Marks: $50 \times 1 = 50$

22^{nd} NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – JULY, 2022

PAPER - 3: ENERGY EFFICIENCY IN ELECTRICAL UTILITIES

Date: 31.07.2022 Timings: 09:30-12:30 HRS Duration: 3 HRS Max. Marks: 150

Section - I: OBJECTIVE TYPE

	In BEE Star labelled distribution transformers, which of following losses are defined?				
1.	TO DATE TRANSPORT OF THE PARTY				
	a) total loss at 50% and 100% loading b) total loss at 75 % loading				
	c) total loss at 75% and 100% loading d) total loss at 100% loading				
	Friction losses in a pumping system is				
2.					
	a) inversely proportional to flow b) inversely proportional to cube of flow				
	c) proportional to square of flow d) inversely proportional square of flow				
	If V ₁ is actual supply voltage and V ₂ is the rated voltage of a capacitor, the reactive kVAr				
3.	produced would be in the ratio of				
	24/20/2				
	a) V_2^2/V_1^2 b) V_1^2/V_2^2 c) $1 - V_2^2/V_1^2$ d) $1 + V_2^2/V_1^2$ The blow down loss in a cooling tower depends on				
4.	The blow down loss in a cooling tower depends on				
4.	a) TDS in circulating water b) TDS in make-up water				
	c) evaporation loss d) all the above				
	Energy Star Label Rating scheme for Fluorescent lamp is based on:				
-	a) Lumens per Watt at 100, 2000 and 3500 hours of use				
5.	b) End of Lamp Life in terms of burring hours				
	c) Lumen depreciation at 2000 hours				
	d) Color Rendering Index				
	Identify the wrong statement from the following regarding Vapor Compression Refrigeration				
	system				
6.	a) condenser rejects heat to atmosphere				
	b) evaporator removes heat from process or space				
	c) compressor sends superheated vapor to condenser				
	d) high pressure sub-cooled liquid refrigerant returns back to evaporator The efficiency of a pump does not depend on				
7.	a) suction head b) discharge head				
	c) motor efficiency d) density of liquid				
	Which of the following is a positive displacement compressor?				
8.	a) Screw compressor b) Reciprocating compressor				
	c) Centrifugal compressor d) Both a & b				
9.	The most energy intensive dryer among the following				
٥.	a) refrigeration b) desiccant (heat of compression)				
	c) desiccant (heatless purge) d) desiccant (blower reactivated)				

	The ratings of the PF correction capacitors at motor terminals for a 37 kW induction motor at 3000 rpm synchronous speed will bein comparison to the same sized
10.	induction motor at 1500 rpm synchronous speed
	a) more b) less c) same d) dependent on the connected load In a vapor compression refrigeration system, the component across which the enthalpy
11.	remains constant
	a) compressor b) condenser c) expansion valve d) evaporator
	A pump discharge has to be reduced from 120 m³/hr to 100 m³/hr by trimming the impeller.
12.	What should be the percentage reduction in impeller size? a) 83.3% b) 16.7% c) 50.0% d) 33.3%
12	8 (48 C 26 C 246 C 24 C 24 C 24 C 24 C 24 C 2
13.	In an engine room 15 m long, 10 m wide and 4 m high, ventilation requirement for 20 air changes/hr ism ³ /hr
15.	a) 30 b) 3000 c) 12000 d) none of the above
	Which of the following type of lamps is most suitable for color critical applications?
14.	a) halogen lamps b) LED lamps c) CFLs d) Low pressure sodium vapour lamp
	Which of the following is not true regarding system characteristic curve in a pumping system
	with large dynamic head ? a) System curve represents a relationship between discharge and head loss in a system of
15.	
	b) System curve is dependent on the pump speed c) The basic shape of a system curve is parabolic
	d) System curve will start at zero flow and zero head if there is no static lift
	The immunity was to improve a first of a material base of a material b
16.	The inexpensive way to improve energy efficiency of a motor which operates consistently at below 40% of rated capacity is by
=330	a) Operating in Star mode b) Replacing with correct sized motor c) Operating in delta mode d) Operating in VFD mode
17.	Installing larger diameter pipe in pumping system results in reduction in
	a) static head b) frictional head c) both a and b d) neither a nor b
	If the delivery valve of the pump is throttled such that it delivers 30% of the rated flow, one of
18.	the best options for improved energy efficiency would be
	a) Trimming of the impeller b) Replacing the motor
	c) Replacing with a smaller pump d) operating with VFD
19.	A cooling tower is said to be performing well when:
15.	a) approach is closer to zero b) range is closer to zero
	c) approach is larger than design d) range is larger than design
	Capacitors with automatic power factor controller when installed in a plant:
	a) reduces active power drawn from grid
20.	b) reduces the voltage of the plant
	c) reduces the reactive power drawn from grid
	d) increases the load current of the plant
	For an air compressor with displacement of 100 CFM and system leakage of 10%, free air
21.	delivery is a) 111.11 CFM b) 90 CFM c) 100 CFM d) None of the above
	a) 111.11 CHM b) 90 CHM c) 100 CHM d) None of the above

