Marks: 50x1=50

21st NATIONAL CERTIFICATION EXAMINATION FOR

ENERGY MANAGERS & ENERGY AUDITORS

PAPER - 1 : GENERAL ASPECTS OF ENERGY MANAGEMENT & ENERGY AUDIT

Date: 25.09.2021 Timings: 09:30-12:30 HRS Duration: 3 HRS Max. Marks: 150

General instructions:

- o Please check that this question paper contains 8 printed pages
- o Please check that this question paper contains 64 questions
- o The question paper is divided into three sections
- o All questions in all three sections are compulsory
- o All parts of a question should be answered at one place

Section -I: OBJECTIVE TYPE

1.	What is the heat content of the 200 liters of wa	ater at 5	50°C in terms of the basic unit of energy in	
	kilo Joules (kJ)			1
	a) 3000	b)	4187	d
	c) 1000	d)	41870	
2.	$C_2H_4 + xO_2> 2CO_2 + yH_2O$, what is the ve	alue of x	+ y?	
	a) 2	b)	3	c
	<u>c) 5</u>	d)	8	
3.	What is the "TOE" of 125 Ton of coal which ha	s GCV o	of 4000 kcal/kg	
	a) 40	<u>b)</u>	50	b
	c) 400	d)	500	
4.	Infrared thermometer is commonly used to me	easure:		
	a) Surface temperature	b)	Flue gas temperature	a
	c) Steam Temperature	d)	Hot water temperature	
5.	Power in a 3 phase AC system is			
	a) 3 x Voltage x Current	b)	Voltage x Current	
		D)		d
	c) 1.73 x Voltage x Current	<u>d)</u>	None of the above	
6.	Which industry among the following is not a d	esignate	ed consumer as per EC Act-2001?	
	a) fertilizers	b)	chlor alkali	d
	c) cement	<u>d)</u>	nuclear power stations	-52
7.	Star rating is a program of BEE			
	a) Demand Side Management	b)	Integrated Energy Policy	0
	c) Standards & Labeling	d)	National Mission for enhanced energy	
	<u> </u>	/	efficiency	
8.	Energy consumption per unit of GDP is called	as:	or and residence action of the	
	a) energy elasticity		b) energy intensity	b
	c) energy per capita		d) none of above	
9.	To maximize the combustion efficiency, it is re	anired t	o in the flue cos2	b

