20th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – September, 2019

PAPER – 3: ENERGY EFFICIENCY IN ELECTRICAL UTILITIES

Section – I: OBJECTIVE TYPE

Marks: 50 x 1 = 50

- i) Answer all **50** questions
- ii) Each question carries **one** mark
- iii) Please hatch the appropriate oval in the OMR answer sheet with HB pencil only, as per instructions

1.	In a pumping system, if the temperature of the liquid handled increases then					
	a) NPSHa increases					
	b) NPSHa decreases					
	d) NPSHa and NPSHr are independent of temperature					
2.	Which of the following component has maximum effect on cooling tower performance?					
	a) <u>Fill media</u> b) drift c) louvers d) casing					
3.	In a vapour compression refrigeration system, the quantum of energy transferred condenser is more than the energy transferred at					
	a) Compressor					
	b) Expansion Valve c) Evaporator					
	d) <u>All of the above</u>					
4.	Demand side Management helps					
	a) to reduce the energy losses b) to reduce system peak demand c) to promote energy efficiency among users. d) <u>All of the above</u>					
5.	Which one of the following is true to estimate the range of cooling tower?					
	a) Range = Cooling water inlet temperature – Wet bulb temperature					
	b) Range = Cooling water outlet temperature – Wet bulb temperature					
	d) <u>None of the above</u>					
6.	Modest flow variation between 80% to 100%, in a centrifugal fan is achieved more efficiently with					
	a) Inlet damper					
	b) Outlet damper					
	d) Impeller Change					
7.	is used as refrigerant both in vapour compression and vapour absorption systems					
	a) Lithium Bromide b) Water c) HFC 134A d) <u>Ammonia</u>					

8.	In electrical distribution system, commercial loss covers discrepancies due to
	a) Meter Reading b) Metering c) Collection Efficiency d) All of the above
9.	Which of the following parameters is not required for evaluating volumetric efficiency of
	reciprocating air compressor?
10	a) <u>rower input</u> b) FAD c) Cylinder Stroke d) Cylinder bore
10.	
	a) Variable Frequency drive b) Soft starter
	c) Hydraulic coupling
11	d) Eddy current drives
	a) Higher slip
	b) Higher starting torque c) Lower No load current
	d) All the above
12.	For a given air requirement, providing higher volume air receiver will
	a) Increase energy consumption
	c) Reduce energy consumption c) Reduce Unload Power
	d) <u>Reduce Pressure fluctuations</u>
13.	Harmonics generation will be more in
	a. Inverter drives b. LED Lamps c. Transformers d. Resistance heaters
14.	Thermal Power Plant efficiency is low due to
	a) Higher steam Pressure
	 c) Low GCV coal
	d) <u>Higher Heat loss in condenser</u>
15.	Among the following, has highest design efficiency.
	a) High tension motors
	c) Alternators
	d) Electric melting furnaces
16.	The difference between wet bulb temperature and cooling water inlet temperature in a cooling tower is called
	a) Approach b) Range c) Effectiveness d) None of the above
17.	Technical loss in a distribution system can be reduced by
	a) Maintaining low HT/LT ratio
	a) Maintaining low FITE Failob) Accurate meter readingc) High voltage supply to consumersd) Improving Collection Efficiency
18.	Pressure drop can be reduced in a compressed air distribution line by providing
	································

