20th NATIONAL CERTIFICATION EXAMINATION FOR

ENERGY MANAGERS& ENERGY AUDITORS- September, 2019

PAPER –2: Energy Efficiency in Thermal Utilities

General instructions:

- $\circ~$ Please check that this question paper contains 8 printed pages
- Please check that this question paper contains **64** questions
- \circ The question paper is divided into three sections
- o All questions in all three sections are compulsory
- $\circ~$ All parts of a question should be answered at one place

Section – I:OBJECTIVE TYPE

Marks: 50 x 1 = 50

- (i) Answer all **50** questions
- (ii) Each question carries **one** mark
- (iii) Please hatch the appropriate oval in the OMR answer sheet with Black Pen or HB pencil, as per instructions

1.	Arrange the following fuels in decreasing order of their GCV's - (p) Bagasse, (q) Furnace Oil, (r) Coal, (s) Hydrogen		
	a) <u>s-q-r-p</u>	b) p-q-r-s	
	c) r-s-q-p	d) q-r-s-p	
2.	Which of the following contributes t	o spluttering of flame at burner tip during combustion of fuel oil?	
	a) ash content	b) <u>water content</u>	
	c) Sulphur content	d) ambient air humidity and temperature	
3.	Which trap is preferred in condensa	te removal from steam main lines?	
	a) Float trap	b) <u>Thermodynamic trap</u>	
	c) Thermostatic trap	d) All of the above	
4.	In an FBC boiler, with low ash fusion	coal, if the bed temperature exceeds 950°C, the result is:	
	a) Boiler explosion	b) <u>clinker formation</u>	
	c) Melting of lime stone	d) Ash carry over	
5.		ate, at trap discharge, will result in back pressure of	
	a) 0.03 kg/cm ²	b) <u>0.3 kg/cm²</u>	
	c) 3 kg/cm ²	d) 30 kg/cm ²	
6.		toichiometric air, percentage CO2 on volume basis, in dry flue gas, will	
	be		
	a) 79%	b) 21%	
	c) <u>0%</u>	d) 100%	
7.	Heat transfer rate for drying applica		
	a) Saturated steam	b) Dry steam	
	c) <u>Superheated steam</u>	d) None of the above	

8.	The viscosity of furnace oil will be maximum at which of the following temperatures? a) <u>40 °C</u> b) 60 °C c) 90 °C d) 105 °C
9.	Carpet loss in the context of coal consumers is related to :a) Short receiptb) Accounting mistakesc) Ash handlingd) coal storage
10.	Thermo-compressor is commonly used for :b) upgrading low pressure steama) compressing hot airb) upgrading low pressure steamc) converting saturated steam to super-heated steamd) reverse compression of CO2
11.	Latent heat of any vapour at its critical point will be : a) highest b) above zero c) <u>zero</u> d) less than zero
12.	The temperature at which, refractory will deform under its own weight, is it's softening temperature,indicated by :a) melting pointb) Pyrometric Cone Equivalentc) reform temperatured)critical point
13.	Which type of the following co-generation system has high heat-to-power ratio?a) gas turbineb) back pressure turbinec) extraction condensing turbined) reciprocating engine
14.	Drain pockets are provided in a steam line for :a) effective removal of line condensatec) removal of dirtb) effective removal of steam lined) checking of steam line
15.	Capillary wick is a part of:a) heat pumpb) heat wheelc) heat piped) regenerator
16.	Scale losses in reheating furnaces will:a) increase with CO in combustion gasesb) increase with excess airc) decrease with excess aird) have no relation with excess air
17.	Tuyeres is a terminology associated with:a) induction furnaceb) pusher type furnacec) arc furnaced) cupola
18.	The low combustion temperature in FBC boilers results in minimal formation of :a) COb) SOxc) $\underline{NO_x}$ d) CO_2
19.	Turn down ratio of a burner is the ratio of a) maximum to minimum fuel input without affecting optimum excess air levels b) minimum to maximum fuel input without affecting optimum excess air levels c) maximum to average fuel input d) average to minimum fuel input
20.	Dolomite is a type of refractory:a) acidicb) basicc) neutrald) none of the above
21.	Which of the following is not true of condensate recovery?a) reduces water chargesb) reduces fuel costsc) increases boiler outputd) increases boiler blow down
22.	Calcium and magnesium bicarbonates present in feedwater fed to a boiler would form : a) acidic solution b) <u>alkaline solution</u> c) neutral solution d) none of the above