	a)	maximize O ₂	b)	maximize CO ₂	
			3 78		
10.	C)	minimize CO ₂ tric heater of 230 V, 10 kW rating is installed	d)		
10.		uption per hour at 200 V is	ioi i	for water generation in a nospital. The	
	a)	10 kWh	ы	8.7 kWh	d
			2010	Security Conference Co	
11	C)	13.23 kWh tivity analysis is carried out for an energy savir		7.56 kWh	
11.	2	5 S S S S S S S S S S S S S S S S S S S		전 Mark so Fare at the sales	1
	a)	cash flows	<u>b)</u>	risks due to assumptions	b
	c)	capital investment	d)	best financing source	
12.	The spe	cific gravity of water is expressed as			
	<u>a)</u>	<u>1</u>	b)	1 kg/m^3	a
	c)	1 g/cc	d)	1000 kg/m ³	
13.		vity in a project is having an optimistic time of			
	a pessii	nistic time of 16 days. Its expected time of con	plet	tion is	_
	<u>a)</u>	14 days	b)	13 days	a
	c)	12 days	d)	none of the above	
14.	From a	n activity in a project, latest start time is 8 v	veek	s; latest finish time is 12 weeks. The	
	slack ti	me for the activity is			_1
	a)	1 week	b)	5 weeks	d
	c)	4 weeks	<u>d)</u>	none of the above	
15.	Which o	of the following is not a greenhouse gas?			
387000500		or time tomo will be mor a greeninease gas.			
36702500	a)	Water Vapour	<u>b)</u>	SO ₂	b
			<u>b)</u> d)	SO₂ CH ₄	b
16.	a) c)	Water Vapour	d)	CH ₄	b
	a) c)	Water Vapour CO ₂	d)	CH ₄	b c
	a) c) The per a)	Water Vapour CO ₂ iod when maximum sunlight is available is cal	d) led? b)	CH ₄	91-800 EX
	a) c) The per a) c)	Water Vapour CO ₂ iod when maximum sunlight is available is cal Solar constant	d) led? b) d)	Solar insolation none of the above	91-800 EX
16.	a) c) The per a) c)	Water Vapour CO2 iod when maximum sunlight is available is cal Solar constant Solar window speed increases by three times, energy output	d) led? b) d)	Solar insolation none of the above n wind mill will be	c
16.	a) c) The per a) c) If wind a)	Water Vapour CO2 iod when maximum sunlight is available is cal Solar constant Solar window speed increases by three times, energy output 3 times higher	d) led? b) d) fron	Solar insolation none of the above wind mill will be 27 times higher	91-800 EX
16.	a) c) The per a) c) If wind a) c)	Water Vapour CO2 iod when maximum sunlight is available is cal Solar constant Solar window speed increases by three times, energy output 3 times higher 8 times higher	d) led? b) d) fron b) d)	Solar insolation none of the above n wind mill will be 27 times higher none of the above	c
16.	a) c) The per a) c) If wind a) c) A solution	Water Vapour CO2 iod when maximum sunlight is available is cal Solar constant Solar window speed increases by three times, energy output 3 times higher	d) led? b) d) fron b) d)	Solar insolation none of the above n wind mill will be 27 times higher none of the above	c
16.	a) c) The per a) c) If wind a) c) A solutifraction	Water Vapour CO2 iod when maximum sunlight is available is cal Solar constant Solar window speed increases by three times, energy output 3 times higher 8 times higher ion of common salt is prepared by adding 25 of solution is	d) led? b) d) from b) d) kg	Solar insolation none of the above wind mill will be 27 times higher none of the above of salt to 100 kg of water. The weight	c
16.	a) c) The per a) c) If wind a) c) A solutification	Water Vapour CO2 iod when maximum sunlight is available is cal Solar constant Solar window speed increases by three times, energy output 3 times higher 8 times higher ion of common salt is prepared by adding 25 of solution is	d) led? b) d) from b) d) kg	Solar insolation none of the above wind mill will be 27 times higher none of the above of salt to 100 kg of water. The weight	c b
16. 17.	a) c) The per a) c) If wind a) c) A solutifraction a) c)	Water Vapour CO2 iod when maximum sunlight is available is cal Solar constant Solar window speed increases by three times, energy output 3 times higher 8 times higher ion of common salt is prepared by adding 25 of solution is 20% 4%	d) led? b) d) from d) kg b) d)	Solar insolation none of the above wind mill will be 27 times higher none of the above of salt to 100 kg of water. The weight	c b
16.	a) c) The per a) c) If wind a) c) A solutifraction c) The nur	Water Vapour CO2 iod when maximum sunlight is available is call Solar constant Solar window speed increases by three times, energy output 3 times higher 8 times higher ion of common salt is prepared by adding 25 of solution is 20% 4% mber of moles in 90 kg of water is	d) led? b) d) from d) kg b) d)	Solar insolation none of the above wind mill will be 27 times higher none of the above of salt to 100 kg of water. The weight 25% none of the above	c b
16. 17.	a) c) The per a) c) If wind a) c) A solutifraction a) c) The nur	Water Vapour CO2 iod when maximum sunlight is available is call Solar constant Solar window speed increases by three times, energy output 3 times higher 8 times higher ion of common salt is prepared by adding 25 of solution is 20% 4% mber of moles in 90 kg of water is	d) led? b) d) from b) kg b) d)	Solar insolation none of the above wind mill will be 27 times higher none of the above of salt to 100 kg of water. The weight 25% none of the above	c b
16. 17. 18.	a) c) The per a) c) If wind a) c) A solutifraction a) c) The nur a)	Water Vapour CO2 iod when maximum sunlight is available is cal Solar constant Solar window speed increases by three times, energy output 3 times higher 8 times higher ion of common salt is prepared by adding 25 of solution is 20% 4% mber of moles in 90 kg of water is	d) led? b) d) from b) d) d) d) d) d)	Solar insolation none of the above wind mill will be 27 times higher none of the above of salt to 100 kg of water. The weight 25% none of the above	c b
16. 17.	a) c) The per a) c) If wind a) c) A solutification fraction a) c) The num c) A factor	Water Vapour CO2 iod when maximum sunlight is available is call Solar constant Solar window speed increases by three times, energy output 3 times higher 8 times higher ion of common salt is prepared by adding 25 of solution is 20% 4% mber of moles in 90 kg of water is y has a fixed energy consumption of 2,000	d) led? b) d) from b) kg b) d) b) d) kW	Solar insolation none of the above wind mill will be 27 times higher none of the above of salt to 100 kg of water. The weight 25% none of the above 18 none of the above h/month and it consumes a total of	c b
16. 17. 18.	a) c) The per a) c) If wind a) c) A solutification fraction c) The num c) A factor 38,000	Water Vapour CO2 iod when maximum sunlight is available is call Solar constant Solar window speed increases by three times, energy output 3 times higher 8 times higher fon of common salt is prepared by adding 25 of solution is 20% 4% mber of moles in 90 kg of water is y has a fixed energy consumption of 2,000 kWh/month for manufacturing 90,000 un	d) led? b) d) from b) kg b) d) b) d) kW	Solar insolation none of the above wind mill will be 27 times higher none of the above of salt to 100 kg of water. The weight 25% none of the above 18 none of the above h/month and it consumes a total of	c b a
16. 17. 18.	a) c) The per a) c) If wind a) c) A solutifraction fraction c) The num c) A factor 38,000 consum	Water Vapour CO2 iod when maximum sunlight is available is call Solar constant Solar window speed increases by three times, energy output 3 times higher 8 times higher ion of common salt is prepared by adding 25 of solution is 20% 4% mber of moles in 90 kg of water is y has a fixed energy consumption of 2,000 kWh/month for manufacturing 90,000 un aption in kWh/unit is	d) led? b) d) from b) d) kg b) d) kg kg kg	Solar insolation none of the above n wind mill will be 27 times higher none of the above of salt to 100 kg of water. The weight 25% none of the above 18 none of the above th/month and it consumes a total of of the product. The variable energy	c b
16. 17. 18.	a) c) The per a) c) If wind a) c) A solutifraction c) The num c) A factor 38,000 consum a)	Water Vapour CO2 iod when maximum sunlight is available is call Solar constant Solar window speed increases by three times, energy output 3 times higher 8 times higher fon of common salt is prepared by adding 25 of solution is 20% 4% mber of moles in 90 kg of water is y has a fixed energy consumption of 2,000 kWh/month for manufacturing 90,000 un	d) led? b) d) from b) d) kg b) d) kg b) d) kW its (b)	Solar insolation none of the above wind mill will be 27 times higher none of the above of salt to 100 kg of water. The weight 25% none of the above 18 none of the above h/month and it consumes a total of	c b a