22.	If 30,000 kcal of heat is removed from a room every hour then the refrigeration tonnage will be nearly equal to a) 30 TR b) 15 TR c) 10 TR d) 100 TR
23.	A 500 cfm reciprocating compressor has a loading and unloading period of 5 seconds and 20 seconds respectively during a compressed air leakage test. The air leakage in the compressed air system would be
24.	a) 125 cfm b) 100 cfm c) 200 cfm d) none of the above The Solar Heat Gain Coefficient (SHGC) of window of a building is 0.30. This means that a) The window reflects back to exterior a minimum of 30 % of the sun's heat b) The window allows 30 % of the sun's heat to pass through into the building interior c) 70 % of the sun's heat is incident on the window d) The window allows 70 % of the sun's heat to pass through into interior of the buildings
25.	The illuminance is 20 lm/m² from a lamp at 1 meter distance. The illuminance at half the distance will be a) 401 lm/m² b) 10 lm/m² c) 20 lm/m² d) 80 lm/m²
26.	Use of soft starters for induction motors results in a) Lower mechanical stress b) Lower power factor c) Higher maximum demand d) All the above
27.	Energy performance index is calculated based on a) total building annual energy consumption /built up area b) total building annual energy consumption /carpet area c) total building annual energy consumption for HVAC and lighting /carpet area d) none of the above
28.	A 4 pole 50 Hz induction motor is running at 1470 rpm. What is the slip value? a) 20% b) 2% c) 4% d) 40%
29.	Which of the following power plants has the highest efficiency? a) Open cycle Gas Turbine b) Diesel Engine c) Combined cycle gas turbine d) Conventional coal plants
30.	is used as refrigerant both in vapour compression and vapour absorption systems a) Lithium Bromide b) Water c) HFC 134A d) Ammonia
31.	Which of the following parameters is not required for evaluating volumetric efficiency of reciprocating air compressor? a) Power input b) FAD c) Cylinder Stroke d) Cylinder bore
32.	The gross efficiency of a coal based power generating unit with a gross heat rate of 2600 kca / kWh is a) 41.4% b) 38.7% c) 33.1% d) 30.8%

