Paper 4 Code: Green

20th NATIONAL CERTIFICATION EXAMINATION FOR

ENERGY MANAGERS & ENERGY AUDITORS - September, 2019

PAPER – 4: ENERGY PERFORMANCE ASSESSMENT FOR EQUIPMENT AND UTILITY SYSTEMS

Section - I: BRIEF QUESTIONS

Marks: 10 x 1 = 10

Τ

٦

- (i) Answer all <u>**Ten</u>** questions</u>
- (ii) Each question carries <u>ONE</u> mark

1.	Two pumps can be operated in parallel provided their closed valve heads are not the same.	False
2.	Installing a VFD and operating a screw compressor at 50 Hz will increase the power consumption.	True
3.	Building energy performance index (kWh/yr/m ²) will not include captive power used in the building.	False
4.	The COP and EER (w/w) in a refrigeration system will be numerically different.	False
5.	The gross heat rate of the power plant does not include auxiliary consumption.	False
6.	The unit of Specific humidity is kg moisture / kg dry air.	True
7.	In a water Lithium bromide refrigeration system, the concentration of the lithium bromide is increased, in the evaporator.	False
8.	For the same no of poles and kW rating, the rpm of an energy efficient motor is higher that of a standard motor.	True
9.	The atmospheric pressure of 1 kg/cm ² (a) is 76 mm of mercury column.	False
10	The capacity of diesel generator designed for sea level condition decreases at high altitude.	True

..... End of Section – I

Section – II: SHORT NUMERICAL QUESTIONS

Marks: 2 x 5 = 10

(120)

Answer all the **<u>Two</u>** questions

(ii) Each question carries **<u>FIVE</u>** marks

L1	A highl in a sh heat of	is to be heated C. The specific	
	1.	What type of heat exchanger is recommended?	(1 Mark)
	2.	Draw a schematic of fluid flows with directions and temperatures.	(2 Marks)
	3.	Find the LMTD for this application and also the steam requirement.	(2 Marks)

	A				
	Ans :				
	 Parallel flow Heat Exchanger The appropriate choice is parallel flow heat exchanger, mainly to cater for providing rapid initial heating of the viscous fluid. Schematic Diagram 				
	High Viscous Oil 55 ⁰ C Feed End TTD =∆T1 = 120 175 ⁰ C	> 0⁰C >	Hot Oil 155 ⁰ C Discharge end TTD = \triangle T2 = 20 ⁰ C 175 ⁰ C		
	Saturated Steam		Steam Condensate		
	S	cherr	natic of Parallel flow Heat Exchanger		
	3. LMTD and Steam Requi	reme	ent:		
	Δ T ₁ at feed end	=	175 – 55		
	Λ T₂ at discharge end	=	120 ^o C 175 – 155		
		=	20 °C		
			$\Delta T_1 - \Delta T_2$		
	LMTD (parallel)	=	$L_n \Delta T_1 / \Delta T_2$		
	I MTD (parallel)	_	120 – 20		
		-	L _n 120 / 20		
	Steam requirement	= =	(22000 x 0.5 x (155 – 55)) / 485 2268.04 kg/hr		
L2	A food processing industry has b 661 kcal/kg, at a price of Rs 3,30 the point of delivery. However, transported over a distance of 1 house.	been i 0 per the I km,	mporting 3 tonnes/hr of steam, at 8 kg/cm ² (g), v tonne, from a neighboring industry. The steam n seller is demanding for higher price, as the through a 100 mm (internal diameter) pipe lin	vith an enthalpy of netering is done at steam has to be e, from the boiler	
	 The thickness of the pipe is 4 The measured outside surface is 30 °C. 	mm a ce ten	and it is insulated with 50 mm of insulation. nperature of insulation is 45 ^o C, whereas the am	bient temperature	
	Estimate the following:				
	 Heat loss in piping distrib Final price of steam per to 	ution onne	in 'kg equivalent of steam /tonne of steam'. after accounting for distribution losses.	(2.5 Marks) (2.5 Marks)	
	Ans :				
	Outer dia. Of insulated pipe		= (100+4+4+50+50)		
			= 208 mm = 0.208 m		
	Surface area of the 1 km pipe		= πDL		
			$= 3.14 \times 0.208 \times 1000$ = 653.12 m ²		
	Surface heat loss per unit area		= [10+ (Ts – Ta)/20] x (Ts–Ta) kcal/m ² .hr		
	Total heat loss		= [10+ (45–30)/20] x (45–30) x 653.12 = 1.05.315.6 kcal/hr		

Equivalent steam loss (for surface hea	t loss in the piping distribution), occurring while	
transporting 3 tonnes/hr of steam	= (1,05,315.6) / (661)	
	= 159.327 kg steam/hr	
Equivalent steam loss in		
kg of steam per tonne of steam	= (159.327 / 3)	
	= 53.109 kg/tonne steam	
Additional price to compensate		
for heat losses per tonne of steam	= (53.109 x (3300/1000))	
	= Rs 175.26/ tonne steam	
Final price of steam	= (Rs.3300+ Rs.175.26)/ tonne	
	= Rs. 3475.26/ tonne steam	

..... End of Section - II

Section - III: LONG NUMERICAL QUESTIONS

Marks: 4 x 20 = 80

- (i) Answer all the **Four** questions
- (ii) Each question carries **<u>TWENTY</u>** marks

