat wheel	
25			
35.	An axial compressor is used in conjunction with whic	n of the following	
	a. Back pressure steam turbine	b. Gas turbine	
	c. Condensing turbine	d. Extraction cum condensing turbine	
36.			
	Pick up the wrong statement: The thermal efficiency		
	a. Increasing the furnace loading	b. Increasing the excess air flow rate	
	c. Reducing the surface heat loss	d. Minimizing the CO loss and unburnt loss	ses
37.	Major heat loss in an oil-fired boiler is accounted by		
	a. Blowdown loss	b. Un-burnt carbon loss	
	c. Surface radiation loss	d. Stack loss	
38.	For complete combustion of every kg of FO firing, the	approximate theoretical quantity of air requ	uired
	is: a. 12 kg	b. 14 kg	
		_	
	c. 16 kg	d. 18 kg	
39.	Select the odd one among the following		
	a. Condenser	b. distillation column	
	c. evaporator	d. cooling tower	
40.	The equipment having the highest efficiency in case		
	a. Electric generator	b. Boiler ID fan	
	c. Steam or gas turbine	d. Boiler	
41.			
	Oxygen percentage (by volume) can be measured in		
	a. Ultrasonic tester	b. Potassium oxide probe	
	c. Copper tubes	d. Zirconium oxide probe	
42.	1000 kg of water is to be heated from 30 to 70 °C. th	heat gained by water will be	
	a. 40000 kcal/hr	b. 40000 kcal	
	c. 40000 kJ	d. 40000 kJ/hr	

43.	Heat wheels are mostly used in situation of
	a. high temperature exhaust gases
	b. heat exchange between large masses of air having small temperature differences
	c. heat transfer between a liquid and gas
	d. corrosive gases
44.	In a CFBC boiler the capture and recycling of bed materials is accomplished by
	a. Bag filter b. Settling chamber
	c. Cyclone d. Scrubber system
45.	The best quality of steam for industrial process heating is
	a. High pressure steam b. Wet steam
	c. Superheated Steam d. Dry saturated steam
46.	Which of the following is related with heat pipe
	a) Can transfer upto 100 times more thermal energy than copper
	b) Uses a pump for moving the working fluid
	c) Consists of several plates in series
	d) All the above
47.	Condensate recovery in steam system
	a) Improves boiler feed water quality
	b) Maximizes boiler output
	c) Reduces water consumption
48.	d) All the above
40.	Across the pressure reducing valve of a steam system a) Output enthalpy decreases
	b) Steam becomes wet
	c) Steam temperature increases
	d) Enthalpy remains the same
49.	The flash point of a fuel is thetemperature at which fuel can be heated so that the vapour
	gives off flashes momentarily when an open flame is passed over it.
	a) highest
	b) lowest
	c) medium
	d) None of the above
50.	Unit of heat to power ratio is
	a) kwh/kcal
	b) kcal/kWh
	c) kwh/btu
	d) All the above