21.	If wet bulb and dry bulb temperatures read the same, the relative humidity is			
	a) 0%	b)	50%	С
	c) 100%	d)	none of the above	
22.	1 kWh is equivalent to			
	a) 86000 cal	b)	10000 Wh	с
	c) 3.6 MJ		none of the above	
23.	Which of the following data is not used for calculating	Pla	nt Energy Performance?	
	a) Reference year energy use	200.00	Production factor	d
	c) Current year energy use	- 152	Maximum electrical demand	
24.	Non-contact flow measurement can be carried out by			
	a) Orifice meter	b)	Turbine flow meter	С
	c) Ultrasonic flow meter	d)	Magnetic flow meter	
25.	Which of the following means 'continuous improvement	nt?		
	a) Seiton	<u>b)</u>	Kaizen	b
	c) Seiso	d)	Kanban	
26.	54 kg of water is mixed with 0.34 moles of salt to	nak	e a solution. The mole fraction of the	
	solution is			A 1044 1504
	<u>a) 0.1</u>	b)	18.36	а
	c) 158.8	d)	none of the above	
27.	What is the future value of a cash flow at the end	l of	the 6th year, if the Present Value is	
	Rs. 2 Lakhs and the interest rate is 9%?			h
	a) 3,28,540	<u>b)</u>	3,35,420	b
	c) 2,84,980	d)	none of the above	
28.	A temperature of -40°F will be°C?			
	a) O	b)	-10	С
	<u>c) -40</u>	d)	none of the above	
29.	Unit of maximum demand is			
	a) kVAh	<u>b)</u>	kVA	b
	c) kVAr	d)	kWh	
30.	The ISO standard for energy management system is_			
	a) ISO 9001	<u>b)</u>	ISO 50001	b
	c) ISO 14000	d)	ISO 14001	
31.	The depletion of ozone layer is caused mainly by			
	a) Nitrous oxide	b)	Carbon dioxide	С
	c) Chlorofluorocarbon	d)	Methane	
32.	The presure of 1 atm is equal to			
	a) 10.1325 bar	<u>b)</u>	101.3 kpa	b
	c) 1.033 mH ₂ O	d)	none of the above	
33.	For the purpose of calculating TOE for a designated	ons	umer the calorific value of oil is taken	
	as			b
	a) 10500 kcal/kg	<u>b)</u>	10000 kcal/kg	