	 a) After Coolers b) Small diameter distri c) High pressure air flor d) Large Diameter District 	bution pipes w <mark>tribution pipes.</mark>		
19.	Power consumption is a) Refrigeration type b) Blower reactivated ty c) Heat of compression d) <u>Heatless purge typ</u>	very high for /pe type <u>e</u>	type of compres	sed air dryers.
20.	A DC excitation is used	I to vary the speed of _		
	 a) Eddy Current Coupling b) fluid coupling c) variable frequency of d) None of the above 	<mark>pling</mark> drive		
21.	The isothermal power actual power drawn by	of 500 CFM air compr the compressor will be	essor is 72 kW and	the efficiency is 76 %. The
	a) 56 kW	<u>b) 94.7 kW</u>	c) 89 kW	d) 72 kW
22.	Power factor improvem	ent of a 75-kW compre	essor motor will	
	a) Reduce input power c) Reduce the compres	to the motor sor motor shaft power	b) Increase d) <mark>None of</mark>	input power to the motor the above
23.	A 500-kVA transformer The calculated total tra the transformer?	is designed for No loa ansformer loss is 1662	d loss of 750 watts a watts. What will be	and load loss of 5700 Watts. The percentage loading of
	a) 54.8 %	b) 29 %	c) <u>40 %</u>	d) 25.7 %
24.	Rating of PF correction	capacitors for Inductio	n Motors terminal sh	ould be
	 a) 100 % kVAr of the in b) 20 % of Motor Rating c) 25 % of Motor rating d) <u>90 % of the no-load</u> 	duction motor g I kVAr induction moto	<u>or</u>	
25.	LLF in lighting calculati	on refers to		
	 a) Light Load factor b) Light lumen factor c) Light Lux factor d) Light loss factor 			
26.	A medium voltage end cascade efficiency of 82	consumer receives 83 2%. The million units ge	million units with a tree merated will be	ransmission and distribution
	a) <u>101.2</u>	b) 68.1	c) 83	d) None of the above
27.	A 1000 kW Gas engine 825 kW. If the GCV m³/hr	e is designed for 38 % / of gas is 8700 ki	b efficiency. The ope cal/m ³ , the hourly	rating load of the engine is gas consumption will be
		h) 260 13	c)188 89	d) 272 74

28.	In an electrical power system, transmission efficiency increases as
	a) both voltage and power factor increases
	b) both voltage and power factor decrease
	c) voltage increases but power factor decreases
	d) Voltage decreases but power factor increases.
29.	Which of the following is expressed in terms of percentage?
	a) Absolute humidity
	b) <u>Relative humidity</u>
	c) Specific Gravity
30.	Which among the following is one of the parameters used to classify fans, blowers & Compressors?
	a) Volume flow rate
	b) Mass flow rate
	c) <u>Specific ratio</u>
	d) None of the above
31.	What is the function of drift eliminators in cooling towers?
	a) maximize water and air contact
	b) capture water droplets escaping with air stream
	c) enables entry of air to the cooling tower
	a) eliminates uneven distribution of water into the cooling tower
32.	Which of the following statements is not true regarding centrifugal pumps?
	a) Flow is zero at shut off head
	b) Maximum efficiency will be at design rated flow of the pump
	c) Head decreases with increase in flow
	a) Power increases with throttling
33.	Which of the following is not true with respect to Color Rendering Index (CRI)?
	a) The CRI is expressed in a relative scale ranging from 0 -100.
	b) CRI indicates, how perceived colors match with actual colors.
	 c) LED lamps are having comparatively higher CRI than incandescent Lamps. d) The higher the color rendering index, the lass color shift or distortion occurs.
0.4	(a) The higher the color rendering index, the less color shift of distortion occurs
34.	curve.
	a) Inlet guide vane
	b) speed change with variable frequency drive
	c) speed change with hydraulic coupling
	d) <u>discharge damper</u>
35.	The primary purpose of inter-cooling in a multistage compressor is to
	a) remove the moisture in the air
	b) reduce the work of compression
	c) separate moisture and oil vapour