End	of Section – I	•••••
-----	----------------	-------

Section - II: SHORT DESCRIPTIVE QUESTIONS

S-1	The ultimate analysis of Indonesian soal is as given helevy			
2-1	The ultimate analysis of Indonesian coal is as given below: Carbon: 59%, Hydrogen: 4%, Sulphur: 0.	56%, Mineral Matter: 14%		
	Oxygen: 12%, Moisture: 9.43%, Nitrogen: 1			
	, , , , , , , , , , , , , , , , , , , ,			
	a. Find out actual mass of air supplied for combustion of	_		
	excess air	3 Marks		
	b. Find out NCV of the fuel if GCV of the coal is 5500 kcal,	/kg 2 Marks		
Soln	a) Theoretical air required for complete combustion			
30111	$= [(11.6 \times C) + \{34.8 \times (H_2 - O_2 / 8)\} + (4.35 \times S_2 + (4.35 \times S_3 +$	1)1/100 kg/kg of fuel		
	$= [(11.6 \times 6) + (34.8 \times (112 - 02 / 8)) + (4.35 \times 0.8)]$ $= [(11.6 \times 59) + (34.8 \times (4 - 12 / 8)) + (4.35 \times 0.8)]$			
	= 7.73 kg of air/kg of fuel	Jojj/100 kg/kg of fuel		
	Excess air supplied = 60%	L-t-		
	Actual mass of air supplied = $\{1 + EA/100\}$ x theoretica	air		
	= {1+60/100} X 7.73			
	= 12.37 kg of air/kg of fuel			
	Air supplied for combustion of 2000 kg/hr of coal = (12.37 x	•		
		PH3 marks		
	b) NCV of the fuel			
	$GCV = NCV + 584 \times (9H+M)$			
	5500 = NCV + 584 x (9x0.04+0.094)			
	NCV = 5234 kcal/kg	2 marks		
S2	Name any five parameters required for determination of fu	rnace oil fired reheating furnace		
	efficiency by direct method.			
Soln	Weight of input material t/Hr			
	Furnace oil consumption litre/hr			
	Specific gravity of oil			
	Final material temperature Deg C			
	Initial material temperature Deg C			
	Outlet flue gas temperature Deg C			
	Specific heat of the material Kcal/Kg Deg C			
	GCV of Oil Kcal/Kg			
	GCV 01 011 KCal/ Kg			
S3	Milk is evaporated in a steam jacketed kettle of 700 kg capa	acity as a batch process. Milk is		
	heated from 35 °C to 100 °C, where 35 % of its mass is drive	•		
	The other data's are given below:			
	Specific heat of milk is 0.9 kcal/kg °C			
	Latent heat of steam at 1 kg/cm ² g is 525 kcal/kg.			
	Ignoring the heat required for heating the kettle, calculate	the quantity of steam required nor		
	batch.	the quantity of steam required per		
S3	Quantity of Water evaporated from milk	= 700 x 0.35		
Sol	Quantity of water evaporated from fillik	- /UU X U.33		
301		- 245 kg/hatah		
	Heat manufacility and the mailes the manufacility of the Mills	= 245 kg/batch		
	Heat required to raise temperature of milk	= 700x0.9x(100-35)		
		4005011/61		
		= 40950 kcal/batch		
	Amount of heat required to avenerate 245 lize of	- 245vE40		
	Amount of heat required to evaporate 245 kg of wa	eter = 245x540		

Marks: $8 \times 5 = 40$

		-122200 Keel/Batch
		=132300 Kcal/Batch
	Total Heat required	= 40950+132300
	·	= 173250 Kcal/batch
	Total steam required	=173250/525
C4	Calandata tha baat laas fuura an uu	=330 kg/batch.
S4		ninsulated pipeline of 50 mm diameter of 500 mtr length carrying rature of the pipe is 150 °C. After process modification the liquid
	1	resulting in a surface temperature of 50° C. Calculate the
		ent temperature is 32°C in both the cases.
S4	Existing Heat loss (S)	= {10+(150-32)/20}x(150-32)
Sol		= 1876.2 kcal/hr-m ² 2 marks
		(40./50.00)/00) /50.00)
	Modified Heat Loss (S1)	= {10+(50-32)/20}x(50-32) = 196.2 kcal/hr-m ² 2 marks
		= 196.2 KCal/III-III 2 Marks
	Reduction in heat loss	$= \pi x D x L x(2035-196.2)$
		= 3.14x0.05x 500x(1876.2-196.2)
		= 131946.89 kcal/hr 1 mark
S5	Write short notes on :	Each 2.5 Marks
	a) Heat wheel	
	b) Heat pump	
S5	Heat wheel – Refer Guidebook -2	, Page 222
Sol	Heat pump – Refer Guidebook -2,	, Page 228
S6	A counter flow heat exchanger u	ising hot process liquid is used to heat water. The flow rate of
		quid enters the heat exchanger at 95 Deg C and leaves at 55 Deg
	· ·	es of water are 30 Deg C and 42 Deg C respectively. The specific
	coefficient is 762 W/m ² °C.	C. Calculate the heat transfer area, if the overall heat transfer
S6	Water flow rate	= 10 x 1000 = 10,000 kg/hr
Sol	Heat content in water	
		$= 10000 \times 4.18 \times 12$
		= 5,01,600 kJ/hr
		= 501600/3600
		= 139.33 kW
	Now LMTD _{CF}	- A T. A T.
	NOW LIVIT DCF	$= \frac{\Delta T_1 - \Delta T_2}{\ln (\Delta T_1)}$
		$\begin{bmatrix} \frac{\Delta}{\Delta} & 1 \\ A & T_2 \end{bmatrix}$
		(- · 9
	Δ.	$T_1 = 95-42 = 53$
	Δ٦	$\Gamma_2 = 55-30 = 25$
		50.05
		= <u>53-25</u>
		$\ln\left(\frac{53}{25}\right)$
		25