N1	Pressurized hot water circulation system is employed for heating in a process industry. Hot water 140 °C is supplied to a process, through a steel piping of 100 mm internal diameter and equivalent len of 2000 meters by an oil-fired hot water boiler of 6,00,000 kcal/hr output capacity.					
	After each weekend holiday, at the beginning of the first shift during startup, while raising the water temperature from 50 °C to 140 °C, the entire piping system carrying water also gets heated from 50 °C to 140 °C.					
	1. Find out the start-up heating time if the boiler operates at 90% capacity, during this period.					
	2. Also, find out the % reduction in temperature at the start up is in	n sta Icrea	art-up heating load and fuel savings, with each start up, if the initial used to 65 °C due to improved housekeeping and insulation. (8 Marks)			
	Make use of the following data a	nd ir	nformation:			
	Efficiency of the hot water boiler GCV of fuel oil Specific heat of water Density of water Specific heat of steel Density of steel Outer diameter of the pipe	re of	 = 80% = 10,000 kcal/kg = 1 kcal/kg °C = 1000 kg/m³ = 0.12 kcal/kg °C = 8000 kg./m³ = 108 mm 			
		<i>,</i> e 0/				
	Ans : 1 To Find Start-up Heating Time					
	Outer diameter of pipe	. =	108 mm			
		=	0.108 m			
	Inner diameter	=	100 mm			
		=	0.1 m			
	Equivalent length of pipe network	=	2 KM 2000 m			
	Hold up volume of water	=	$\pi/4 \times (0.1)^2 \times 2000$			
	Tiold up volume of water	_	15.7 m ³			
	Mass of water	=	(15.7 X 1000)			
		=	15,700 Kg ′			
	Volume of steel pipe	=	$\pi/4 \ge [(0.108)^2 - (0.1)^2] \ge 2000$			
	Mana of starl size	=	2.612 m ³			
	Mass of steel pipe	=	2.612 X 8000 20 896 Ka			
		=	20,030 Ng			
	Startup heating load	=	Heat required to heat water and steel from 50 °C to 140 °C			

		= (Mass = [15700 = [14,13 = 16,38 ,	x Specifi) x 1 x (14 ,000 + 2, 6 77 kcal	c heat x Temperature difference) 40 – 50)] + [20896 x 0.12 x (140 – 50 25,677] s))]
	Time taken for start-up heating	= 16,38, = 3.035	677 / (60 h rs	0000 x 0.90)	
	2. Temperature differential for heating in the existing case	= 140 - = = 90°C	50		
	Temp. differential when Initial temp is increased to 65°C	= 140 – = 75°C	65		
	% reduction in start-up heating load	= ((90 - 7 = 16.67 %	75) x 100 %)/ (90)	
	Savings in fuel due for each start up	= (0.111 = 34.14	1 X 1638 kg per s t	677) / (10000 X 0.8) tart up	
	(or)				
	Startup heating Load	= Heat I = (mas = [1570 = [11,77 = 13,65,	required t s s x Spec 0 x 1 x (1 7,500 + 1 564 kcal	to heat water and steel from 65°C to c ific heat x temp. difference) 140 – 65)] + [20896 x 0.12 x (140 – 6 ,88,064]	140°C i5)]
	% reduction in start-up heating load	= ((16,38 = 16.67%	2 ,677 – 1 %	3,65,564) x 100)/ (16,38,677)	
	Savings in fuel due for each start up	= (16,38 = 34.14	,677 – 1 kg per s	4,56,602) / (10000 X 0.8) tart up	
N2	The management of a process indu- fired double effect absorption water of	stry is plan chiller to a 3	ning to s 300 TR c	witch over from the existing 300 TR entrifugal water chiller, as a cost sav	t directly-gas-
	The double effect absorption chiller chiller will be rejecting its heat to the	is rejectin same cool	g its hea ing tower	t in to a cooling tower. The propose	ed centrifugal
	The management is also planning to the same cooling tower. The cooling to 50 ^o C. The hot oil flow rate in the	o connect t g water ent heat excha	he heat l ering the anger is 1	oad of a water-cooled process heat heat exchanger will cool the hot oil 8,000 kg/hr.	exchanger to from 110 ^o C
	Make use of the following data:				
	C.O.P. of double effect absorption of Electrical energy input to centrifugal GCV of Natural Gas Cost of Gas Efficiency of gas firing Electrical energy cost Specific heat of oil to be cooled by w Motor efficiency Annual operating hours	hiller chiller mot /ater	= or = = = = = =	1.2 0.8 kW/TR 9450 kcal/m ³ Rs.27/m ³ 80% Rs.8.5 / kWh 0.5 kcal/kg ^o C 87.5 % 7200 hrs.	
	Find out the following -:				
	 a) The yearly monetary savings in chiller. b) C.O.P. of the centrifugal chiller c) Whether the capacity of the conduct heat exchanger, in addition to the conduct of the condu	n operating oling tower hat of cent	i centrifu is suffici rifugal ch	gal chiller in place of the double effe ent to take the additional heat load c iller.	ect absorption (8 Marks) (2 Marks) of the process (10 Marks)
	Ans:			1.0	
	U.U.P. of aouble effect chiller		=	1.2	