34. 18TU is equal to		31 H000 Danin at 3200	## 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	
a) 252 Joule c) 3600 kcal d) 3.5 W When the current leads the voltage in an AC electrical circuit, it is caused mainly due to a) Inductive load b) Resistive load c) Capacitive load d) none of the above 36. The power indicated in the name plate of a motor denotes a) minimum kW drawn by the motor c) maximum kVA drawn by the motor d) maximum kVA drawn by the motor d) maximum kVA drawn by the motor e) maximum kVA drawn by the motor d) none of the above 37. The law of conservation of energy is related with a) third law of thermodynamics b) second law of thermodynamics c) first law of thermodynamics d) none of the above 38. The producer gas is basically a) only CHa b) only CO and CH4 c) CO, H2 and CH4 d) only CO and H2 39. Return on investment (ROI) is a) initial investment/annual return b) annual cost/capital cost c) annual net cash flow/capital cost d) none of the above 40. The process of capturing CO2 from point sources and storing them is called a) carbon sequestration c) carbon capture d) carbon sink a) carbon sequestration factor of a solar PV power plant is in the range of a) 80-85% b) 60-65% c) 18-20% d) less than 10% 43. Contact type speed measurement can be carried out by a) Tachometer c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as a) degrees centifyrade above critical temperature b) degrees centifyrade above critical temperature of the steam c) degrees centifyrade above critical temperature of the steam d) dl of the above d) looo ow		c) 5000 kcal/kg	d) 8700 kcal/kg	
c) 3600 keal d) 3.5 W When the current leads the voltage in an AC electrical circuit, it is caused mainly due to a) Inductive load b) Resistive load c c Capacitive load d) none of the above 36. The power indicated in the name plate of a motor denotes	34.	1 BTU is equal to		(52-5
When the current leads the voltage in an AC electrical circuit, it is caused mainly due to a linductive load e Capacitive load d none of the above		a) 252 Joule	b) 252 cal	b
a) Inductive load b) Resistive load c) none of the above 136. The power indicated in the name plate of a motor denotes				
c Capacitive load	35.	When the current leads the voltage in an AC electr	cal circuit, it is caused mainly due to	
36. The power indicated in the name plate of a motor denotes a) minimum kW drawn by the motor c) maximum kVA drawn by the motor d) none of the above 37. The law of conservation of energy is related with a) third law of thermodynamics b) second law of thermodynamics c) first law of thermodynamics b) second law of thermodynamics c) first law of thermodynamics d) none of the above 38. The producer gas is basically a) only CH4 b) only CO and CH4 c) CO, H2 and CH4 d) only CO and H2 39. Return on investment (ROI) is a) initial investment/annual return b) annual cost/capital cost c) annual net cash flow/capital cost d) none of the above 40. The process of capturing CO2 from point sources and storing them is called a) carbon sequestration c) carbon capture d) carbon sink a) carbon sequestration c) carbon capture d) carbon adsorption 41. The typical efficiency of a solar cell in the field is a) 12-15% c) 45-50% d) 80-85% c) 45-50% d) 80-85% c) 45-50% d) less than 10% 43. Contact type speed measurement can be carried out by a) Tachometer c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above saturation temperature b) degrees centigrade above surration temperature d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW c) 1,000 kW d) 10,000 W d) 10,000 W d) 10,000 W		a) Inductive load	b) Resistive load	С
a) minimum kW drawn by the motor c) maximum kVA drawn by the motor d) none of the above 37. The law of conservation of energy is related with a) third law of thermodynamics c) first law of thermodynamics d) none of the above 38. The producer gas is basically a) only CH c) GO, H2 and CH c) CO, H2 and CH c) CO, H2 and CH d) only CO and CH c) a) only CH c) a) initial investment (ROI) is a) initial investment/annual return c) annual net cash flow/capital cost d) none of the above 40. The process of capturing CO2 from point sources and storing them is called a) carbon sequestration c) carbon capture d) carbon sink c) carbon capture d) carbon sink c) carbon capture d) carbon sink c) carbon capture d) carbon shore c) 45-50% d) 80-85% c) 45-50% d) 80-85% c) 45-50% d) 80-85% c) 18-20% d) less than 10% 43. Contact type speed measurement can be carried out by a) Tachometer c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above saturation temperature b) degrees centigrade above saturation temperature b) degrees centigrade above solving point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow		c) Capacitive load	d) none of the above	
c) maximum kVA drawn by the motor d) none of the above 7. The law of conservation of energy is related with a) third law of thermodynamics c) first law of thermodynamics d) none of the above 7. The producer gas is basically a) only CH4 b) only CO and CH4 c) CO, H2 and CH4 d) only CO and H2 7. Return on investment (ROI) is a) initial investment/annual return a) initial investment/annual return b) annual cost/capital cost c) annual net cash flow/capital cost d) none of the above 7. The process of capturing CO2 from point sources and storing them is called a) carbon sequestration c) carbon capture d) carbon sink a) carbon adsorption 7. The typical efficiency of a solar cell in the field is a) 12-15% c) 45-50% d) 80-85% c) 45-50% d) 80-85% c) 18-20% d) less than 10% 7. Contact type speed measurement can be carried out by a) Tachometer c) Oscilloscope d) Odometer 7. The "supercheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above saturation temperature c) degrees centigrade above critical temperature of the steam c) degrees centigrade above saturation temperature d) all of the above 7. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W d) the viscosity of a liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow	36.	The power indicated in the name plate of a motor of	enotes	
37. The law of conservation of energy is related with a) third law of thermodynamics b) second law of thermodynamics c) first law of thermodynamics d) none of the above 38. The producer gas is basically a) only CH4 b) only CO and CH4 c) CO, H2 and CH4 d) only CO and H2 39. Return on investment (ROI) is a) initial investment/annual return b) annual cost/capital cost c) annual net cash flow/capital cost d) none of the above 40. The process of capturing CO2 from point sources and storing them is called a) carbon sequestration c) carbon capture d) carbon sink a) 12-15% c) 45-50% d) 80-85% c) 45-50% d) 80-85% c) 45-50% d) 80-85% c) 18-20% d) less than 10% 43. Contact type speed measurement can be carried out by a) Tachometer c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as a) 1,000,000,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W bi hove contact true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow c		a) minimum kW drawn by the motor	b) maximum kW drawn by the motor	d
a) third law of thermodynamics b) second law of thermodynamics c c first law of thermodynamics d) none of the above 38. The producer gas is basically		c) maximum kVA drawn by the motor	d) none of the above	
ge first law of thermodynamics d) none of the above The producer gas is basically	37.	The law of conservation of energy is related with		
38. The producer gas is basically		a) third law of thermodynamics	b) second law of thermodynamics	c
a) only CH4 b) only CO and CH4 c c) CO, H ₂ and CH4 d) only CO and H ₂ 39. Return on investment (ROI) is		c) first law of thermodynamics	d) none of the above	
Col. H2 and CH4 d) only CO and H2	38.	The producer gas is basically		
39. Return on investment (ROI) is		a) only CH4	b) only CO and CH ₄	c