	The COP of a vapour compression refrigeration system is 3.3. If the motor draws power of 10
	kW at an operating efficiency of 90%, the tonnage of refrigeration system is about:
33.	a) 0.8
	b) 8.5
	c) 7.2
	d) 9.6
	Increasing the suction pipe diameter in a pumping system will
C25 1383	a) Decrease NPSHA
34.	b) Increase NPSHA
	c) Decrease NPSHR
	d) Increase NPSHR
	For a Cooling Tower, if evaporation loss is 15 m ³ / hour and Cycles of Concentration is 2.5,
	the blowdown is equal to
35.	a) 6 m ³ / hour
55.	b) 10 m ³ / hour
	c) 22.5 m ³ / hour
	d) 37.5 m ³ / hour
	In T-5 Fluorescent Lamp, "5" is indicative of:
	a) 5 watt power rating
36.	b) 5% Energy Saving with respect to T8
1	c) 5 th generation lamp
	d) Tube diameter
	Which of the following is not likely to create harmonics in an electrical system?
	a) soft starters
37.	b) variable frequency drives
	c) uninterrupted power supply source (UPS)
	d) electric heater
	The performance of rewinding of an induction motor can be assessed by which of the
	following factors?
38.	a) load current
30.	b) stator resistance
	c) no load current
	d) both b and c
	In a DG set, a 3-phase alternator is supplying on an average 100 A at 420 V and 0.9 pf to a
	load. If the specific fuel consumption of this DG set is 0.30 lts/ kWh at that load, then how
	much fuel is consumed while delivering generated power for one hour?
20	a) 11.34 litre
39.	b) 19.64 litre
	c) 21.82 litre
	d) 1964.088 litre
	u) 1504.000 lide
	The total loss for a transformer loading at 60% with no load and full load losses of 3 kW and
	25 kW respectively, is
	a) 3 kW
40.	b) 12 kW
	•
	d) 25 kW
	A process fluid at 40 m ³ /hr, with a density of 0.95, is flowing in a heat exchanger and is to be
	cooled from 35 °C to 29 °C. The fluid specific heat is 0.78 kCal/kg. If the chilled water range
	across the heat exchanger is 4 °C, the chilled water flow rate is
41.	
	a) 44.46 m ³ /hr
	b) 40.41 m ³ /hr
	c) 35.37 m ³ /hr
	d) none of the above

	In which of the following fans the air does not change flow direction from suction to
42.	discharge?
42.	
	a) tube axial fan b) vane axial fan
	c) propeller fan d) all the above What is window to wall ratio
	a) Vertical fenestration area / gross exterior wall area
43.	b) Vertical fenestration area / Net exterior wall area
	c) gross exterior wall area/ Vertical fenestration area
	d) Net exterior wall area/ Vertical fenestration area
	The maximum thermal efficiency of a diesel engine power plant is in the range of
	a) 43-45 %
44.	b) 53-55%
	c) 63-65 %
	d) 73-75%
	The advantage of multi-staging compression over single stage compression is
	-VI
45.	a) Lower power consumption per unit of air delivered b) High volumetric efficiency
	c) Decreased discharge temperature
	d) All of above
	The specific ratio as defined by ASME and used in differentiating fans, blowers and
	compressors, is given by
46.	
	b) suction pressure/discharge pressurec) discharge pressure/ (suction pressure + discharge pressure)
	d) suction pressure/ (suction pressure + discharge pressure)
	A device that distributes filters or transforms the light emitted from one or more lamps is
47.	
	a) Control gear b) Luminaire c) Lamp d) Starter
	For the same quantity of power handled by a distribution line, lower the voltage
48.	a) lower the current drawn and lower the distribution loss
	b) lower the voltage drop and lower the distribution loss
	c) higher the current drawn and higher the distribution loss
	d) higher the voltage drop and lower the distribution loss
	The power drawn by a centrifugal fan is
49.	a) inversely proportional to fan efficiencyb) directly proportional to fan efficiency
	c) inversely proportional to static pressure
	d) inversely proportional to flow rate
13	In a transformer on load, if the secondary voltage is one-fourth the primary voltage, then the
50.	secondary current will be
	a) four times the primary current b) sixteen times the primary current
	c) one-fourth the primary current d) two times the primary current

a) A plant has installed a refrigerant dryer for supplying dry air for their process applications and dryer coil is maintained at 5 °C & 100% RH. The average air flow through the dryer is 100 kg/min. The air properties are given below
 3 Marks

Parameter	Enthalpy (kJ/kg of dry air)	Absolute Humidity (grams/kg of dry air)
Inlet air 35 °C & 50% RH	81	18
Dryer coil 5 °C & 100% RH	19	5.5

Calculate the following:

- i) Moisture removed per hour.
- ii) Cooling capacity of coil in TR.

List down any three energy saving measures in compressed air systems.