	$= \underline{\frac{28}{\ln\left(2.12\right)}}$
	= 37.33 °C
	Area of Heat Exchanger = 139.33x1000/ (762x37.33) = 139330 /28445.46 = 4.89 m ²
S7	A coal fired boiler is generating 40TPH steam and operates for 8000 hrs/year. The TDS in boiler feed water is 500 ppm. The maximum permissible limit is 3000 ppm and make up water is 8%. The temperature of blow down water is 170 °C and feed water temperature is 75 °C. The GCV of fuel is 5000 kCal/kg and efficiency of boiler is 72%.
	Calculate the fuel saving achieved by reduction in blow-down, if the TDS of feed water is reduced to 300 ppm.
S7 Sol	$Blow\ Down\ (\%) = \frac{[Feed\ Water\ TDS\ in\ ppm\ x\ \frac{Makeup\ Water\ (\%)}{100}x\ 100}{(Maximum\ Permissible\ TDS-Feed\ Water\ TDS)}$
	Initial blow down = $(500 \times 8/100 \times 100)/(3000-500) = 1.6 \%$ Improved blow down with TDS of 300 ppm = $(300 \times 8/100 \times 100)/(3000 - 300)$ = 0.88%
	Reduction in Blow down = $1.6 - 0.88 = 0.72\%$ Reduction in blow down quantity = $0.72 \times 40 \times 1000 / 100 = 288 \text{ kg/hr}$ Heat Energy Saving = M x Cp x dT = $288 \times 1 \times (170 - 75) = 27360 \text{ kcal/hr}$ Fuel Oil Saving = $27360 / (5000 \times 0.72) = 7.6 \text{ kg/hr}$ Annual Fuel Saving = $7.6 \times 8000 = 60800 \text{ kg/annum} = 60.8 \text{ MT/annum}$
S8	Explain the difference between bottoming and topping cycle with an example.
S8 Sol	Refer Guidebook -2, Page no: 194 & 195

..... End of Section - II

Marks: $6 \times 10 = 60$

Section - III: LONG DESCRIPTIVE QUESTIONS

L-1	i) Explain how a FBC boiler works. How is it different from CFBC boiler? 5 Marks
	ii) List any five properties of refractories. 5 Marks
S	i) Refer Guidebook -2, Pg 173, 178 & 179
	ii) Refer Guidebook -2, Pg 156 & 157
L-2	Each 2 Marks
	1) Explain the working of a direct contact heat exchanger.
	2) Explain any two methods of testing of steam traps.
	3) What are the benefits and applications of pinch technology in process industry?
	4) List any two advantages of ceramic fibre.
	5) Why slight positive pressure is to be maintained in a reheating furnace?