	d) none of the a	above			
36.	Illuminance of a su	rface is expressed in	I		
	a) radians	b) <u>lux</u>	c) lumens	d) LPD	
37.	A pump discharge has to be reduced from 120 m ³ /hr to 110 m ³ /hr by trimming the impeller. What should be the percentage reduction in impeller size?				
	a)10.52 %	b) <u>8.34%</u>	c) 9.7 1%	d)17.1%	
38.	Which of the follow a) Open cycle b) Diesel Engir c) <u>Combined (</u> d) Conventiona	ring power plants has Gas Turbine ne <mark>cycle gas turbine</mark> al coal plants	the highest efficiency?		
39.	COP of a single eff of	ect absorption refrig	eration system is likely t	o be in the range	
	a) <u>0.6 to 0.7</u>	b) 1to 1.2	c) 1.5 to 2	d) 3.0 to 4.0	
40.	If 30240 kcal of he be nearly equal to	eat is removed from a	a room every hour then t	he refrigeration tonnage will	
	a) 30.24TR	b) 3.024TR	c) 1TR	d) <u>10 TR</u>	
41.	 HVDS (High Voltage) a) <u>Reduce tec</u> b) Reduce com c) Reduce cap d) Reduce ene 	ge Distribution Syster hnical loss in distril imercial loss in distril ital investment rgy bill for the end co	m) is preferred to bution system oution system		
42.	When evaporator t	emperature is reduce	ed,		
	 a) refrigeration b) refrigeratio c) specific pow d) condenser less 	capacity increases n capacity decrease er consumption rema pad increases	es ains same		
43.	A 4 pole 50 Hz induction motor is running at 1470 rpm. What is the slip value?				
	a) 0.2	b) <u>0.02</u>	c) 0.04	d) 0.4	
44.	The basic function	The basic function of an air dryer in an air compressor is to			
	 a) Prevent dus b) Remove mo c) Remove mo d) <u>Remove mo</u> 	t from entering the co isture before the inte isture in compressor pisture in air supplice	ompressor rcooler suction <mark>ed to the plants</mark>		
45.	Power factor is hig a) Sodium vap b) Induction lai c) LED Lamps d) Incandesce	hest in the case of our lamps nps <mark>nt lamps</mark>			

46.	If the COP of a vapour compression system is 3.5 and the motor draws a power of 10.8 kW at 90% motor efficiency, the cooling effect of vapour compression system will be			s a power of 10.8 kW at n will be
	a) <u>34 kW</u>	b) 42 k\	N c) 2.8 kW	d) 3.4 kW
47.	The blow down requi	irement in m ³ /hr of a c 	ooling tower with evaporation	on rate of 16 m ³ /hr and
	a) 4	b) 5.3	c) <u>8</u>	d) 48
48.	The percentage redute to 0.95 is	iction in distribution los 	ses when tail end power fa	ctor is raised from 0.8
	a) <u>29.4%</u>	b)15.5%	c)16.6%	d)24.7%
49.	Energy performance consumption to a) <u>Built up area</u> b) Carpet area c) Roof Area d) Window and Wal	index (EPI) kWh/m² /y 	r is the ratio of total building	g annual energy
50.	Which of the followin	g is not a climate zone	as per ECBC classification	ר?
	a) hot-dry	b) warm-humid	c) <u>Cold-humid</u>	d) cold

..... End of Section – I

Section – II: SHORT DESCRIPTIVE QUESTIONS

Marks: 8 x 5 = 40

- (i) (ii) Answer all <u>**Eight**</u> questions Each question carries <u>**Five**</u> marks

S-1	One of the Machining centres has installed 2 No's operation and also for cleaning operation of compone operated at 7 kg/cm ² (g) and are on-load for 80 % of Power of each 270 cfm compressor is, 40 kW and 15 I that cleaning air requirement is 60% of the air generated	s of 270 cfm compressors for pneumatic ents after machining. The compressors are the time. The load Power and the un-load kW respectively. The energy audit estimated ed.			
	Calculate the daily energy consumption for cleaning a the compressor.	air alone, assuming continuous operation of			
	Ans :				
	Compressor capacity % Loading Air Delivered by 2 compressors Loading Power drawn by the compressors Un-Loading power drawn by the compressors	= 270 cfm = 80 % = (270 X 0.80 x 2) = 432 cfm = (40 + 40) = 80 kW = (15 + 15)			
	Average kW drawn by the compressors	= 30 kW = [(80 x (0.8 x24))+ (30x (0.2 x 24))]/(24) = 70 kW			
	SEC of compressor	= (70/432) = 0.162 kW/cfm			
	Cleaning air consumption at 7 Kg/cm ²	= (60 % of generation) = (0.60 x 432) = 259 cfm			
	Energy requirement for Cleaning air per day	= (259 x 0.162 x 24) = 1007 kWh/day			
	(or) Alternate Solution				
	= (Load Power) = (40 x 0.8) + (1 = 32+3 = 35 KW	x load time) + (Unload Power x Unload time) 5 x 0.2)			
	Average KW drawn by the compressors $= 35 \times 2 = 35 \times 2$	70 KW			
	Energy requirement for Cleaning air per day = (70 kW = =1008 kW	x 0.6) x 24 /h/day			
S-2	In a pharmaceutical industry a centrifugal pump is pu	imping 80 m ³ /hr of water into a pressurized			