a) initial investment/annual return b) annual cost/capital cost c) annual net cash flow/capital cost d) none of the above 40. The process of capturing CO2 from point sources and storing them is called all carbon sequestration all carbon sequestration b) carbon sink c) carbon capture d) carbon adsorption 41. The typical efficiency of a solar cell in the field is a) 12-15% b) 25-30% all 80-85% 42. Capacity utilization factor of a solar PV power plant is in the range of all 80-85% 43. Contact type speed measurement can be carried out by all Tachometer all 70 contact type speed measurement can be carried out by all Tachometer all 80 contact type speed measurement can be carried out by all 40 contact type speed measu		c) CO, H ₂ and CH ₄	d) only CO and H ₂	
c) annual net cash flow/capital cost 40. The process of capturing CO2 from point sources and storing them is called a) carbon sequestration b) carbon sink c) carbon capture d) carbon adsorption 41. The typical efficiency of a solar cell in the field is a) 12-15% b) 25-30% a c) 45-50% d) 80-85% 42. Capacity utilization factor of a solar PV power plant is in the range of a) 80-85% b) 60-65% c) 18-20% d) less than 10% 43. Contact type speed measurement can be carried out by a) Tachometer c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above critical temperature of the steam c) degrees centigrade above critical temperature of the steam c) degrees centigrade below the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000,000 MW b) 1,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow	39.	Return on investment (ROI) is		
40. The process of capturing CO2 from point sources and storing them is called		a) initial investment/annual return	b) annual cost/capital cost	c
a) carbon sequestration c) carbon capture d) carbon adsorption 41. The typical efficiency of a solar cell in the field is a) 12-15% b) 25-30% c) 45-50% d) 80-85% 42. Capacity utilization factor of a solar PV power plant is in the range of a) 80-85% b) 60-65% c c) 18-20% d) less than 10% 43. Contact type speed measurement can be carried out by a) Tachometer c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as c) degrees centigrade above saturation temperature b) degrees centigrade above critical temperature of the steam c) degrees centigrade below the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow		c) annual net cash flow/capital cost	d) none of the above	
c) carbon capture d) carbon adsorption 41. The typical efficiency of a solar cell in the field is a) 12-15% b) 25-30% a c) 45-50% d) 80-85% 42. Capacity utilization factor of a solar PV power plant is in the range of a) 80-85% b) 60-65% c c) 18-20% d) less than 10% 43. Contact type speed measurement can be carried out by a) Tachometer b) Stroboscope a c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above critical temperature of the steam c) degrees centigrade below the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow	40.	The process of capturing CO ₂ from point sources a	nd storing them is called	
41. The typical efficiency of a solar cell in the field is a) 12-15% b) 25-30% c) 45-50% d) 80-85% 42. Capacity utilization factor of a solar PV power plant is in the range of a) 80-85% b) 60-65% c c) 18-20% d) less than 10% 43. Contact type speed measurement can be carried out by a) Tachometer c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above critical temperature of the steam c) degrees centigrade above the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow		a) carbon sequestration	b) carbon sink	a
a) 12-15% b) 25-30% d) 80-85% 42. Capacity utilization factor of a solar PV power plant is in the range of a) 80-85% b) 60-65% c c) 18-20% d) less than 10% 43. Contact type speed measurement can be carried out by a) Tachometer b) Stroboscope d c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above critical temperature of the steam c) degrees centigrade above the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW b) c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow C		c) carbon capture	d) carbon adsorption	
c) 45-50% d) 80-85% 42. Capacity utilization factor of a solar PV power plant is in the range of a) 80-85% b) 60-65% c c) 18-20% d) less than 10% 43. Contact type speed measurement can be carried out by a) Tachometer b) Stroboscope c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above critical temperature of the steam c) degrees centigrade below the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow	41.	The typical efficiency of a solar cell in the field is		
42. Capacity utilization factor of a solar PV power plant is in the range of a) 80-85% b) 60-65% c c] 18-20% d) less than 10% 43. Contact type speed measurement can be carried out by a) Tachometer b) Stroboscope a c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above critical temperature of the steam c) degrees centigrade below the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow		a) 12-15%	b) 25-30%	a
a) 80-85% b) 60-65% c c] 18-20% d) less than 10% 43. Contact type speed measurement can be carried out by a) Tachometer b) Stroboscope a c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above critical temperature of the steam c) degrees centigrade below the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW b) 1,000 MW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow		c) 45-50%	d) 80-85%	
d) less than 10% 43. Contact type speed measurement can be carried out by a) Tachometer b) Stroboscope c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above critical temperature of the steam c) degrees centigrade below the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW b) 1,000 MW b c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow c	42.	Capacity utilization factor of a solar PV power plan	t is in the range of	
43. Contact type speed measurement can be carried out by a Tachometer		a) 80-85%	b) 60-65%	c
a) Tachometer c) Oscilloscope d) Odometer 44. The "superheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above critical temperature of the steam c) degrees centigrade below the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow		c) 18-20%	d) less than 10%	
c) Oscilloscope 44. The "superheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above critical temperature of the steam c) degrees centigrade below the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow C	43.	Contact type speed measurement can be carried or	nt by	
44. The "superheat" of steam is expressed as a) degrees centigrade above saturation temperature b) degrees centigrade above critical temperature of the steam c) degrees centigrade below the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow C		a) Tachometer	b) Stroboscope	a
degrees centigrade above saturation temperature b) degrees centigrade above critical temperature of the steam c) degrees centigrade below the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow C		c) Oscilloscope	d) Odometer	
b) degrees centigrade above critical temperature of the steam c) degrees centigrade below the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow c	44.			
c) degrees centigrade below the boiling point of water d) all of the above 45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow c				a
45. The electrical power unit GigaWatt (GW) may be expressed as a) 1,000,000,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow c		c) degrees centigrade below the boiling		"
a) 1,000,000,000 MW b) 1,000 MW c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow c	45.		pressed as	
c) 1,000 kW d) 10,000 W 46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow C	33,000	5 3 3 3 3		b
46. Which of the following is not true of liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistance to flow C				
	46.		· 10	
b) the viscosity of all liquid fuels decreases with increase in its temperature		a) the viscosity of a liquid fuel is a measure of	of its internal resistance to flow	c
of the viscosity of an inquite rates accreases with increase in its temperature		b) the viscosity of all liquid fuels decreases w	ith increase in its temperature	5500