2 Marks

Marks: $8 \times 5 = 40$

Ans

i) Moisture removed = $100 \times (18 - 5.5)$

= 1250 grams/min = 1.25 kg/min = 75 kg/hr

ii) $TR = 100 \times (81 - 19)$

= 6200 kJ/min = 6200/(4.186) = 1481.13 kcals/min

= 1481.13*60/3024

= 29.39 TR

b) Energy saving measures -for compressed air system

Refer Guide Book-3, Page no: 80-99

S-2 A DISCOM has taken initiatives to reduce Aggregate Technical & Commercial (AT & C) losses in their network. The energy supplied, received and revenue details are given below:

Input energy : 50 MU Billed Energy (Metered) : 39 MU Billed Energy (Un-metered) : 2 MU

Amount Billed : Rs. 470 Million
Arrears collected : Rs. 30 Million
Gross Amount collected : Rs. 390 Million

a) Estimate the AT & C losses (in %)

3 Marks

List any four strategies to reduce the commercial losses.

2 Marks

Ans

Billing efficiency % = (Total Units billed, MU/ Total Input, MU) x 100

$$= [(39 + 2) / 50] \times 100 = 82\%$$

Collection efficiency, % = (Gross amount collected-Arrears, Rs. / Amount billed, Rs.) x 100

$$= [(390 - 30) / 470)] \times 100 = 76.6\%$$

AT & C Loss = [1 - (Billing efficiency x Collection Efficiency)] x 100

$$= [1 - (0.82 \times 0.766)] \times 100 = 37.19\%$$

b) Strategies to reduce commercial losses.

Refer Guide Book-3, Page no: 27

The size of an air-conditioned office is 12 m X 7 m. Desired illuminance level is 200 Lux. An architect has suggested to install 24 no's of 20 W LED lights at a height of 3 m from ground level. The working plane is 0.75 m above the floor. The other details of 20W LED lamps are: : 2000 lumens Output of LED Lamp Utilization factor : 0.65 Light Loss Factor (LLF) : 0.75 Calculate Room Index & number of LED lights required to get the desired illuminance. As an energy manager do you agree with the architect decision-why? Ans Mounting Height, $H_m = 3 - 0.75 = 2.25 \text{ m}$ Room Index (RI) = $[L \times W] / [H_m \times (L + W)]$ $= [12 \times 7] / [2.25 \times (12 + 7)] = 1.97$ Number of LED lights = -----F x UF x LLF 200 x (12 x 7) 2000 x 0.65 x 0.75 = 17.23So total number of 20 W LED lights required is 18 nos No, I don't agree with architect decision as number of LED light required is only 18 against suggested of 24 nos which is an energy inefficient design. A centrifugal fan drawing 54 kW and operating at 1440 RPM is delivering air at 30000 m³/hr. The head developed by the fan is 400mmWC, If the speed is decreased by 200 rpm, calculate the following Air Flow in m³/hr (1 mark) a) Static Pressure in mmWC b) (2 marks) c) Power drawn in kW (2 marks) Ans = (1240/1440) *30000 1. Air flow in m³/hr $= 25833.33 \text{ m}^3/\text{hr}$ 2. Static Pressure in mmWC $=(1240/1440)^2*400$ = 296.61 mmWC 3. Power drawn in kW $=(1240/1440)^3*54$ =34.48 kW S-5 State True or False. (1 Mark each) Ans 1. An industrial electrical system is operating at unity power factor. Addition of further capacitors will reduce the maximum demand (kVA). - False 2. In a step-down transformer for a given load the current in the primary will be more than the current in the secondary. - False 3. For the same no of poles and kW rating, the RPM of an energy efficient motor is higher than that of a standard motor. - True 4. The advantage of evaporative cooling is that it is possible to obtain water temperatures below the wet bulb economically. - False 5. A fluid coupling changes the speed of the driven equipment without changing the speed of the motor. - True The input parameter measured for a 15 kW, 3 phase, 415 V induction motor is 25 A and 12 kW at 410 V. Calculate the following a) Apparent Power drawn by the motor at the operating load (1 Mark) b) Reactive Power drawn by the motor at the operating load (3 Marks) c) Operating power factor (1 Mark) Ans $= 1.732 \times 0.410 \times 25 = 17.75 \text{ KVA}$ Apparent power = sqrt (apparent power² - active power²) Reactive power = 12 kW Active power