	container. The container pressure is 3 kg/cm ² (g). The discharge head of the pump is 5 kg/cm ² (g) and water level is 5 meters below the pump central line. If the power drawn by the motor is 22 kW, find out the pump efficiency. Assume motor efficiency as 90% and the water density as 1000 kg/m ³ .			
S-2- Sol	Ans:			
	SI. No.	Parameter	Process	Value
	1	Water Flow Rate (m ³ /hr)	given	80
	2	Discharge Head (meters)	given	50
	3	Suction Head (meter)	given	-5
	4	Power input to Motor (kW)	given	22
	5	Motor Efficiency	given	90%
	6	Power Input to Pump (kW)	SI. 4* SI. 5	$=22 \times 0.9 = 19.8$ = (80/3600) x (50 -
			SI. 3)*9.81	(-5) x 9.81=11.98
	8	Pump Efficiency	SI. 7 / SI. 6	60.56%
	Inlet e Outlet Specif Calcul	A refrigeration system designed with 10 TR AHU is operating at 8.25 TR. The measured a parameters are given below: Inlet enthalpy = 10.26 kcal/kg Outlet enthalpy = 7.26 kcal/kg. Specific volume of air = 0.83 m ³ /kg Calculate the volume of air in m ³ /hr handled by AHU.		
	Ans :			
	Cooling delivered (TR = (Difference in enthalpy) x (Volume of air / sp. volume x 3024) = (Hi - Ho) x V / (v x 3024) = (TR x v x 3024 / (Hi - Ho)) = ((8.25 x 0.83 x 3024) / (10.26-7.26)) = 6903 m³/hr		ne of air / sp. volume x 3024) 26))	
S4	A fan Hz for and th	is designed for 1300 m ³ /hr, 50 Hz 6000 hours, calculate the velocity on he annual energy savings.	and drawing 3 kW. If the of air, when air is supplied	fan is operated with VFD at 37 through 150 mm diameter duct
	Ans :			
	Power Opera Flow a	Drawn at 50 HZ ting frequency at 37 Hz	= 3 k = 37 = 130 = 96	:W Hz 00 x (37 / 50) 2 m³/hr 0 mm
	Area c	of the duct	= 15 = 0.0)177 m ²