	1TR (Ton refrigeration)	=	3024 kcal/hr
	Heat input to double effect chiller (Generator)	=	(3024/1.2) kcal/hr
		=	2520 kcal/hr
	Overall heat input considering gas firing efficiency	=	(2520 kcal/hr / 0.80 Effy of gas firing)
		_	3150 kcal/hr
	Operating cast of double offect chiller	_	$((2150 \times 27) / 0.450)$
			((3150 X 27) / 9450)
		=	RS.9/IR
	Electrical input power in centrifugal chiller	=	0.8 KW/TR
	Operating cost of centrifugal chiller	=	(0.8 X 8.5)
		=	Rs.6.8 / TR
	Saving in cost	=	Rs.9.0 – Rs.6.8
		=	Rs.2.2 / TR
	Yearly monitory saving	=	(2.2 x 300 x 7200)
		=	Rs.47,52,000/-
		=	Rs.47.52 Lakhs
	Heat rejection load from double effect chiller for 1 TR	=	(Chilling load at evaporator + Heat input to generator)
		=	(3024 kcal/hr + 2520 kcal/hr)
		=	5544 kcal/hr
	C O P of centrifugal chiller (1 TR)	_	$(3024) / (0.8 \times 0.875 \times 860)$
			(3024)7 (0.0 × 0.073 × 000) 5 02
	Least rejection load for 200 TD double offect shills	-	5.02 (FEAA X 200)
		=	
		=	16,63,200 KCal/nr
	Capacity of the cooling tower should be	=	16,63,200 kcal/hr.
	Heat rejection load to cooling tower in the case of of 300 TR E	lecíl C	entrifugal chiller power for 1 IR = (Electrical Input x Motor eff.)
		=	(0.8 KW/TR X 0.875)
		=	0.7 kW / TR
	In case of centrifugal chiller, heat rejection / TR	=	((3024) + (0.7 x 860))
		=	3626 kcal/TR
	Heat rejection load of 300 TR centrifugal chiller	=	(3626 x 300)
		=	10,87,800 kcal/hr
	Heat load on the cooling tower due to		
	process heat exchanger oil cooling	=	18,000 X 0.5 X (110 – 50)
		=	5,40,000 kcal/hr
	Total heat rejection load on the cooling tower	=	10,87,800 + 5,40,000
		=	16.27.800 kcal/hr
	Cooling tower capacity is adequate to take the heat	at loa	d of process heat exchanger in addition to heat
	rejection load of the centrifugal chiller		<u> </u>
	The operating details and particulars of a natural of	nas-fi	ed smoke tube boiler, are given below :
N3	The operating details and particulars of a natural g	juo iii	
	Steam flow =	8 tor	nnes/hr steam
	Steam Pressure =	10 k	g/cm²g.
	Feed water temperature =	80 °	С.
	$\% O_2$ in dry flue gas =	4%	
	Exit flue gas temperature =	215	°C.
	Density of natural gas	0.7	ka/m ³
	Cost of natural gas =	Rs	27/m ³
	Enthalpy of steam at 10.0 Kg./.cm ² .(g) =	666	kcal/kg.
	Inlet feed water temperature =	80 ^o	C
	Loss due to Hydrogen =	9.92	2%
	Radiation losses in the N.G. boiler =	1.52	2%
	Specific heat of flue gases =	0.29	∂ kcal/kg ºC
	Ambient temperature =	30 °	U 5 ka/m ³
	Density of all =	1.1∠ 2⊿ h	ours
	Yearly operation =	320	davs
	Composition of natural gas (per kg)		

Carbon = 0.74 kg /kg Hydro Nitrogen = 0.03 kg /kg Oxyg Ignore Sulphur & Moisture	ogen = 0.22 kg /kg en = 0.01 kg /kg
Find out the following	
 a. Steam to fuel ratio, in the exponential combustion air requires b. Total combustion air requires c. % improvement in the steatimproved condensate recover and the steatimproved condensate recover and the strain strain	kisting case, in kg/kg(8 Marks)ed in m³/min(4 Marks)m to fuel ratio, when the feed water temperature is raised to 95°C due to yery(2 Marks)n in m³/hr(4 Marks)(2 Marks)(2 Marks)(2 Marks)(2 Marks)
Ans :	
Theoretical air required Excess Air, %	= $11.6 \text{ C} + [34.8 (H_2 - O_2/8)] + 4.35 \text{ S}] \text{ kg air / kg gas}$ = $11.6 \times 0.74 + [34.8 (0.22 - 0.01/8)]$ = $16.2 \text{ kg air / kg gas}$ = $(\% O_2) / (21 - \% O_2) \times 100$ = $(4) / (21 - 4) \times 100$ = 23.5%
Actual Air Supplied (AAS)	$= (1+0.235) \times 16.2$
Mass of dry flue gas (m_{dfg})	 20.0 kg air / kg gas (Mass of combustion gases due to presence C,N,S) + (Mass of N₂ in the fuel) + (Mass of N₂ in air supplied) + (Mass of excess O₂ in flue gas)
	= (0.74*44/12) + 0.03 + (20*0.77) + (20–16.2) x 0.23
	= 19.02 kg (dfg)/ kg gas
L1	= % heat loss due to dry flue gases
	$= \frac{M_{dfg} \times C_{p} \times (T_{q} - T_{a})}{G.C.V. \text{ of fuel}} \times 100$
	= 19.02 X 0.29 X (215 – 30) x 100 13500
	= 7.56%
L2	= 9.92% (Given)
Radiation losses L3	= 1.52% (Given)
∴ Efficiency of natural gas boiler on G.C.V.	= 100 - [7.56 + 9.92 + 1.52]
	= 81%
Steam to fuel ratio	= (0.81 x 13500) / (666 – 80) = 18.7
Amount of gas required for stea	am load of 8000 kg/hr = $(8000 / 18.7)$
Total Combustion air required	= 427.61 kg/m = 427.81 x 20 = 8556.2 kg/hr = 8556.2 /(1.125x60) m ³ /min
Steam to fuel ratio with feed wa	ter temp of $95^{\circ}C$ = (0.81 x 13500) / (666 - 95)