	Reactive	pow	er	= sqrt (17.75 ² - 12 ²) = sqrt (171.06) = 13.07 kVAr		
	Operating power factor = Active power/Apparent power = 12/17.75 = 0.676					
S-7	The total system resistance of a water supply piping system is 30 meters and the static head is 10 meters at designed water flow. Calculate the system resistance offered at 75%, 50% and 25% of water flow.					
Ans	Static He	ad :	10 m (Sta	ice of piping system atic head will rema designed water flow	in same irrespective of	the flow)
		No.	Flow %	Static Head (m)	Dynamic Head (m) = 20 x (%flow) ²	Total System Resistance (m)
		1	75%	10	11.25	21.25
		2	50%	10	5.0	15.0
		3	25%	10	1.25	11.25
	Chilled w	measured parameters are given below. Chilled water inlet temperature :12 °C Chilled water Outlet temperature :7 °C Chilled water pump discharge pressure : 3.6 kg/cm²g Pump suction is 5 meters above the pump center line Power drawn by the chilled water pump motor:70 kW Efficiency of pump motor : 93 % Pump efficiency: 60 %				
	Chilled w Pump suc Power dra Efficiency	rater pation in awn b	oump disc s 5 meters by the chil oump mote	perature :7 °C harge pressure : 3.6 kg s above the pump cent led water pump motor	ter line	
Ans	Chilled w Pump suc Power dra Efficiency Pump effi Find out t Total head Pump sha	rater pation in the second sec	oump disc s 5 meters by the chill nump motors: 60% operating lo -5 = 31 m wer 70×0	perature :7 °C harge pressure : 3.6 kg s above the pump cent led water pump motor or : 93 % ad of the Chiller system 0.93 = 65.1 kW	ter line ::70 kW	3.0

----- End of Section - II -----

Marks: $6 \times 10 = 60$

Section - III: LONG DESCRIPTIVE QUESTIONS

L-1	Fill in the blanks for the following
11-1	The main input energy used for refrigeration in vapor absorption refrigeration plants is
	2. One ton of refrigeration is equivalent tokW
	Stray losses in an induction motor generally are proportional to the square of thecurrent
	4. The unit of AAhEPI is
	5. If the pump impeller diameter is reduced by 10% then head reduces by%
	6. A 4 pole,50Hz motor operating with slip of 3% will have a shaft speed ofRPM
	7. Effective Aperture Glazing (EA) = VLT x
	8. In an amorphous core distribution transformer, no-load loss is than a conventional transformer
	9. As the condensing temperature increases, kW/TR of refrigeration system will
	10. The extent of drying compressed air is expressed by the term