	Velocity of the air in the duct	= [(962 / 3600)] / [(0.0177)]
	Power consumption with 37 Hz	$= (37/50)^3 \times 3$
	Annual Energy Savings for 6000 hours ope	ration = 1.22 kW = $6000 \text{ x} (3 - 1.22)$
		= 10,680 kWh
S5	A foundry unit draws power to the tune o operation is given below:	f 2500 kW. The demand observed during furnace
	5 minutes : 2940 kVA 7 minutes : 2550 kVA 3 minutes : 2777 kVA	
	If the billing meter is monitoring demand e registered and also the average PF, during th	every 15 minutes, calculate the maximum demand edemand interval.
	Ans :	
	Maximum demand registered	= [2940 * (5/15) + 2550 * (7/15) + 2777 * (3/15)] = [980 + 1190 + 555.4] = 2725.4 kVA
	PF 5 minutes: 2940 KV/A	- (2500 / 2940)
		= 0.85
	7 minutes 2550 KVA	= (2500 / 2550) - 0.98
	3 minutes 2777 kVA.	= (2500 / 2777) = 0.90
	Average PF	= [0.85 *(5/15) + 0.98* (7/15) + 0.9 * (3/15)] = 0.92
S6	A process plant has installed 4-cell cooling to at 40 kW at 1450 rpm. As a part of the energy replaced with two speed motors which wou towers are operated at high speed mode for 5 a year.	wer, with 45 kW CT fans for each cell and operating y conservation program, the existing fan motors are d operate at 1450 rpm and 740 rpm. The cooling 300 hours and at low speed mode for 1800 hours, in
	Estimate the annual energy savings when co speed of 1450 rpm.	ompared to operation of fans continuously at a fixed
	Ans :	
	Present energy consumption of all 4 fans	$= (4 \times 40 \times (5300 + 1800))$
	Energy consumption for fans at 1450 rpm for	$5300 \text{ hours} = (4 \times 40 \times 5300)$ $= 8 48 000 \text{ kWh}$
	Energy consumption for fans at 740 rpm for 1	800 hours = $[(740/1450)^3 \times 40 \times 4 \times 1800]$ = 38281 kWh
	Annual savings	= [11,36,000 - (8,48,000+38,281)] = 2,49,719 kWh
S7	Write short notes on any two of the followi	ng: (Each 2.5 Marks)
	 Integrated Part Load Value (IPLV) for Evaporative Cooling 	chillers

	3.	Heat Pump		
	Ans :			
	1. 2. 3.	Integrated Part Load Value (IPLV) for chillers Evaporative Cooling Heat Pump	(Page No. 126) (Page No. 136) (Page No. 133)	
S8	Write	short notes on any two of the following:		(Each 2.5 Marks)
	1. 2. 3.	Solar Heat Gain Coefficient (SHGC) Visible Light Transmittance (VLT) Cool Roof		
	Ans :			
	1. 2. 3.	Solar Heat Gain Coefficient (SHGC), Visible Light Transmittance (VLT), Cool Roof,	(Page No. 272) (Page No. 272) (Page No. 271)	