	% Improvement in steam to fuel ratio	= 19.15 kg/kg = ((19.15 -18.7) x 100) / (18.7) = 2.41 %
	Gas consumption with feed water temp at 95 ^o C	= 8000 / 19.15 - 417 75 kg/br
	Gas savings due to increase in feed water temp	= 427.81 – 417.75 = 10.06 kg/hr
	Yearly monetary savings	= 10.06/ 0.7 = 14.4 m³/hr = 14.4 x 24 x 320 x 27 = Rs.29,85,984 = Rs. 29.86 lakhs
N4	Answer any ONE of the following	
A	In a particular biomass power plant, 33.6 TPH 0.1 kg/cm ² (a), and temperature of 45 °C. superheat temperature of 475 °C.	of steam at 63 kg/cm ² g, 450 ^o C is expanding to The boiler and the turbine are designed for
	The following data has been given.	
	Enthalpy of steam at turbine inlet with 450 °C Actual enthalpy at turbine outlet at 0.1kg/cm ² (a) Combined efficiency of gearbox and generator Enthalpy of steam at turbine inlet with temp of 475 °C Enthalpy at turbine outlet under isentropic condition (with 475 °C at inlet, exhaust pressure, 0.1 kg/cm ² (a Isentropic efficiency of the turbine with turbine inlet a Biomass Boiler Efficiency Calorific value of biomass fuel Cost of biomass fuel Electricity price for power sold Yearly hours of operation Auxiliary consumption	= 787.9 kcal/kg = 564.78 kcal/kg = 92% C = 802.4 kcal/kg) = 511.77 kcal/kg = 79% = 72% = 3450 kcal/kg = Rs 3.5 /kg = Rs 7/ kWh = 8000 hrs. = Remains Same
	 Calculate the following: a) Power generated in kW with turbine inlet temperate b) Steam rate in kg/kWh with improved turbine inlet c) Additional power generated in kW with improves steam flow rate remains the same. d) Increase in fuel consumption kg/hr with improves team flow rate remains the same. 	(Each 4 Marks) ature of 450 °C. temperature of 475 °C. red turbine inlet temperature of 475 °C, assuming red turbine inlet temperature of 475 °C, assuming
	 Calculate the following: a) Power generated in kW with turbine inlet temper. b) Steam rate in kg/kWh with improved turbine inlet c) Additional power generated in kW with improvent steam flow rate remains the same. d) Increase in fuel consumption kg/hr with improvent steam flow rate remains the same. e) Yearly benefit by operating the turbine at inlet term 	(Each 4 Marks) ature of 450 °C. temperature of 475 °C. red turbine inlet temperature of 475 °C, assuming ved turbine inlet temperature of 475 °C, assuming mperature of 475 °C.
A – Ans	 Calculate the following: a) Power generated in kW with turbine inlet temperate Steam rate in kg/kWh with improved turbine inlet c) Additional power generated in kW with improves steam flow rate remains the same. d) Increase in fuel consumption kg/hr with improves steam flow rate remains the same. e) Yearly benefit by operating the turbine at inlet tem Ans: a) Power generated in kW with turbine inlet tem 	(Each 4 Marks) ature of 450 °C. temperature of 475 °C. red turbine inlet temperature of 475 °C, assuming ved turbine inlet temperature of 475 °C, assuming mperature of 475 °C.
A – Ans	 Calculate the following: a) Power generated in kW with turbine inlet temperate b) Steam rate in kg/kWh with improved turbine inlet c) Additional power generated in kW with improv- steam flow rate remains the same. d) Increase in fuel consumption kg/hr with improv- steam flow rate remains the same. e) Yearly benefit by operating the turbine at inlet ter Ans: a) Power generated in kW with turbine inlet tem Turbine power output with inlet temp 450°C = m Where; m = 33,600 kg/hr; h₁ = 787.9 kcal/kg; h₂ = 564.78 kcal/kg 	(Each 4 Marks) ature of 450 °C. temperature of 475 °C. red turbine inlet temperature of 475 °C, assuming wed turbine inlet temperature of 475 °C, assuming mperature of 475 °C. perature of 450 ° $(h_1 - h_2)/(860) \times Comb eff(\eta_{gg}).$
A – Ans	 Calculate the following: a) Power generated in kW with turbine inlet temperate b) Steam rate in kg/kWh with improved turbine inlet c) Additional power generated in kW with improv- steam flow rate remains the same. d) Increase in fuel consumption kg/hr with improv- steam flow rate remains the same. e) Yearly benefit by operating the turbine at inlet ter Ans: a) Power generated in kW with turbine inlet tem Turbine power output with inlet temp 450°C = m Where; m = 33,600 kg/hr; h₁ = 787.9 kcal/kg; h₂ = 564.78 kcal/kg Power output = (3 = 8) = 56 	(Each 4 Marks) ature of 450 °C. temperature of 475 °C. red turbine inlet temperature of 475 °C, assuming wed turbine inlet temperature of 475 °C, assuming mperature of 475 °C. perature of 475 °C. $(h_1 - h_2)/(860) \times \text{Comb eff } (\eta_{99}).$
A – Ans	 Calculate the following: a) Power generated in kW with turbine inlet temperate b) Steam rate in kg/kWh with improved turbine inlet c) Additional power generated in kW with improventies steam flow rate remains the same. d) Increase in fuel consumption kg/hr with improves steam flow rate remains the same. e) Yearly benefit by operating the turbine at inlet tem Ans: a) Power generated in kW with turbine inlet tem Turbine power output with inlet temp 450°C = m Where; m = 33,600 kg/hr; h₁ = 787.9 kcal/kg; h₂ = 564.78 kcal/kg Power output = (3 = 8i = 5i b) Steam rate in kg/kWh with improved turbine in 	(Each 4 Marks) ature of 450 °C. Teed turbine inlet temperature of 475 °C, assuming wed turbine inlet temperature of 475 °C, assuming mperature of 475 °C. ($h_1 - h_2$)/ (860) x Comb eff (η_{gg}). ($h_1 - h_2$)/ (860) x Comb eff (η_{gg}). ($h_1 - h_2$)/ (860) x Comb eff (η_{gg}).
A – Ans	 Calculate the following: a) Power generated in kW with turbine inlet temperate) Steam rate in kg/kWh with improved turbine inlet c) Additional power generated in kW with improvent steam flow rate remains the same. d) Increase in fuel consumption kg/hr with improvent steam flow rate remains the same. e) Yearly benefit by operating the turbine at inlet temperate in the turbine power generated in kW with turbine inlet temperates. a) Power generated in kW with turbine inlet temperates. e) Yearly benefit by operating the turbine at inlet temperates. a) Power generated in kW with turbine inlet temperates. a) Power generated in kW with turbine inlet temperates. b) Steam rate in kg/kWh with improved turbine inlet temperates. b) Steam rate with improved turbine inlet temperates. 	(Each 4 Marks) ature of 450 °C. temperature of 475 °C, assuming wed turbine inlet temperature of 475 °C, assuming mperature of 475 °C. perature of 475 °C. $(h_1 - h_2)/(860) \times \text{Comb eff}(\eta_{gg}).$ $(h_1 - h_2)/(860) \times \text{Comb eff}(\eta_{gg}).$
A – Ans	Calculate the following:a) Power generated in kW with turbine inlet temperateb) Steam rate in kg/kWh with improved turbine inletc) Additional power generated in kW with improvent steam flow rate remains the same.d) Increase in fuel consumption kg/hr with improvent steam flow rate remains the same.e) Yearly benefit by operating the turbine at inlet temeAns:a) Power generated in kW with turbine inlet temeTurbine power output with inlet temp 450° C = mWhere;m = 33,600 kg/hr;h_1 = 787.9 kcal/kg;h_2 = 564.78 kcal/kgPower output= sib) Steam rate in kg/kWh with improved turbine inlet temperate η_s = isentropic turbine efficiency η_{gg} = combined gear box and generator efficiency	(Each 4 Marks) at ure of 450 °C. temperature of 475 °C. red turbine inlet temperature of 475 °C, assuming mperature of 475 °C. (h ₁ – h ₂)/ (860) x Comb eff (η_{gg}). (h ₁ – h ₂)/ (860) x Comb eff (η_{gg}). (h ₁ – h ₂)/ (860) x Comb eff (η_{gg}). (h ₁ – h ₂)/ (860) x Comb eff (η_{gg}). (h ₁ – h ₂)/ (860) x Comb eff (η_{gg}). (h ₁ – h ₂)/ (860) x Comb eff (η_{gg}). (h ₁ – h ₂)/ (860) x Comb eff (η_{gg}). (h ₁ – h ₂)/ (860) x Comb eff (η_{gg}). (h ₁ – h ₂)/ (860) x Comb eff (η_{gg}).