Ans		energy (or steam or waste heat or gas o	r any ener	gy related to	thermal energy)
	2. 3.51				
	3. Load curr				
	4. Wh/sqm/	hr			
	5. 19%				
	6. 1455				
	7. Window	to wall ratio			
	8. Less 9. Increase				
		eric Dew point /Dew Point			
	10. Atmospii	ent Dew point / Dew Foint			
L-2		stry, cooling water of 7500 m ³ /hr and			
		res of 38 °C and 55 °C respectively,			
		neasured heat rejection by the coolir			, calculate the
7.5XE		nd evaporation loss of the cooling to			
Ans:		Temp, ⁰ C = [(Flow1 x Temp1) + (Flow2 x Te 4200 x 55)] / 11700	mp2)]/(Tot	al Flow)	
	= 44.1 °C	,			
		Tower, ⁰ C = Heat Rejection / (Flow x Densit	y x Sp. Hea	t)	
	= (38000 x 3024) = 9.82 °C	/ (11700 x 1000 x 1)			
	Cold Water Temp	, ⁰ C = Mix Hot Water Temp – Range			
	= 44.1 - 9.82 = 34	I.28 ⁰ C old Water Temp – WBT of Air			
	= 34.28 - 28 = 6.2	28 °C			
	Effectiveness = R	ange / (Range + Approach)			
		28) = 60.99% or 61% (m ³ /hr) = 0.00085 x 1.8 x circulation rate (m	3/hr\ v Dana	10	
		$(11700 \times 9.82 = 175.8 \text{ m}^3/\text{hr})$	/III / X INalig	je	
L-3		tes on the following:			(each 2 Marks
		rformance Index (EPI)	111	* (M) W	
		vo Energy Efficiency measures in Building Invelop from an energy efficiency point of		ioning systen	1
		e between building area method and space		nethod for de	riving Lighting
		isity (LPD)	e rane non i	nemou for de	
	e) Solar Hea	Gain Coefficient (SHGC)			
	a) Refer Guio	le Book No 3, Chapter 10, Page No 2			
Ans					
Ans	b) Refer Guio	le Book No 3, Chapter 10, Page No 2	288		
Ans	b) Refer Guicc) Refer Guic	le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2	288 270		
Ans	b) Refer Guicc) Refer Guicd) Refer Guic	le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2	288 270 281		
Ans	b) Refer Guid c) Refer Guid d) Refer Guid e) Refer Guid	le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2	288 270 281 272	ving parame	eters were noted
30000-10001	b) Refer Guid c) Refer Guid d) Refer Guid e) Refer Guid	le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2	288 270 281 272	wing parame	eters were noted
30000-10001	b) Refer Guid c) Refer Guid d) Refer Guid e) Refer Guid	le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 performance evaluation of a DG set,	288 270 281 272 the follow		eters were noted
30000-10001	b) Refer Guid c) Refer Guid d) Refer Guid e) Refer Guid	le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2	288 270 281 272		eters were noted
30000-10001	b) Refer Guid c) Refer Guid d) Refer Guid e) Refer Guid	le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 performance evaluation of a DG set,	288 270 281 272 the follow	kVA	eters were noted
30000-10001	b) Refer Guid c) Refer Guid d) Refer Guid e) Refer Guid	Le Book No 3, Chapter 10, Page No 2 Le Book No 3 (Chapter 10, Page	288 270 281 272 the follow	kVA minutes	eters were noted
3,000,000	b) Refer Guid c) Refer Guid d) Refer Guid e) Refer Guid	le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 le Book No 3, Chapter 10, Page No 2 performance evaluation of a DG set, Capacity of DG set Test duration	288 270 281 272 the follow 750	kVA minutes kWh	eters were noted

Width of diesel tank	100	cm
Height of the diesel tank	90	cm
Initial tank dip level (from top)	63	cm
Final tank dip level (from top)	53	cm

Calculate the following:

1.Diesel consumption (Litres)
2.Average load (kW)
3.Percentage Loading (%)
4.Specific power generation (kWh/Litre)
(1 Mark)
(1 Mark)

b) A medium sized engineering industry has installed two 480 CFM screw compressors, A & B. Compressor-A is operating at full load and Compressor-B is running in load - unload condition. The load power of both the compressor is 74 kW and the unload power of the Compressor-B is 26 kW. Both the compressors are operated during working day.

The percentage loading of the Compressor-B during working day is 70 %. After arresting the leakage in the system the loading of the compressor was found to be 35 %. Estimate the energy savings per day.

5 Marks

Ans a)

1. Diesel Consumption = (1x1x 0.1)x 1000 =100 Liters 2. Average load (kW) = (250/36)x60 =416.67 kW 3. Percentage Loading (%) = (416.6/.92)/750 =60.4 % 4. Specific power generation (kWh/Litre) = (250/100) =2.5 kWh/Litre

b)

Existing Case:

Energy consumed per hour by Compressor -A= 74 kWh

Energy consumed per hour by Compressor -B= 0.70 x 74 + 0.30 X 26 = 59.6 kwh

Total energy consumed (Compressor A& B) = 74 + 59.6 = 133.6 kWh/hr

Energy consumed per day= 133.6 X 24 hrs = 3206.4 kWh/day

Leakage Calculation

Energy consumed per hour by Compressor -B= $0.70 \times 74 + 0.30 \times 26 = 59.6 \text{ kwh}$ Energy consumed per hour by Compressor -B= $0.35 \times 74 + 0.65 \times 26 = 42.8 \text{ kWh}$

Difference in power consumption = 59.6 - 42.8 = 16.8 kWh/hr

Savings by arresting leakage per day= 16.8 X 24 = 403.2 kWh/day

L-5 The data for centrifugal chiller and vapour absorption chiller are given below

Parameter	Centrifugal chiller	VAM
Chilled water flow (m ³ /h)	189	180
Condenser water flow (m³/h)	238	340
Chiller inlet temp (°C)	13.0	14.6