..... End of Section - II

Marks: 6 x 10 = 60

Section – III: LONG DESCRIPTIVE QUESTIONS

- Answer all **Six** questions
- (i) (ii) Each question carries Ten marks

F	Motor tating in kW	Operating Load %	Old Motor Efficiency%	New Motor efficiency%	No of mo	tors
	7.5	75	86	89	12	
	11.5	85	88	91	7	
	15	70	89	92	11	
Assumin 4000 hou Ans :	g motor loadir urs operation p	ng in both cases r ber year.	emains same, calci	ulate the ann	ual energy sa	avings,
Motor Rating	Operating Load	Actual Old Motor Load	Actual New Motor Load	Old Motor	New Motor	No o moto
in KW	%	In kW	In kw	efficiency	efficiency	
7.5	75	7.5/0.86=8.72 =8.72x 0.75=6.54	7.5/0.89=8.43 =8.43x 0.75= 6.32	86	89	12
11.5	85	11.5/0.88=13.07 =13.07 x 0.85= 11.11	11.5/0.91=12.64 =12.64 x 0.85= 10.74	88	91	7
15	70	15/0.89=16.85 =16.85x 0.7= 11.79	15/0.92=16.30 =16.30 x 0.7 11.41	89	92	11
12 numb Annual S 7 numbe	ers, operating avings for 11 rs, operating 4	4000 hours KW Motors, 1000 hours	: : :	= [4,000 (6.5 = 10,560 kWł = [4000 (11.1 = 10,360 kWł	4-6.32) x 12 ַ ו 1 -10.74) x 7 ו]
Annual S 11 numb	Savings for 15 ers operating	KW Motors, 4000 hours	-	= [4,000 (11. = 16,720 kWł	79-11.41) x1 າ	1]
Annual S 11 numb Total anr	Savings for 15 ers operating nual savings fo	KW Motors, 4000 hours or 30 high efficienc	; y motors =	= [4,000 (11. = 16,720 kWł = 37,640 kWł	79-11.41) x1 າ າ	1]
Annual S 11 numb Total anr A 10 MW 11 KV.	Savings for 15 ers operating nual savings fo / co-generatio	KW Motors, 4000 hours or 30 high efficienc n plant is operatir	;y motors =	= [4,000 (11. = 16,720 kWf = 37,640 kWf ctor of 85 %.	79-11.41) x1 n Power is ge	1] nerated
Annual S 11 numb Total anr A 10 MW 11 KV. > 35 % effici	Savings for 15 ers operating hual savings fo / co-generatio of the power ency.	KW Motors, 4000 hours or 30 high efficienc n plant is operatir generated, is exp	ey motors end ng at a daily load fa orted to grid, throug	= [4,000 (11. = 16,720 kWł = 37,640 kWł ctor of 85 %. h a 7.5 MVA	79-11.41) x1 n Power is ge Transformer	1] nerated with 99
Annual S 11 numb Total anr A 10 MW 11 KV. > 35 % effici > 32 % trans	Savings for 15 ers operating hual savings fo / co-generatic o of the power ency. o power gener former, with 9	KW Motors, 4000 hours or 30 high efficienc n plant is operatir generated, is exp ated, is supplied to 8 % efficiency.	ey motors end ng at a daily load fa orted to grid, throug o mill motors, at 600	= [4,000 (11. = 16,720 kWf = 37,640 kWf ctor of 85 %. h a 7.5 MVA 0 Volts, throu	79-11.41) x1 n Power is ge Transformer gh a 5 MVA	1] nerated with 99 step do

Г

Calculate the following: 1) Daily energy exported to grid at 33 KV. 2) Daily mill motors consumption at 600 V. 3) Daily LT loads and auxiliary consumption at 415 V. 4) Daily transformers losses in kWh and % transformers losses (Each 2.5 Marks) Ans : 1. Daily generation $= (10,000 \times 0.85 \times 24)$ = 2,04,000 kWh Daily energy generation for export purpose $= (2,04,000 \times 0.35)$ = 71,400 KWh 7.5 MVA transformer loss $= [71,400 - (71,400 \times 0.99)]$ =(71,400-70,686)= 714 kWh = (71,400 kWh - 714 kWh) Net energy export to the Grid at 33 KV level =70,686 KWh 2. Daily energy generation for mill motor consumption $= (2,04,000 \times 0.32)$ = 65,280 kWh 5 MVA Transformer loss $= [65,280 - (65,280 \times 0.98)]$ = (65,280 - 63,974.4)= 1,306 kWh Net mill Consumption = 63,974 KWh 3. Daily generation for LT loads & Auxiliary consumption $= (2,04,000 \times 0.33)$ = 67,320 kWh 2MVA Transformer loss = [67320 - (67320 x 0.98)] = 67,320 - 65,974 $= 1,346 \, \text{kWh}$ Net LT loads & Auxiliary Consumption = 65,974 kWh 4. Transformers losses = (714 + 1306 + 1346)= 3,366 kWh day = (3,366 / 2,04,000) x 100 % transformers losses = 1.65 %(Or) To meet the plant LT loads and co-gen auxiliary load, the transformer capacity should be more than 2 MVA.