	= 4.071 kg/kWh
(Or)	
Steam rate with improved turbine inlet temperatu	ıre of 475 ^o C:
Turbine isentropic efficiency, 79% = (Actual enthalpy $0.79 = (802.4 - H_2) / (80)$ Actual enthalpy at the turbine exhaust, H ₂ = 572.8 k	/ drop / Isentropic enthalpy drop) x 100 02.4 – 511.77) .cal/kg
Power generated in kW with turbine inlet temperatur = = =	re of 475 ^o C (33600 x (802.4 – 572.8) x (0.92))/ (860) 8252.8 say 8253 kW
Steam rate with improved turbine inlet temperature of	of $475^{\circ}C = 33600/8253$ = 4.071 kg/kWh
c) Additional power generated in kW with in assuming steam flow rate remains the same	nproved turbine inlet temperature of 475 ^o C,
Power output with inlet temp of 475 ^o C	= 33600 /4.071 = 8253.5 kW = Say 8254 kW
Additional power generated	= 8254 - 8020 = 234 kW
Additional revenue through power sold	= 234 x 7 = Rs.1638/hr
 d) Increase in fuel consumption kg/hr with i assuming steam flow rate remains the same 	mproved turbine inlet temperature of 475 ^o C,
Increase in fuel consumption	= 33600 (802.4 – 787.9)/(0.72 x 3450) = 196.135 kg/hr
e) Yearly benefit by operating the turbine at inle	et temperature of 475 °C
Increase in fuel cost	= 196.135 x 3.5 = Rs 686.47/hr
Yearly benefit, net increase in revenue	= (1638 – 686.47) x 8000 = Rs. 76,12,240 /- (or) = Rs 76.12 lakhs
	OR
A Multispecialty hospital has conducted energy a electrical chiller is operated and the operating cost hot water generation by indirect heating. Latent hea kg.	udit of all their utilities. In the existing system, an is Rs. 11.25 / TR. Steam from the boiler, is used for at of steam is 500 kcal/kg and steam cost is Rs 2.85 /
Other data's for existing system:	
Electrical Load of the Hospital : 625 kW Cost of Grid Electricity : Rs 9.25 / kWh	
The audit has proposed to install trigeneration syst operating at 28 % efficiency. Chilled water will be Chiller Machine (VAM) in the trigeneration system, water. Hot water requirement will be met using heat	em with a gas engine of 700 kW. The gas engine is produced through a single effect Vapour Absorption , using the entire heat rejected to the jacket cooling recovered from the engine exhaust.
The data pertaining to tri-generation system is gi	iven below:

Cost of Gas GCV of Gas Heat Rejected by the engine to the Jacket cooling v COP of VAM Heat utilized from engine exhaust for hot water gen for hospital purpose Temperature of inlet water for hot water system Temperature of outlet water from hot water system	$= \text{Rs } 45/\text{ sm}^{3}$ $= 9000 \text{ kcal/sm}^{3}$ water $= 29\% \text{ of the engine heat input}$ $= 1.65$ eration $= 20\% \text{ of total engine exhaust heat}$ $= 30^{\circ} \text{ C}$ $= 60^{\circ} \text{ C}$
Calculate the following:	
 Hourly Gas Consumption in sm³/hr TR delivered by VAM Quantity of hot water generated from exhauter Annual cost savings in Rs. lakhs/yr on operation. 	(2 Marks) (6 Marks) Ist heat for hospital purpose in kg/hr (4 Marks) account of Trigeneration system, for 8000 hours of (8 Marks)
Ans:	
1. Hourly Gas Consumption	
Power Generation	= 625 kW
Gas Engine Efficiency	= 28 %
Heat rate	= 860 / 0.28
	= 3071.43 kcal/ kWh
Hourly Gas Consumption	= (625 x 3071.43) / 9000
	= 213.29 sm³/hr
2. TR delivered by VAM	
Input heat	= 213.29 sm ³ /hr x 9000 kcal/sm ³
	= 1919610 kcal/hr
Heat used for power generation	= 1919610 x 0.28
	= 537491 kcal/hour
Balance heat available after power generation	= 1919610 - 537491
	= 1382119 kcal/hr
Heat Utilized for VAM through jacket cooling water	= 1919610 kcal/hr x 0.29
	= 556687 kcal/hr
COP of VAM	= 1.65
COP, 1.65	= (TR X 3024 kcal/hr) / (Input Heat, 556695 kcal/hr)
TR delivered by VAM	= (1.65 x 556687) / 3024
	= 303.8 TR
3. Quantity of hot water generated from exhaus	t heat for hospital purpose in kg/hr
Heat available for hot water generation	= 1919610 x ((100 – 29 – 28) /100)
	= 825432 kcal/hr
(Or) Engine Exhaust Heat	
= Heat Input – Heat output	for power – Heat for VAM thro' jacket cooling water
= 1919610 - 537491 - 556	687 = 825432 kcal/hr