Marks: $8 \times 5 = 40$

	c) higher the viscosity of liquid fuels, higher will be its heating value	
	d) viscous fuels need heat tracing	
47.	Which one of the following is not the duty of an energy manager under EC Act?	
	a) Report to BEE and state level designated agency once a year	
	b) Prepare an annual activity plan	c
	c) Conduct energy audit	
	d) Prepare a scheme for efficient use of energy	
48.	Which one is not an energy consumption benchmark parameter?	
	a) kcal/kWh of electricity generated b) kg/deg. C	b
	c) kW/ton of refrigeration d) kWh/kg of yarn	
49.	300 liters of water in a tank is heated from 30°C to 70°C by using a direct steam with an enthalpy of 600 kcal/kg. The mass in kg of steam used is	111411
	a) 10 b) 200	d
	c) 40 d) none of the above	
50.	Which of the following is not a unit of energy?	
	a) Joule b) Calorie	c
	c) Watt d) BTU	

******End of Section -I*****

Section - II: SHORT DESCRIPTIVE QUESTIONS

- (i) Answer all **<u>Eight</u>** questions
- (ii) Each question carries **Five** marks

S-1 a)	List three types of performance contracting offered by ESCO and state the dieach type.	fferences of 3 Marks			
	Refer Guidebook-1, Page 178				
S-1 b)	What is the need for normalizing data, while establishing baseline energy use?	2 Marks			
	Refer Guidebook-1, Page 142				
S-2 a)	Why is an evacuated tube collector more efficient than a flat plate collector for	solar water			
	heating system?	2 Marks			
	Refer Guidebook-1, Page 264-265				
S-2 b)	Explain the term Betz limit related to wind turbines	2 Marks			
	Refer Guidebook-1, Page 273				
S-2 c)	Define capacity factor of a wind turbine	1 Mark			
	Refer Guidebook-1, Page 274				
S-3	Explain the concept of fuel substitution with three examples.	5 Marks			
	Fuel substitution is basically substituting existing fossil fuel with, less cost/less polluting fuel,				
	such as, natural gas, biogas and locally available agro-residues. Fuel substitution is	applicable in			
	all sectors of the Indian economy.				
	Few examples of fuel substitution				
	 Natural gas for cooking and industrial use in place of LPG. 				
	Replacement of coal by coconut shells, rice husk etc.				

	Replacement of diesel/petrol by CNG, in automobiles	
	Replacement of LDO by LSHS	
	Replacement of electrical heaters by steam heaters	
	Replacement of steam based hot water by solar systems	
S-4	A 10 HP rated induction motor having name plate details of 415 V, 12 amps and 0.9	9 PF is
0.000	being tested for an audit. Input measuring instrument display was showing 2 kVAr	The second secon
	of 0.758. Determine the percentage loading of the motor during the test. 5 M	/Iarks
	kW = KVA * PF (1)	
	$(KVA)^2 = (kVAr)^2 + (kW)^2$ (2)	
	Given kVAr = 2 and PF=0.758	
	Solve for kW in eqn (2) using eqn (1) we get,	
	$kVA = kW/PF ; PF = kW/kVA; (KVA)^2 = (kVAr)^2 + (kW)^2; (kW/pf)^2 = (kVAr)^2 + (kW)^2 (kW)^2 = pf^2(kVAr)^2 + pf^2(kW)^2 (kW)^2 - pf^2(kW)^2 = pf^2(kVAr)^2 (kW)^2 (1 - pf^2) = pf^2(kVAr)^2 (kW)^2 = (pf^2*(kVAr)^2)/((1 - pf^2)) kW = \sqrt{((pf^2*(kVAr)^2)/((1 - pf^2))} = ((pf*(kVAr))/((1 - pf^2))^{-0.5} = (0.758*2)/((1 - 0.758*2))^{-0.5} = 2.32 kW$ (Or) $Cos \theta = 0.758$ $Tan \theta = 0.86$ $kW = kVAr / Tan \theta$ $= 2/0.86$ $= 2.32 kW$ $kW = 2.32 kW$ Motor rated input $kW = \sqrt{3} \times V \times I \times Cos \theta = 1.732 \times 0.415 \times 12 \times 0.9 = 7.76 kW$	
	Percentage loading of motor= kW measured /rated input kW * 100	
	= 2.32/7.76 * 100 = 29.88 %	
S-5 a	NPV = -50,000+(15000/1.16)+18000/(1.16x1.16)+(20000/(1.16x1.16x1.16)) = -50,000 + 12931 + 13377 + 12813 = (- 10879)	
S-5 b	Star Securities Applications of the Control of the	/Iarks
	As NPV is negative the project is not viable.	
S-6 a	List at least two factors affecting external energy bench marking of energy int	
	<u>■</u> ************************************	/Iarks
	The factors affecting external benchmark could be:	
	Scale of operationVintage of technology	
	Raw material specifications	
	Product specifications	
S-6 b	Compute the plant energy performance of a brewery unit for the current year based	
	following data 3 M	/Iarks