	Shift reference	Load time in sec	Un-Load time in sec
	(8 hrs/ Shift)	60	10
	i	45	25
	III	25	45
Load P Un-loa	'ower = d power = '	37 KW 11 KW	
Calcula	ate the following:		
1. Ener 2. Shift 3. The after	gy loss per day (4 Marks) wise average air requirement plant has proposed to inst r installing the VFD operated	ent in cfm (2 Marks) all a VFD for the compressor. d compressor, if the VFD loss is	Calculate the energy sa s 3 % of load power. (4 Marks)
Ans :			(i mano)
I st shift	consumption	= ((60 / 70) x 37) -	+ (10 / 70) x 11) x 8)
		= (31.71+1.57) x	8
		= 266.24 kWh	
ll nd shi	ft consumption	= ((0.64 x 37 + 0.3	36 x 11) x 8)
		= (23.68 + 3.96) x	8
		= 221.12 kWh	
III rd shit	it consumption	= ((0.36 x 37 + 0.6	64 x 11) x 8)
		= (13.32 +7.04) x	: 8)
		= 162.88 kWh	
Daily T	otal Energy consumption	= (266.24 + 221.1	2 + 162.88)
		= 650.24 kWh	
	nergy loss due to unloading	= (1.57 +3.96 +7.0	04) x 8
Daily E			
Daily E		= 100.56 kWh	
Daily E Daily Ic	ad cycle Energy consumption	= 100.56 kWh on = (650.24 – 100.5	6)
Daily E Daily Ic	ad cycle Energy consumption	= 100.56 kWh on = (650.24 – 100.5 = 549.68 kWh	6)

	Daily Energy loss due to VFD	= (566.68 - 549.68)	
		= 17 kWh	
	Daily Net Energy savings with VFD compressor = (100.56 – 17)		
		= 83.56 kWh	
	I st shift air requirement	= (0.86 x 220)	
		= 189.2 cfm	
	II nd shift air requirement	= (0.64 x 220)	
		= 140.8 cfm	
	III rd shift air requirement	= (0.36 x 220)	
		= 79.2 cfm	
L5	(a) What is L/G ratio and how it is useful in operation of a cooling tower ?		(2 Marke)
	(b) What are the functions of fill media in a cooling tower?(c) Calculate the L/G ratio for the cooling tower given the following:		(3 Marks)
			(3 Marks)
	Water Flow	= 4540 m ³ /hour	(4 Marks)
	Approach	= 4.45 °C	
	Air entering enthalpy at 26.67 °C	= 24.17 kcal/kg	
	Air leaving enthalpy at 37.8 °C	= 39.67 Kcal/kg	
	Hot water temperature	= 47.77 °C	
	Cold water temperature	= 31.11°C	
	Ans :		
	a) Page 205		
	(b) Page 209		
	c)		
	$\begin{array}{ll} L \ / \ G &= (h_2 \ -h_1) \ / \ (T_1 \ - T_2) \\ L \ (47.77 \ - \ 31.11) &= G \ (39.67 \ - \ 24.17) \\ L \ / \ G \ Ratio &= (39.67 \ - \ 24.17) \ / \ (4 \\ &= 0.93 \end{array}$	7.77 - 31.11)	

L6 In an energy audit of a fan, it was observed that the fan was delivering 24,000 Nm³/hr of air. a) Suction static pressure was recorded as -15 mm WC and discharge static pressure as 35 mmWC. The power measurement of the motor using power analyzer was recorded as 7 kW. The motor operating efficiency taken from motor performance curve was 90%. What is the static efficiency of the fan? b) Match the Following NPSHR 1. Heat Pump _ 2. Compressor Static Head 3. Pumping Pressure _ Static Pressure 4. Fan _ Compressor 5. Pump Free air delivery test _ Soln : a) Q = 24.000 Nm³ / hr. = 6.67 m³/sec Static pressure rise = 35 - (-15)= 50 mmWC ηs =? Power input to motor = 7 kW Power input to fan shaft = $7 \times 0.90 = 6.3 \text{ kW}$ Fan static $\eta =$ <u>Volume in m³/sec x ΔP_{st} in mmWc</u> 102 x Power input to shaft $= (6.67 \times 50) / (102 \times 6.3)$ = 0.519 (or) = 51.9 % Match the Following b) 1. Heat Pump NPSHR (5) _ 2. Compressor Static Head (3) _ 3. Pumping Pressure _ Static Pressure (4) 4. Fan Compressor (1) _ 5. Pump Free air delivery test (2) _

----- End of Section - III -----