	20 % of the heat in the exhaust	is used fo	or						
	hot water generation from 30°C to 60 °C								
	for hospital purpose			= 825432 x 0.20 kcal/hr					
				= 165086.4 kcal/hr					
	Equivalent Qtv of hot water generated								
	from 200C to 60 °C for bosnital			165086 4 keel/h= / (60, 20)					
		puipose		= 105000.4 Kcal/III / (00 -5)	0)				
				= 5503 kg/nr					
	4. Annual cost savings due to Tri-generation for 7500 hours of operation.								
	Cost of Existing System:								
	Cost of grid power per hour			= (625 kW x 9.25 Rs./kWh)				
				= Rs. 5781.25 / hr					
	Cost of chiller operation per ho	ur		= (303.8 TR x 11.25 Rs/T	२)				
				= Rs 3417 75 / hr	.)				
	Cost of hot water generation fro	om boiler		= [(5503 kg/br x 1 x (60.3)]))) / (500 kca	l/ka stm)]			
	Cost of not water generation in			$= [(3303 \text{ kg/m} \times 1 \times (003)]$	85 Pc /kg sto	am			
				= 350.10 kg steam/nr x 2.	55 TV3./Ng Ste	am			
				= KS 941 / III	044)//				
	Total Operating cost of existing	system		= RS (5781.25 + 3417.75	+ 941) /nr				
				= Rs 10140 /hr					
	Cost of operation with tri-ger	neration		= Gas consumption x Cost of gas					
				= 213.29 sm³/hr x Rs.45 / sm³					
			= Rs. 9598.1 /hr						
	Hourly savings			= (Existing Cost / hr – Trig	generation Co	ost / hr)			
				= Rs.10140 / hr - Rs. 959	8.1 /hr	,			
				= Rs 541.9 / hr					
	Annual savings for 8000 hrs op	eration		= Rs 541.9 / hr x 8000 hrs	s / vr				
		oration		– Rs 43 35 200/vr	, j.				
				- Rs 43 35 lakhs /vr					
С	An integrated cement plant is drawing hot air (Temperature:	having ve 380 °C a	rtical rolle and Sp.he	er mill (VRM) of 200 TPH capa eat Cp : 0.246 kcal/kg °C) from	acity for cem n clinker coo	ent grinding, bler exhaust.			
	Particulars	Unit	Value	Particulars	Unit	Value			
	VRM output (dry basis)	TPH	200	Mill exit temperature	°C	90			
	Average feed temperature	°C	52	Total gas mass flow rate of circuit at process fan inlet	kg/hr	487490			
	Avg. feed moisture	%	3	Stack exhaust gas mass flow rate	kg/hr	128124			
	Ambient temperature	°C	30	False air into the circuit (% of total fan flow)	%	15			
	VRM motor efficiency	%	95	Sp. heat (Cp) of material	kcal/kg °C	0.21			
	Mill water spray	TPH	3.5	Sp. heat of mill false air	kcal/kg °C	0.238			
	Coal NCV	kcal/kg	7000	Sp. heat of mill exit air	kcal/kg °C	0.239			
	Coal cost	Rs./M T	9000	VRM motor operating power	kW	4000			
	Latent heat of evaporation of water	kcal/kg	540						

	A recent energy audit of the plant recommended to install Waste Heat Recovery System (WHRS) for power generation, that may be sold out at Rs. 5.0 per kWh and cement mill heat requirement can be fulfilled by installing a congrate Het Air Congrater (HAC) with 90% thermal officiancy.							
	Fee Mois False	ed VRM sture $Cement$ Air $Mill$ Cooler hot air	Bag House Recirculation air HAG Proposed Heating					
			System	Exhaust Stack				
	Schematic Diagram of Cement Mill (VRM) Circuit							
	 Estimate the following: a) Calculate the heat and mass balance of input and output components of the VRM (cement mill), considering radiation and convection heat loss to be negligible and also estimate the heat requirement (kcal/hr) of VRM. b) Determine the amount of hot air being drawn from the clinker cooler. c) The power generation potential in the cooler hot air, which is presently used for VRM (cement mill) heating, at 28% overall efficiency of WHRS. d) Hourly coal requirement in HAG. e) Hourly monetary saving of WHRS power generation using HAG, for cement mill heating. 							
C- Ans	Water balance.Dry Feed = 200 TPHFeed moisture = 3%Wet Feed = $200 / (1 - 0.03) = 206.186$ TPHMoisture = $(206.186 - 200) = 6.186$ TPHTotal moisture (including water spray) = $6.186 + 3.5 = 9.686$ TPHAir Balance:False air= Total process fan mass flow rate x 15/100 = 487490 x 0.15 = 73123 kg/hrRecirculation air = Total mass flow rate at Process fan Inlet – Mass flow rate of exhaust from stackRecirculation air = 487490 - 128124 = 359366 kg/hr							
	S.No.	Description	Calculation	Value (kcal/hr)	7			
	1.	Sensible heat in dry feed (H _{fi})	$H_{fi} = m_{fi} x Cp x \Delta T$ = 200x1000x0.21x(52-30)	924000				
	2.	Sensible heat input in feed moisture (H _{wi})	H _{wi} = m _{wi} x Cpx ΔTa = 6186 x 1 x (52-30)	136092				
		Sensible heat input in mill water spray	= 3500x 1 x (30-30)	0 kcal/hr				
	3.	Sensible heat in false air (H _{fa})	$ H_{fa} = m_{fa} \times Cp \times \Delta T = 73123.5 \times 0.238 \times (30-30) $	0 kcal/hr				
	4.	Sensible heat in hot air (H _{ha})	H _{ha} = m _{ha} x Cp x ΔT	H _{ha} is unknown				
	5.	Sensible heat in recirculation air (H _{rec})	H_{rec} = m _{rec} x Cp x ΔT = 359366 x 0.239 x (90-30)	5153308.4]			
	6.	Heat input equivalent of electrical energy (H _{Elect})	$H_{Elect} = P \times 860 \times motor eff.$ = 4000 x 860 x 0.95	3268000				
		Total Heat Input	H _{fi} + H _{wi} +H _{fa} +H _{ha} + H _{rec} + H _{Elect}	H _{ha} +9481400.4				
	Output Heat Components:							
	1.	Sensible heat in product (cement) (H _{Prod})	H _{prod} = mp x Cp x ΔT = 200000 x 0.21 x (90-52)	1596000				