23.	In steam systems, the purpose of venting air is because, air is a) a good conductor b) an inert substance c) an oxidizing agent d) <u>an insulator</u>
24.	A bottoming cycle is one in which fuel is used for producing : a) power primarily followed by byproduct heat output b) heat primarily followed by byproduct power output c) power, heat and refrigeration simultaneously d) none of the above
25.	A supercritical boiler has parameters beyond critical point, which refers to : a) 221.2 bar (a) pressure and 374.15 °C temperature b) 246.1 bar (a) pressure and 538.44 °C temperature c) 306.5 bar (a) pressure and 538.82 °C temperature d) 170.0 bar (a) pressure and 374.18 °C temperature
26.	Of the total volume of natural gas, the main constituent is : a) <u>methane</u> b) iso-octane c) propane d) hexane
27.	For optimum combustion of fuel oil, O2 percentage in flue gases should be maintained at :a) 2-3 %b) 14-15 %c) 23 %d) 21%
28.	The draft caused solely by the difference in weight between the column of hot gas inside the chimney and column of outside air is known as :a) balanced draftb) induced draftc) forced draftd) natural draft
29.	The cogeneration system which has high overall system efficiency is :a) back pressure steam turbineb) combined cyclec) extraction condensing steam turbined) reciprocating engine
30.	When 10 kg of fuel, with 60% carbon, is burnt with theoretical air, the mass of CO2 released will be :a) 32 kgb) 440 kgc) 450 kgd) 22 kg
31.	F & A (from and at) rating of the boiler is the amount of steam generated from : a) water at 0 °C to saturated steam at 100 °C
	 b) water at feed water temperature to saturated steam at 100 °C c) water at 100 °C to saturated steam at 100 °C d) water at ambient temperature to saturated steam at 100 °C
32.	 b) water at feed water temperature to saturated steam at 100 °C c) water at 100 °C to saturated steam at 100 °C d) water at ambient temperature to saturated steam at 100 °C
32.	b) water at feed water temperature to saturated steam at 100 °C c) water at 100 °C to saturated steam at 100 °C d) water at ambient temperature to saturated steam at 100 °C Steam generated in a boiler is 36 tonnes in 3 hours. Fuel consumption in the same period is 1 tonne per hour. Continuous blow down is 8% of feed water input. The boiler evaporation ratio is ? a) 12 b) 11.7 c) 36 d) 24
	 b) water at feed water temperature to saturated steam at 100 °C c) water at 100 °C to saturated steam at 100 °C d) water at ambient temperature to saturated steam at 100 °C Steam generated in a boiler is 36 tonnes in 3 hours. Fuel consumption in the same period is 1 tonne per hour. Continuous blow down is 8% of feed water input. The boiler evaporation ratio is ? a) 12 b) 11.7 c) 36 d) 24 Which of the following statement is false? a) LPG vapour is twice as light as air c) LPG is a gas at normal atmospheric pressure d) LPG is required to be odorized
33.	 b) water at feed water temperature to saturated steam at 100 °C c) water at 100 °C to saturated steam at 100 °C d) water at ambient temperature to saturated steam at 100 °C Steam generated in a boiler is 36 tonnes in 3 hours. Fuel consumption in the same period is 1 tonne per hour. Continuous blow down is 8% of feed water input. The boiler evaporation ratio is ? a) 12 b) 11.7 c) 36 d) 24 Which of the following statement is false? a) LPG vapour is twice as light as air c) LPG is a gas at normal atmospheric pressure d) LPG is required to be odorized The inverted bucket operates on the principle of difference between water and steam:
33. 34.	b) water at feed water temperature to saturated steam at 100 °C c) water at 100 °C to saturated steam at 100 °C d) water at ambient temperature to saturated steam at 100 °C Steam generated in a boiler is 36 tonnes in 3 hours. Fuel consumption in the same period is 1 tonne per hour. Continuous blow down is 8% of feed water input. The boiler evaporation ratio is ? a) <u>12</u> b) 11.7 c) 36 d) 24 Which of the following statement is false? a) <u>LPG vapour is twice as light as air</u> b) LPG is a mixture of propane and butane c) LPG is a gas at normal atmospheric pressure d) LPG is required to be odorized The inverted bucket operates on the principle of difference between water and steam: a) pressure b) density c) temperature d) velocity Which of the following is not measured in proximate analysis ?