		Time frame	Production Level	Gross energy for the p	roduction level
		Reference year	1,00,000 Barrels	35 Trillion Jo	oules
		Current year	1,10,000 Barrels	38 Trillion Jo	oules
	Reference Current Reference	=11000 10000 = 1.1 ce year Energy Use year Energy Use ce year Equivalent energy nergy Performance = (Reference)	= 35 Trillion = 38 Trillion rgy Use = (Reference y = 35 x 1.1 = 38.5 Trillion rgy Use = (Reference y = 35 x 1.1 = 38.5 Trillion rgy Use = (Reference y = 35 x 1.1 = 38.5 Trillion received received reference y = 35 x 1.1 = 38.5 Trillion received reference y = 35 x 1.1 = 38.5 Trillion received reference y = 35 x 1.1 = 3	Joules rear energy use) x (productio	
S-7		ce shell has to be c	ooled from 95°C to	45°C. The mass of the f	
	30°С. Т		sible increase in w	is 0.122 kcal/kg.°C. Water ater temperature is 5°C. I	
	Specific Tempera Desired Total he	furnace shell (m) heat of furnace shell (cature of shell before coordinate temp of shell after coordinate that has to be removed of water required (Q)	oling (T1) ling (T2) ved from the furnace	= 4000kg = 0.122 kcal/kg °C = 95 °C = 45 °C = m x Cp x (T1-T2) = 4000*0.122*(95-45) = 24400 kcal	
	Inlet coo Maximu	heat of water bling water outlet temp m cooling water outlet noved by water	temperature 5	= 1 kcal/kg °C = 30 °C = 35 °C = Qx1x(35-30) = 5Q Q = 24400 Q = 24400/5 Q= 4880 kg	
S-8	system. the tota	It has a total roof to al area.	op area of 1200 Sq.	oof Top PV (SPV) system un meters, where the shading area and the peak output	g effect is 20% of
S-8 a	100000000000000000000000000000000000000	ich kWp of Solar PV s	ystem can you sugg	est?	2 Marks
S-8 b	2	(1- 0.2)) / 10 = 96 kW uch would be the dail	•	/day/kWp?	2 Marks
S-8 c	How ma	remain the books of the second		ays operation, if the CO ₂ o	
	0.82 kg 96 kWp	/kWh. x 5 x 250 x 0.82 = 98,	400 kg CO ₂ /year		1 Mark
ţ.					

..... End of Section II

Marks: $6 \times 10 = 60$

Section - III: LONG DESCRIPTIVE QUESTIONS

- (i) Answer all **Six** questions
- (ii) Each question carries **Ten** marks

L-1 a)	What is the relevance of molten salt tanks in a typical solar power tower?	2 Marks			
	Molten salt tanks provide an efficient low-cost medium to store thermal energy.	Molten salt from			
	the cold salt tank is pumped through the central receiver where it is heated to 56	6 ℃. The heated			
	salt from the receiver is stored in the hot salt thermal storage tank. Cold salt at 2	88 °C flows back			
	to the cold salt thermal storage tank and is re-used.				
L-1 b)	Explain how parabolic trough collectors work?	4 Marks			
	Refer Guidebook-1, Page 267				
L-1 c)	Explain the difference between on grid and off grid solar PV systems?	4 Marks			
	Refer Guidebook-1, Page 268 & 269				
L-2 a)	Explain how Ozone layer is beneficial to life on earth and how it is getting des	troyed?			
	980 1504 1504 1504 1504 1504 1504 1504 150	5 Marks			
	Refer Guidebook-1, Page 238 & 239				
L-2 b)	What are the adverse effects of the melting of mountain glaciers on the eco sy	stem?			
		3 Marks			
	It disturbs the ocean eco-system. Fresh water from melting ice caps desalinates the	e oceans besides			
	raising the sea levels and flooding the low-lying areas near to coast/river beds. This will disturb the				
	ocean currents which regulate the temperature. Also, the cooling property of whit	e ice caps which			
	reflect heat back into space is curtailed, thus contributing to further warming of the	e earth.			
	Refer Guidebook-1, Page 247				
L-2 c)	State the advantages and limitations of IRR as a tool for project financial anal	ysis 2 Marks			
10,60		600			
	Refer Guidebook-1, Page 172				

Source of Energy	Qty	Heat Value
Pet Coke consumed in kiln	200 TPD	6500 kcal/kg
HSD consumed in the plant	5 kL/day	10200 kcal/kg
Electricity purchased from Grid	80000 kWh/day	860 kcal/kWh
Electricity "generated" from CPP	2 MW	
Heat rate of CPP		3770 kcal/kWh
Load factor of CPP	90 %	
GCV of Coal		4000 kCal/kg
Density of HSD	0.9 kg/L	
Annual operating days of the plant	330 Days/yr	

Calculate the following:

1.	Total energy input in keal per day	
	Marks	

2

Marks

Source of Energy Qty Heat Value	e Formula
---------------------------------	-----------

Annual $TOE = \frac{1577564000}{10^7} \times 330 = 5$	2060 TOE	E/annum			
Annual energy input in TOE (Ton 1577564000			ıt)		3 Marks
Total heat input per day	= 1300000000 +45900000+68800000		0000+162864000		= 1577564000 kcals/day
Heat input to CPP		V*1000) *Loa ate 3770* 24	- 10 m	0.9* CPP	= 162864000 kcals/day
Annual operating days of the plant	330	Days/yr			
Density of HSD	0.9	kg/L			
Load factor of CPP	90	%			
Heat rate of CPP			3770	kcal/kWh	
Electricity generated from CPP	2	MW			
Electricity purchased from Grid	80000	kWh/day	860	kcal/kWh	= 80000*860 = 68800000 kcals/day
HSD consumed by earth moving equipment	5	kL/day	10200	kcal/kg	= 5*1000*0.9*1020 = 45900000 kcals/day
Pet Coke consumed in kiln	200	TPD	6500	kcal/kg	= 200*1000*6500 = 1300000000 kcals/day

Coal consumption per day for CPP in TPD

4 Marks

Coal requirement for CPP =
$$\frac{CPP,MW \times 1000 \times CPP \ Load \ factor \times CPP \ Heat \ Rate}{GCV \ of \ Coal \times 1000}$$
$$= \frac{2 \times 1000 \times 0.9 \times 3770}{4000 \times 1000} = 1.697 \ TPH$$

Coal Requirement for CPP per day = Coal requirement for CPP per hour \times 24

 $= 1.697 \times 24 = 40.716 TPD$

iv. Whether the unit qualifies as a designated consumer or not?