- S 1) Refer Guidebook -2, Pg 230
 - 2) Refer Guidebook -2, Pg 94 to 96
 - 3) Refer Guidebook -2, Pg 252
 - 4) Refer Guidebook -2, Pg 165
 - 5) Refer Guidebook -2, Pg 132

L-3 An oil refinery has a captive power plant with petcoke fired boiler. The following are the data collected to assess the boiler performance.

Ultimate analysis o	f Petcoke (%)
Carbon	88.8
Hydrogen	3.6
Nitrogen	1.2
Oxygen	1.4
Sulphur	3.6
Moisture	1.4

GCV of Petcoke : 8430 kcal/kg

 O_2 in flue gas : 6 % Flue gas temperature : 250 °C Heat loss due to radiation & convection : 1 % Loss due to unburnt in fly ash & bottom ash : 0.5%

Specific heat of flue gas $: 0.29 \text{ kcal/kg }^{\circ}\text{C}$ Specific heat of water vapour $: 0.45 \text{ kcal/kg }^{\circ}\text{C}$

Ambient Temperature : 30 °C

Humidity in ambient air : 0.0204 kg/kg dry air

Steam generation at 110 barg & 520 °C

Steam enthalpy at generation pressure and temp: 816 kcal/kg
Feed water temperature : 200 °C
Steam drum pressure : 115 bar g
Saturated liquid enthalpy at steam drum pressure: 352 kcal/kg

Calculate the following:

a) Boiler efficiency using indirect method 8 Marks

2 Marks

b) Specific boiler steam generation MT/MT of petcoke (Evaporation Ratio)

a)	Theoretical Air required	= {(11.6x0.888)+[34.8x(0.036014/8)]+4.35x0.036} = 11.64	kg ai kg o petc
,	% Excess Air supplied	= (6/(21-6)x100 = 40.0	%
	Actual Air supplied	= (1+40/100)x11.65 = 16.31	kg a kg o peto
	Mass of dry flue gas	={(0.888x44/12)+0.012+(16.31x0.77) +(16.31-11.65)x0.23+(0.036x 64/32)} = 16.97	kg a kg o peto
	Stack losses, L1	= 16.97x0.29x(250-30)/8430x100 = 12.84	%
	Loss due to formation of water vapor from H2 in fuel, L2	= 9x0.036x{584+0.45*(250-30)}/8430x100 = 2.63	%
	Loss due to moisture in fuel, L3	= 0.014x{584+0.45x(250-30)}/8430x100 = 0.11	%
	Loss due to moisture in Air, L4	=16.31x0.0204x0.45x(250-30)/8430x100 = 0.39	%
	Loss due to radiation and convection	= 1.0	%
	Loss due to unburnt in ash	= 0.5	%
	Efficiency of boiler using indirect method	= (100-12.84-2.63-0.11-0.39-1.0-0.5) = 82.53	%
b)	Heat added per unit of steam generation	= (816-200) = 616.0	kcal, of Stea
	Heat supplied by fuel for steam generation	= (82.5/100)x 8430 = 6957	kcal of peto
	Specific boiler steam generation (Evaporation Ratio)	= 6957/616 = 11.29	
In a i	paper industry a coal fired l	poiler of 72% efficiency is proposed to be repla	aced

GCV of coal = 3900 kcal/kg
Cost of coal = Rs.12,000/MT
GCV of paddy husk = 3500 kcal/kg
Cost of paddy husk = Rs 9,000/MT
Quantity of steam requirement = 20 TPH
Enthalpy of steam = 760 kcal/kg

Enthalpy of feed water	=120 kcal/kg
Annual operating hours of boiler	= 8000 hours

Calculate the annual fuel cost savings by changing over to paddy husk boiler?

L4 For Coal Fired Boiler :

Sol

Heat content in the output steam = 20000x (760-120)

= 12800000 kcal/hr

Coal requirement = (12800000)/(3900x0.72)

= 4558.4 kg/hr

Annual operating hours = 8000

Annual coal consumption $= 4558.4 \times 8000 = 36467.2 \text{ MT}$

Annual cost of coal $= 36467.2 \times Rs 12000$

= 4376 lakhs

For Paddy Husk Fired Boiler:

Paddy husk requirement = (12800000)/(3500*0.65)

= 5626.4 kg/hr.