37.	The TDS level in boiler water, in the context of boiler blow down, can be determined by measuring :			
	a) alkalinity of waterb) thermal conductivity of waterc) electrical conductivity of waterd) turbidity of water	ater		
38.	38. De-aeration of boiler feed water helps in combating :			
	a) <u>corrosion</u> b) TDS c) silica	d) hardness		
39.	39 . In stoichiometric combustion of furnace oil, which of the following will be absen	t in flue gas ?		
	a) nitrogen b) carbon dioxide c) <u>oxygen</u>	d) Sulphur dioxide		
40.	40. Furnace wall heat loss does not depend on :			
	a) temperatures of external wall surfaces c) thermal conductivity of wall brick b) velocity of air around the s d) material of stock to be here			
41.	41. In determining the optimal economic insulation thickness for a steam pipeline, where the best of the considered of the constant	nich of the following factors need not		
	a) annual hours of operation b) calorific value c) pipe material	d) cost of fuel		
42.	42. Which is not a property of Ceramic fiber insulation?			
	a) low thermal conductivity b) light weight c) high heat storage	d) thermal shock resistant		
43.	43 . Which property is the most important, for an insulating brick ?			
	a) Mechanical strength b) Chemical resistance c) Compact strength d) Porosity			
44.	44. Quality of waste heat in flue gas refers to :			
	a) dust concentration in flue gas c) moisture in flue gas b) Temperature of flue gas d) corrosive gases in flue gas			
45.	45. In a low temperature waste heat recovery system, which of the following, is the m	nost suitable ?		
	a) Economizer b) <u>Heat Pipe</u> c) regenerator	d) ceramic recuperator		
46.	46. Which of the following heat recovery equipment, requires a compressor for its op	eration?		
	a) thermo-compressor b) heat wheel c) Heat pump	d) heat pipe		
47.	47. Pinch analysis of process streams, depicts the plot of :			
	a) temperature vs entropy c) temperature vs specific heat b) temperature vs. area d) <u>temperature vs enthalpy</u>			
48.	48. Which of the following is true for a process heating requiring direct injection of s	team?		
		ostatic trap is required <u> f the above</u>		
49.	49. If a vapor-liquid combination of 1 kg at 120 °C is supplied with 50 kcal of heat w pressure conditions; its temperature will be?	vithout change in state and at constant		
	a) 220 °C b) 190 °C c) 170 °C	d) <u>120 °C</u>		
50.	50. Which of the following constituent in flue gas is used for determining excess air?			
	a) % nitrogen b) % Sulphur Dioxide c) <u>% Car</u>	bon dioxide d) %		