	2	Sensible heat in mill exit gas	H _{EG} = mg x Cp x ΔT	6000606 6			
	<u>∠.</u>	(H _{EG})	= 487490x 0.239x (90-30)	0990000.0			
	3.	Heat of evaporation of	H _{Evp} = mw x [540+ΔT exit]	3575508			
	0.	moisture in feed (H _{Evep})	= 6186 x [540+(90-52)]				
		Heat of evaporation of Water (mill spray)	= 3500x1x[540+(90-30)]	2100000			
		Total Heat Output	= H _{prod} + H _{EG} + H _{Evp}	14262114.6			
	Heat supplied from clinker cooler air		(H _{ha}) = 14262114.6 - 9481400.4	4780714.2			
	VRM heat requirement		= H _{ha} + 9481400.4 = 4780714.2 + 9481400.4	14262114.6			
	Amour	nt of hot air drawn from cooler	m _{ha} = 4780714.2 /(0.246x (380-30))	55525 kg/hr			
	Power generation potential in cooler hot air		P = 4780714.2 x (0.28/860)	1556.5 kW			
	Hourly coal requirement in HAG		m _{coal} = 4780714.2 /(7000 x 0.9)	758.8 kg/hr			
	Revenue from WHR power (Rs. per hour)		R = 1556.5 x 5	Rs. 7782.5 per hour			
	Cost of coal consumption in HAG (Rs./hr)		= 758.8 x 9	Rs. 6829.2 per hour			
	Monet	ary Saving	S = 7782.5 - 6829.2	Rs. 953.3 per hour			
			OR				
_	In a text	tile process house a stenter is i	running at a speed of 75 meters/mir	where the dried fini	ished cloth		
	The hot air for drying in the stenter is heated by circulating thermic fluid, which in turn is heated in a dedicated furnace oil-fired thermic fluid heater, having an efficiency of 84%. The furnace oil consumption in the thermic fluid heater is 90 kg/hr.						
	The unit takes measures to reduce the inlet moisture. The inlet moisture is no same temperature of 25 °C. The outlet conditions remain the same. The stenter and 30 days a month. The other data is given below -:				5%, at the ours a day		
	Stenter G.C.V. Weight	dryer efficiency of furnace oil of 10 meters of dried cloth at the	= 50% = 10000 kcal/kg e outlet = 1 kg				
	Find out :						
	 a) Feed rate in kgs/hr b) Percentage reduction in stenter drying load with the change in inlet moisture. c) Furnace oil savings in Tonnes/month. 						
D-	Ans:						
Ans	reed ra moistu	ate in kgs/hr and percentage re.	e reduction in stenter drying lo	bad with the chang	e in inlet		
	Moistur	e % at stenter inlet	= % moisture (unknown)				
	Temper	ature at stenter inlet, T _{in}	$= 25 ^{\circ}\text{C}$				
	Temper	ature at stenter outlet. Tout	$= 75 \circ C$				
	Stenter speed Dried cloth output		= 75 meters / min				
			$= (75 \times 60 \times (1/10))$				
	Wt. of b	one-dry cloth at outlet per hr (N	= 450 kg/hr /) = 450 x (1 - 0.06) = 422 kg/hr				
	Hence, of bone	Wt. of outlet moisture per kg. dry cloth (m₀)	$= (450 \times 0.06) / 423$				
	Heat su	pplied by stenter for drying	 0.0638 kg/kg bone dry cloth (Fuel consumption x GCV x He (90 x 10,000) x 0.84 x 0.50 	eater eff x Dryer eff)			

	= 3,78,000 kcal/hr		
Heat load on the dryer (Heat Consumed)	= W x (m _i – m _o) x [(T _{out} – T _{in}) + 540] kcal/hr		
	$= 423 \text{ x} (\text{m}_{\text{i}} - 0.0638) \text{ x} [(75 - 25) + 540]$		
Heat supplied by stenter for drying 3,78,000 kcal/hr	 Heat load on the dryer (Heat Consumed) 423 x (m_i - 0.0638) x [(75 - 25) + 540] 		
Inlet moisture per kg of bone dry cloth, mi	= 1.578 kg moisture / 1 kg bone dry cloth		
Total weight of inlet cloth	= (1 + 1.578)]		
Inlet moisture %, wet cloth	<pre>= (Inlet moisture per kg of bone dry cloth)_ (bone dry cloth + Inlet moisture per kg of bone dry cloth) = (1.578 x 100)/(1+1.578)</pre>		
	- 61 21 %		
Reduction in moisture inlet, the moisture will be 55%			
Hence, feed rate	= 423 x (100/(100-55)) = 940 kg/hr		
m _i	$= (940 \times 0.55)/(423)$		
	= 1.222 kg/ kg bone dry cloth		
Stenter dryer load with 55% inlet moisture	= 423 x (1.222 – 0.0638) x [(75–25)+540]		
	= 2,89051.974 kcal/hr		
Peduction in stanter drying load	= Say 2,89,052 KCal/ nr = 3,78,000 - 2,89,052		
Reduction in stenter drying load	= 88 948 kcal/hr		
% Reduction in stenter drving load	$= (88.948 \times 100) / (3.78.000)$		
, , ,	= 23.53%		
Furnace oil savings in Tonnes/month.			
Monthly furnace oil savings	$= 0.2353 \times 90 \times 24 \times 30$		
	= 15247.44 kgs / month		
	= 15.25 tonnes/month		

..... End of Section - III