Annual operating hours = 8000

Annual paddy husk consumption = 5626.4×8000

= 45011.2 MT

Annual cost of paddy husk = $45011.2 \times Rs 9000$

=Rs 4050.98 lakh.

Annual fuel Cost saving = 4376–4050.98

= Rs 325.02 lakhs

L 5 The co-generation configuration of a process plant along with relevant data are given in the figure below.

If the extraction steam from the turbine is 8 TPH, calculate the following

a) Energy Utilization Factor

6 Marks

b) Heat to power ratio, kW thermal to kW electrical

4 Marks

L5 Sol a) Energy Utilization Factor

Total steam flow into co-generation system:

$$0.72 = X \times (808-100) / (5000 \times 5.44 \times 1000)$$

 $19584000 = X \times (808-100)$

X = 27661.0 kgs or 27.66 TPH

Extraction steam flow = 8TPH

Back pressure steam flow = 27.66 - 8 = 19.66TPH

EUF = (Electrical o/p (Qe) + Thermal o/p (Qt)) / Fuel Input x GCV (Qf)

Qf =
$$(5.44 \times 1000 \times 5000) = 27.2$$
 Mkcals

Qe =
$$3 \times 1000 \times 860 = 2.58$$
 Mkcals

$$Qt = [8 \times 1000 \times (662-100)] + [19.66\times1000\times(649-100)]$$

= 4.49 + 10.79

= 4.49 + 10.79= 15.28 Mkcals

$$= 0.656 \times 100 = 65.66$$

b) Heat to power ratio, kW thermal to kW electrical

$$Q_{th} = 15.28 / 860 = 17.77 MW$$

$$Q_e = 2.58 / 860 = 3 MW$$

Heat to power ratio = 17.77 / 3 = 5.92

L6

a)

Two boilers A & B are delivering steam in equal amount to a common header, both at pressure of 15 bar. Boiler A has super heater and Boiler B is without super heater. The temperature of steam supplied by boiler A is $300\,^{\circ}$ C. The temperature of resulting mixture of steam in the common header is $235\,^{\circ}$ C. Find out the dryness fraction of steam supplied by the boiler B. Take specific heat of superheated steam, $C_p = 2.09\,\text{kJ/kg}$

Properties of Steam at 15 bar:

- Saturation temperature, t_{sat} = 198.3 °C
- Sensible heat of Steam, h_f = 844.6 kJ/kg
- Latent heat of steam, h_{fg} = 1945.3 kJ/kg
- Total heat of steam, hg = 2789.9 kJ/kg

5 Marks

b) An oil-fired boiler is rated for 10 TPH of saturated steam and pressure of 10 kg/cm² at F&A condition. The Boiler is operating at rated pressure with a feed water temperature of 60°C. Estimate the maximum possible steam generation at the operating pressure. The following data is provided Latent heat of steam at 100°C is 540 kcal/kg Enthalpy of steam at 10 kg/cm² is 662 kcal/kg 5 Marks L6 Ans: Sol a) Let us assume each boiler delivers 1 kg of steam. Then the mass of the mixture of steam in header = 1 + 1 = 2 kg. Using Heat and Mass Balance: Enthalpy from Boiler A + Enthalpy from Boiler B = Enthalpy in common header $\{2789.9 + 2.09 \times (300-198.3)\} + \{844.6 + \times \times 1945.3\} = 2 \times \{2789.9 + 2.09 \times (235-198.3)\}$ X = 0.97b) Ans: Maximum possible steam generation = $10 \times 1000 \times 540 / (662-60)$ = 8970 kg/hr or 8.97 TPH

End of Section – III	End of Section – III		End	of	Section -	III	
----------------------	----------------------	--	-----	----	-----------	-----	--