Moisture

..... End of Section – I

Section - II: SHORT DESCRIPTIVE QUESTIONSMarks: 8 x 5 = 40

- Answer all **Eight** questions (i)
- (ii) Each question carries Five marks

In an industry, an electrical oven consuming 1100 kWh/batch, is proposed for replacement, by a FO fuel fired oven. S1 Calculate the simple payback period, given the following data: Number of batches / years = 4000Efficiency of electric oven = 82% Efficiency of FO fired oven = 55% Cost of FO = Rs.35,000/Tonne GCV of FO = 10,200 kcal/kg Electricity cost = Rs.6.0/kWhInvestment for FO fired oven = Rs. 125 Lakhs Ans: Useful heat, required per batch $= (1100 \times 860 \times 0.82)$ = 7,75,720 kcal/batch FO input per batch $=(7,75,720/(0.55 \times 10,200))$ = 138.27 kg FO/batch FO cost per batch = (138.27 kg FO/batch x Rs.35/kg FO) = Rs.4,839.45 Electricity cost per batch = (1,100 kWh/batch x Rs.6.0/kWh) = Rs.6,600Cost savings per batch on account of replacement = (Rs.6,600 - Rs.4,839.45)= Rs.1,760.55 $= (1.760.55 \times 4000)$ Annual cost savings at 4000 batches per year = Rs.70,42,200 (Or) = Rs.70.422 lakhs Investment = Rs.125 lakhs Simple payback period =(125/70.422)= 1.78 years S2 In a process plant, 30 TPH of steam, after pressure reduction to 20 kg/cm²(g), through a pressure reducing valve, gets superheated. The temperature of superheated steam is 350 °C. The management desires to install a de-super heater to convert the superheated steam into useful saturated steam at 20 kg/cm²(g) for process use. The saturated steam temperature is 210°C. Calculate the quantity of water required to be injected at 30 °C, in the de-super heater, in order to obtain the desired

saturated steam, using the following data:

- = 0.45 kcal/kg°C Specific heat of superheated steam = 450 kcal/kg
- Latent heat of steam at 20 kg/cm²(g)

		Paper-2 Code: Pilik
	Ans :	
	 Quantity of heat available above saturation By Heat & Mass balance: Q x{1 x (2 Quantity of water (Q) required to be added in de-super heater 	n = (30,000 x 0.45 x (350-210)) = 18,90,000 kcal/hr 10-30) + 450} = 18,90,000 = 18,90,000/{1 x (210-30) + 450} = 18,90,000/630 = 3000 kg/hr
S3	In an industry the process equipment needs 500) kg/hr of saturated steam at 10 kg/ cm ² (g). For a steam velocity of
	25 m/sec, what will be the diameter of the steam is 0.1802 m ³ /kg. Ans :	pipe in 'mm', given that the specific volume of steam at 10 kg/ cm ² (g) 0.1802 m ³ /kg
		25m/sec
		5000 kg/hr
		1.389 kg/sec
		1.389 x 0.1802
		0.25 m³/sec
	Volume flow rate is also =	$(\pi/4 \times D^2) \times 25$
	Therefore, $(\pi/4 \times D^2) \times 25 =$	0.25
	Hence, diameter of steam pipe line 'D' =	$[(0.25/((\pi/4) \times 25)]^{0.5}]$
	=	0.1128m
		r 112.8 mm
S4	An economizer was installed in an oil fired boiler.	he following data was obtained after commissioning the economizer.
	 Air to fuel ratio = 18 Evaporation ratio of the boiler = 12.5 Specific heat of flue gas = 0.25 kca Condensate recovery in the plant = Nil. Calculate the rise in temperature of feed water ac from 280 °C to 190 °C. 	/kg°C. oss the economizer, corresponding to a drop in flue gas temperature
	Ans :	
	Steam generated per kg of fuel, (from evaporation Required combustion air per kg of fuel, (from air to Flue gas generated per kg of fuel	
		iven by flue gas = Heat received by water 25 x (280-190)) = (12.5 kg x 1kcal/kg°C x ΔT)
	Rise in temperature of water ΔT	= 34.2 °C
S5	Compute the heat loss in percentage, due to unbuwith:	rnt in fly ash and bottom ash, for an AFBC Boiler, using Indian coal,
	• GCV = 4200 kc	I/kg.
	 % Ash in coal = 38.8 	, ,
	 Ratio of bottom ash to fly ash = 15:85 	
	 GCV of fly ash = 452.5 kc 	al/kg
	GCV of bottom ash = 800 kca	