1 Mark

As the annual consumption is greater than 30,000 TOE for a cement plant, this unit will be considered as a Designated consumer.

L-4 a In a food processing plant, the monthly production related variable energy consumption was 1.9 times the production and the non-production related fixed energy consumption was 14,000 kWh per month upto December of the previous year. In the month of January, a series of energy conservation measures were implemented. Using CUSUM technique, develop a table and calculate the energy savings for the subsequent 6 months period upto the month 7 Marks of June from the data given below:

Month	Production (kg)	Actual Energy Consumption (kWh)
Jan	62000	113600
Feb	71000	139000
Mar	75000	158000
Apr	59000	119300
May	62000	123700
Jun	73000	143600

200011	L	4	
	а	E	

		<i>i</i>			
CUSUM	Ea-En	Predicted energy	Actual energy	Production	Month
	Ea-Ep	Predicted energy	Actual energy	Production	Month

	(P)	consumption (Ea)	Consumption (Ep) =1.9*P+14000		
Jan	62000	113600	131800	-18200	-18200
Feb	71000	139000	148900	-9900	-28100
Mar	75000	158000	156500	1500	-26600
Apr	59000	119300	126100	-6800	-33400
May	62000	123700	131800	-8100	-41500
Jun	73000	143600	152700	-9100	-50600

- L-4 b) Mention three commonly used financial tools for evaluating economic viability of an energy conservation measure?
- L4 b) 3 main tools used are:
 - · Pay-back period
 - · Return on Investment
 - · Present value method
- L-5 A company invests Rs. 12 lakhs and completes an energy efficiency project at the beginning of year 1. The firm is investing its own reserve money and expects an internal rate of return (IRR) of at least 12% on constant positive annual net cash flow of Rs. 3 lakhs, over a period of 5 years, starting with year 1.
- L-5 a) Will the project meet the firm's expectations?

3 Marks

Use the NPV formula with d = 0.12 and check to what extent NPV > 0 at n = 5 years.

	Cash out flow	Cash in flow
Year 0	-1200000	0
Year 1		300000
Year 2		300000
Year 3		300000
Year 4		300000
Year 5		300000

NPV for 12% discount rate

= - 1,200,000 + 267857.1+239158.2+213534.1+190655.4+170228.1= (-) 118567

From the table above it is seen that, NPV is negative at 12%, and the <u>project will not meet the firm's expectations.</u>
(3 marks)

L-5 b) What is the IRR of this measure? (Use the interpolation formula for obtaining the nearest IRR value, interpolation formulae is

= (lower discount rate %)

 $+ \left\{ \frac{(\textit{NPV at Lower discount rate}) \times (\textit{Higher discount rate \%} - \textit{Lower discount rate \%})}{(\textit{NPV at Lower discount rate} - \textit{NPV at Higher discount rate})} \right\}$

7 Marks

This means that the IRR of 12% must be selected smaller in order to have NPV = 0. The iterations for NPV at discount rates of 8%, 7% and 7.929% is given below:

			Discou	ınt Rate			
12%		8%		7%	7.929%		
0.12	0.12		0.08		0.07		929
Cash Flow	Year Ref	Cash Flow	Year Ref	Cash Flow	Year Ref	Cash Flow	Year Ref
1200000	0	1200000	0	1200000	0	1200000	0
267857.1	1	277777.8	1	280373.8	1	277960.5	1
239158.2	2	257201.6	2	262031.6	2	257540.2	2
213534.1	3	238149.7	3	244889.4	3	238620	3

190655.4	4	220509	4	228868.6	4	221089.8	4	
170228.1	5	204175	5	213895.9	5	204847.4	5	
-118567		-2186.99		30059.23		57.82047		

By iterations for total NPV at 12%, 8%, 7% & 7.9%, the NPV is tending towards zero between 7.5 to 7.9% discount rate.

L-6 a) Construct a CPM diagram for the data given below

4 Marks

Activity	Precedent	Time, weeks
A	Start	4
В	A	5
С	A	2
D	С	5
Е	Start	3
F	В	4
Finish	D, E, F	. Heat

L-6 b) Identify the critical path

2 Marks

Total time on critical path: 13 weeks

L-6 c) Also compute the earliest start, earliest finish, latest start & latest finish of all activities 4 Marks

Early start (ES), Early Finish (EF), Latest start (LS), Latest finish (LF) are:

S.no	Activity	Duration	ES	EF	LS	LF
1	A	4	0	4	0	4
2	В	5	4	9	4	9
3	С	2	4	6	6	8
4	D	5	6	11	8	13
5	E	3	0	3	10	13
6	F	4	9	13	9	13

..... End of Section III