Condenser water inlet temp (°C)	27.1	33.5
Chiller outlet temp (°C)	7.7	9.0
Condenser water outlet temp (°C)	35.7	39.1
Power drawn by compressor (kW)	190	=
Steam consumption (kg/h)	-	1570
Chilled water pump (kW)	28	28
Condenser water pump (kW)	22	33
Cooling tower fan (kW)	6.0	15
Cost of Steam (Rs/kg)	: = >	2.0
Cost of electricity (Rs/kWh)	9.0	9.0

- a) Evaluate the tonnes of refrigeration (TR) of both the systems? (4 Marks)
- b) Operating Energy cost per hour for both the systems? (6 Marks)

Ans

a) Refrigeration load (TR) = Chilled water flow (m³/hr.) x Spec. heat x Diff. in temp. / 3024

Centrifugal chiller TR =
$$189 \times 1000 \times 1 \times (13-7.7) / 3024 = 331.25 \text{ TR}$$

VAM TR =
$$180 \times 1000 \times 1 \times (14.6-9.0) / 3024 = 333.33 \text{ TR}$$

b) Auxiliary power consumption : Chilled water pump + condenser water pump + cooling tower fan

Auxiliary power (kW):
$$28 + 22 + 6.0 = 56$$
 kW

VAM auxiliary power (kW):
$$28 + 33 + 15 = 76 \text{ kW}$$

Energy cost of centrifugal chiller =(56+190)*9= Rs 2214/hr

Energy cost of VAM system =
$$(76*9)+(1570*2)$$

$$= Rs 3824 / hr$$

L-6 A review of electricity bills of a process plant was conducted as a part of energy audit. The plant has a contract demand of 3000 kVA with the power supply company. The average maximum demand of the plant is 2000 kVA/month at a power factor of 0.95. The maximum demand is billed at the rate of Rs.350/kVA/month. The minimum billable maximum demand is 80% of the contract demand.

An incentive of 0.5 % reduction in energy charges component of electricity bill are provided for every 0.01 increase in power factor over and above 0.95. The average energy charge component of the electricity bill per month for the plant is Rs.80 lakhs. Calculate the following

- a) If the plant decides to improve the power factor to unity, determine the power factor capacitor kVAr required and the annual monetary benefits.
 6 Marks
- b) What will be the simple payback period if the cost of power factor capacitors is Rs.1200/kVAr.

4 Marks

Ans

kW drawn	= 2000 x 0.95 = 1900 kW
KVAr required to improve power factor from 0.95 to 1	= kW (tan θ_1 – tan θ_2)
	= kW (tan ($\cos^{-1}\varphi_1$) – tan ($\cos^{-1}\varphi_2$)
	= 1900 (tan (cos-10.95) - tan (cos-11)
	= 1900(0.329 - 0)
Power Factor Capacitor KVAr required	= 625.1 kVAr

Cost of P.F. capacitors @Rs.1200/kVAr	= 625 KVAr x 1200 Rs. / kVAr
	= Rs.7,50,120/-
Maximum Demand at unity power factor	= 1900/1 = 1900 kVA
80% of contract demand (3000 kVA)	= 3000x 0.8 =2400kVA
Reduction in Maximum Demand charges	(NIL) Though demand is reduced to 1900 KVA as per minimum billing requirement plant has to pay for 2400 KVA.
Percentage reduction in energy charge from 0.95 to 1 @ 0.5 % for every 0.01 increase	= ((1-0.95)/0.01) x (0.5%) = 5 x 0.5% = 2.5 %
Monthly energy cost component of the bill	= Rs.80,00,000
Reduction in energy cost component	= 80,00,000 x (2.5/100)
	= Rs.2,00,000/month
Annual reduction in energy cost	= Rs.2,00,000 x 12
component owing to P.F. improvement	= 24,00,000/- per year
Annual Savings in electricity bill	= Rs.0+ 24,00,000= Rs. 24,00,000/-
Investment	= Rs.7,50,000/-
Payback period	= (Investment / Annual Savings) X 12 = (Rs.7,50,000/ 24,00,000) X 12
	= 3.75 months

----- End of Section - III -----