	Ans:		
	Unburnt in fly ash		
	Amount of fly ash in 1 kg of coal	= (0.85 x0.388)	
		= 0.3298 kg fly ash/kg coal	
	GCV of fly ash	= 452.5 kcal/kg fly ash	
	Heat loss in fly ash	= (0.3298 x 452.5 kcal per kg fly ash)	
		= 149.23 kcal/kg coal	
	% Heat loss in fly ash	= (149.23 x 100 /4200)	
		= 3.55 %	
	Unburnt in bottom ash		
	Amount of bottom ash in 1 kg of coal	= 0.15 x 0.388	
		= 0.0582 kg bottom ash/kg coal	
	GCV of bottom ash	= 800 Kcal/kg bottom ash	
	Heat loss in bottom ash	= (0.0582 x 800 kcal per kg bottom ash)	
		= 46.56 kcal/kg coal	
	% Heat loss in bottom ash	= (46.56 x 100 /4200)	
		= 1.11 %	
S6	List five main parameters considered	l for the selection of refractories?	(Each 1 Mark)
	Ans :	(Page No:166, Sec 5.11)	
S7	What is the significance of volatile r	natter, in case of solid fuels?	
	Ans :		(Page No: 9)
S8	(i) List three functions of a steam t	rap.	(3 Marks)
	(ii) Explain the working principle o	f thermodynamic trap.	(2 Marks)
	Ans :		
	(i) List three functions of a steam t	rap. (Page 82)	
		f thermodynamic trap. (Page 86-87)	
		End of Section – II	

Section – III: LONG DESCRIPTIVE QUESTIONS Marks: 6 x 10 = 60

(i)Answer all <u>six</u> questions(ii)Each question carries <u>ten</u> marks

L-1	 L-1 A process industry consuming 10 TPH of saturated steam at 10 kg/sq.cm(g) pressure has been using coal as fuel in boiler. Typical ultimate analysis of the coal: 		
	Carbon : 41.11%		
	Hydrogen : 2.76 %		

Nitrogen : 1.22) 0/				
Oxygen : 9.89					
Sulphur : 0.42					
Ash : 38.6					
Water : 5.8	9				
Flue gas temperature					
Ambient temperatur					
Enthalpy of steam	= 66	8 kcal/kg			
Feed water tempera	iture = 80	°C			
Specific heat of flue	gases = 0.2	3 kcal/kg°C			
Boiler efficiency with	n Indian coal =72	%			
GCV of coal	= 4,0	000 kCal/kg			
Oxygen content in di		_			
Annual Hours of ope		00 hrs.			
, and an nours of ope					
Determine:					
	al cool requireme	nt in tonnochuoor			(E Morke)
(i) Quantity of annu	-	nt in tonnes/ year			(5 Marks)
(ii) Calculate % dry f	lue gas losses				(5 Marks)
Calutian					
Solution:					
a)					
		hf) /(Efficiency x GCV)			
	= 10 x (668-80) / (0	.72 x 4000)			
-	= 2.042 T/Hr				
-	= 2.042 x 8000 hrs				
:	= 16336 Tonnes/ye	ar			
Theoretical air requi	Theoretical air requirement for coal				
= [(11.6 x C%) + {34.8	8 x(H2% - O2%/8)} +	(4.35 x S%)] kg / kg of co	bal		
	100				
= [(11.6 x 41.11) + {3	4.8 x(2.76 – 9.89/	3)} + (4.35 x 0.41)]			
<u>. </u>	100	<u> </u>			
= 5.31 kg / kg of coa	1				
	(Or)				
					
=					
-					
	12+32= 44	(00/*22)/12			
		(C%*32)/12			
	4+32=36	(H%*32)/4			
$S+O_2 = SO_2$	32+32=64	(\$%*32)/32			
Total oxygen require	ed	= (41.11* 32/12) + (2.76		2/32)	
		= (109.63) + (22.08) + (0	.41)		
		= 132.1 kg/ 100 kg fuel			

Oxygen alrea	dy present in 100 kg fue	el = 9.89 kg/ 100 kg f	fuel	
Additional ox	ygen required	= 132.1 – 9.89 kg, = 122.21 kg/ 100		
	ry air required 23% O ₂ by weight)	= 122.1/ 0.23		
		= 531.35 kg/ 100	kg fuel	
Theoretical a	ir required	= 531.35/100		
		= 5.31 kg air/ kg	fuel	
	O₂×100/(21-O₂) 10 × 100/ (21 − 10) = 90.	9%		
	31 * (100+90.9)/100 .137 kg air/kg coal			
Heat loss in dry flue gas = m x C _P (T _f – T _a) x 100 /GCV = $\frac{(10.137 + 1) \times 0.23 \times (200 - 30) \times 100}{4000}$ = 10.89 %			<u>0) x 100</u>	
L-2 a) In a double pipe heat exchanger, flow rates of the hot and the cold-water streams flowing t exchanger are 10 and 25 kg/min, respectively. Hot and cold-water stream inlet temperatures are 7 respectively. The exit temperature of the hot stream is required to be 50°C. The specific heat of wa kg K. The overall heat transfer coefficient is 900 W/m ² K. Neglecting the effect of fouling, calc transfer area for a) Parallel-flow b) Counter-flow.			and cold-water stream inlet temperatures are 70 °C m is required to be 50°C. The specific heat of water W/m ² K. Neglecting the effect of fouling, calculat	C and 27 °C is 4.179 kJ
b) Write a	brief note on the operat	ion and application	of plate heat exchangers in process industries.	2
Ans: a)				3 mark
Rat	e of heat transfer, Q (wa	atts)	Q= m x Cp x 1000 x (T2-T1) =(10/60)× 4.179 x 1000 ×(70 – 50) = 13930 W	
Col	d water exit temperatur	e, T ₂	T _{2 =} [Q/(mx Cp x 1000)]+ T1 = (13930/((25/60)* (4.179*1000)))+27 = 35°	
	minal temperature diffe v heat exchangers	rences for parallel	= (70-27) & (50 – 35); i.e., 43°C and 15°C respectively.	
LM			(43 – 15)/ln(43/15) = 26.59°C	
	erall heat transfer coeffic		900 W/m ² °K	
Неа	at transfer area required	for parallel flow	A = Q/(U*LMTD)	
			= [13930/ (900 × 26.59)]	
			$= 0.582 \text{ m}^2$	

0 _

				Paper-2 Code: Pink
	-	Terminal temperature differences for counter	(70–35) and	d (50–27) ⁰C i.e.,
	t	flow heat exchangers	35 °C and 2	3 °C respectively.
		LMTD	(35–23)/ln(35/23) = 28.58
		Overall heat transfer coefficient U	900 W/m ² °	К
		Heat transfer area required for counter flow	$A = Q/(U^*L)$	MTD)
		·	=[13930/	(900 × 28.58)]
			= 0.542 n	
	В)			
	passes alt for streng	ernately between adjoining plates in the stack, th and to enhance heat transfer by directing the sfer coefficients and area, the pressure dro	, exchanging he flow and i	lie between heavy end plates. Each fluid stream heat through the plates. The plates are corrugated ncreasing turbulence. These exchangers have high ypically low, and they often provide very high
	However,	they have relatively low-pressure capability.		
	heat trans hot side f	sfer application calls for the cold side fluid to ex	xit the excha	situation where it is most often used, is when the nger at a temperature significantly higher than the require several shell and tube exchangers in series
		all heat transfer coefficient of plate heat ex m ² °C. With traditional shell and tube heat exchange	-	nder favorable circumstances can be as high as I-value will be below 2,500 W/m ² °C.
L-3	effect eva evaporato	porator, where steam input for water remova	al ratio is 1.0 noval is 0.4 k	is dried to 50% concentration. The existing single kg/kg is proposed to be replaced by a triple effect g/kg. Calculate the annual fuel cost savings for 300 r and at a furnace oil cost of Rs. 35,000/tonne. 7 marks
	b) Why ste	eam is recommended to be used at the lowest	practicable p	pressure for indirect process heating?
	Ans.: a)			
	Bone Dry	material		= (105 TPD x 0.33) = 34.65 TPD
	Product a	t 50 % concentrate	=	= (34.65 / 0.5) = 69.3
	Water rer	noved/ day	=	: (105 – 69.3)
			_	= 35.7 TPD
	Initial stea	am consumption with single effect evaporator a	at 1 kg/kg =	= (35.7 TPD x 1.0 kg/kg)
		am consumption with single effect evaporator and consumption with triple effect evaporator at 0.4 k	at 1 kg/kg = = kg/kg =	

٦

	FO covings per day at eveneration ratio of 1	25	- /21 42 TOD / 12 5 Tenne steem n	
	FO savings per day at evaporation ratio of 1	.3.3	= (21.42 TPD / 13.5 Tonne steam p = 1.5867 TPD	ler Tonne PO)
	Rupee savings per day at Rs. 35,000/MT		= (1.5867 TPD FO X Rs. 35,000/MT = Rs. 55,535	FO)
	Annual monetary savings at 300 working da	ays per year	= (Rs. 55,535 X 300 Days) = Rs.166.6 Lakhs	
	b)			
	The latent heat in steam reduces as the ste	am pressure increases.		
	It is only the latent heat of steam, which ta Thus, it is important that its value be kept pressures.			
	However, lower the steam pressure, the le transfer of heat at lower steam pressures, equipment where fixed losses are high (e.g at lower pressures due to increased proc where one can profitably go in for lower affecting production time. Therefore, there design, the lowest possible steam pressure either on production time or on steam cons	the rate of heat transfe . big drying cylinders), t essing time. There are pressures and realize e is a limit to the reduct with which the equipm	er will be slower and the processing here may even be an increase in stea however, several equipment's in c economy in steam consumption, wi ion of steam pressure. Depending of	time greater. In am consumption ertain industries thout materially n the equipment
L-4	a) An oil fired reheating furnace has an op 330 litres/hour. Flue gas exit temperature		-	
	temperature of 35 °C to 215°C through the	•	· · · · ·	
	Specific gravity of oil	= 0.92	-	
	Calorific value of oil	= 10,200 kcal/kg		
	Average O2 percentage in flue gas	= 13.5 %		
	Theoretical air required	= 14 kg of air per kg o	foil	
	Specific heat of air	= 0.23 kcal/kg°C		
	Specific heat of flue gas	= 0.25 kcal/kg°C		
	Find out :	he autouat flue acces in	keels (by and as a newspatters of the	an angu in nut
	 The sensible heat carried away by t 	ne exhaust nue gases in	kcals/hr and as a percentage of the	
	• The heat recovered by the combust	tion air in kcal/hr and as	a percentage of the energy input.	
	,	·		3 marks
	b) Explain the concept and the advantage of	of a self-recuperative bu	rner?	
				3 marks
	Ans:			
	a)			
	Fuel input	= (330 litres/hr x 0.92	kg/litre)	
		= 303.6 kg/hr		
	Energy Input	= (303.6 kg oil/hr x 10,	200 KCals/Kg Oll)	
	Evene ein	= 30,96,720 kcal/hr		
	Excess air	$= [02 \times 100/(21-02)]$ = (12 5 × 100)/(21 12	E)	
		= (13.5 x 100)/(21 - 13		

		= 180 %
	Theoretical air required	= 14 kg of air/kg of oil
	Actual mass of air required	= 14 x (1 + 180 /100)
		= 39.2 kg air/kg of oil
	Mass of flue gas (m)	= (39.2 + 1)
		= 40.2 kg flue gas/kg oil
	Specific heat of flue gas (Cp)	= 0.25 kcal/kg.°C
	Sensible heat loss in the flue gas	= $(m \times Cp \times \Delta T)_{flue gas}$
		= (40.2 x 0.25 x (820-35))
		= 7889.3 kcal/kg of oil
		(Or)
		= (7889.3 kcal/kg of oil x 303.6 kg oil/hr)
		= 2395176.3 kcal/hr
	Sensible heat loss in the flue gas as	= 2000170.0 Kedy III
	% heat loss to input energy	= (2395176.3 / 30,96,720) x 100
	70 heat loss to input energy	= (2555170.5750,50,720) × 100 = 77.35 %
		- 77.35 /6
	liest recovered by combustion sin	= (39.2 x 0.23 x (215-35))
	Heat recovered by combustion air	
		= 1622.88 kcal/kg of oil
		= (1622.88 kcal/kg oil x 303.6 kg oil/hr)
		= 492706.37 kcal/hr
	Heat recovered by combustion air	
	as % of input energy	= (492706.37 kcal/hr/30,96,720 kcal/hr) x100
		= 15.91 %
	b)	
		on traditional heat recovery techniques, in that, the products of combustion are
		perator, around the burner body and used to pre-heat the combustion air. A
		n is that, it can be retro-fitted to an existing furnace structure, to increase
		alter the existing exhaust gas ducting arrangements. SRBs are generally more
	suited to Heat-treatment furnaces, whe	ere exhaust gas temperatures are lower and there are no stock recuperation
	facilities.	
L-5	a) An open cycle gas turbine was running	g with naphtha as fuel. The following are the data collected during the gas
	turbine operation:	
	Fuel (Naphtha) consumption	= 300 kg/hr
	GCV of naphtha fuel	= 11,500 kcal/kg
	Overall Efficiency of gas turbine	
	(which includes air compressor and alternator)	= 22%
	Cost of naphtha fuel	= Rs.40,000/Tonne
	a) Find out the output power and c	ost of fuel for generating one unit of electricity.
	b) The management has decided	to install a waste heat boiler, to generate 2 TPH of saturated steam, at 4
		656 kcal/kg. Assuming that, 50% of the input heat is available in the turbine
	exhaust gases, now much steam	can be generated if the feed water temperature is 30 °C.
1		

......4 marks

	Ans:		
	a)		
	Heat input to turbine	= (300 kg Naptha/hr x 11,500 kcal/kg)	
		= 34,50,000 kcal/hr	
	Efficiency of gas turbine	= 22%	
	Gas turbine output power	= ((34,50,000 kcal/hr x 0.22)/ 860)	
		= 882.56 kW	
	Cost of generating 882.56 units of electricity	= (300 kg Naptha/hr x Rs.40/kg Naptha)	
		= Rs.12000/hr	
	Cost of One unit of Electricity generation	= (Rs.12000 per hour/882.56 kWh per hour)	
		= Rs.13.6/kWh	
	b)		
	Waste heat potential in existing gas turbine	= (0.5 x 34,50,000 kcal/hr)	
		= 17,25,000 kcal/hr.	
	Heat required for raising 1 kg of steam		
	(feed water temp 30 °C)	= (656-30) kcal/kg steam	
		= 626 kcal/kg steam	
	Steam generation potential	= (17,25,000 kcal per hour/626 kcal per kg steam)	
		= 2755.6 kg steam/hr	
		= 2.7556 TPH	
L6	Explain any two of the following:		(Each 5 Marks)
			× • • • •
	1. Regenerator (Page 222)		
	2. Heat Pipe (Page 223)		
	3. Gas Turbine cogeneration system (Page 192)		