Marks: $50 \times 1 = 50$

20th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – September, 2019

PAPER - 3: ENERGY EFFICIENCY IN ELECTRICAL UTILITIES

Section – I: OBJECTIVE TYPE

- i) Answer all 50 questions
- ii) Each question carries one mark
- iii) Please hatch the appropriate oval in the OMR answer sheet with HB pencil only, as per instructions

1.	A medium voltage end consumer receives 83 million units with a transmission and distribution cascade efficiency of 82%. The million units generated will be					
	a) <u>101.2</u>	b) 68.1	c) 83	d) None of the above		
2.		CV of gas is 870		perating load of the engine is ly gas consumption will be		
	a) <u>214.6</u>	b) 260.13	c)188.89	d) 272.74		
3.	In an electrical power	er system, transmission	on efficiency increases	as		
	b) both voltage anc) voltage increase	nd power factor inc d power factor decrea es but power factor d ses but power factor i	ases ecreases			
4.	Which of the following	ng is expressed in ter	ms of percentage?			
	a) Absolute hum b) Relative hum c) Specific Grav d) All of the abo	<mark>nidity</mark> ity				
5.	Which among the following is one of the parameters used to classify fans, blowers & Compressors?					
	a) Volume flow ra	ate				
	b) Mass flow rate c) Specific ratio					
	d) None of the a	-				
6.	What is the functi	on of drift eliminators	in cooling towers?			
	a) maximize wat	er and air contact				
		r droplets escaping				
		of air to the cooling t	ower rater into the cooling to	MAr		
7.	,		rue regarding centrifug			
<i>,</i> .	VVIIICIT OF LITE TOHOWII	ig statements is not t	rac regarding centillug	αι ραπιρο:		
	a) Flow is zero a	t shut off head				

	c) Head decre	fficiency will be at desiç ases with increase in fl eases with throttling	gn rated flow of the pun ow	np		
8.	Which of the follow	Which of the following is not true with respect to Color Rendering Index (CRI)?				
	 a) The CRI is expressed in a relative scale ranging from 0 -100. b) CRI indicates, how perceived colors match with actual colors. c) LED lamps are having comparatively higher CRI than Incandescent Lamps. d) The higher the color rendering index, the less color shift or distortion occurs 					
9.	Flow control with curve.	in a fan	system will not char	nge the fan characteristic		
		ge with variable frequer ge with hydraulic coupl	•			
10.	The primary purpo	se of inter-cooling in a	multistage compressor	is to		
	 a) remove the moisture in the air b) reduce the work of compression c) separate moisture and oil vapour d) none of the above 					
11.	Illuminance of a su	urface is expressed in _				
	a) radians	b) <u>lux</u>	c) lumens	d) LPD		
12.			rom 120 m ³ /hr to 110 reduction in impeller si	m ³ /hr by trimming the ze?		
	a)10.52 %	b) <u>8.34%</u>	c) 9.7 1%	d)17.1%		
13.	Which of the following power plants has the highest efficiency? a) Open cycle Gas Turbine b) Diesel Engine c) Combined cycle gas turbine d) Conventional coal plants					
14.	COP of a single ef of	fect absorption refriger	ation system is likely to	be in the range		
	a) 0.6 to 0.7	b) 1to 1.2	c) 1.5 to 2	d) 3.0 to 4.0		
15.	If 30240 kcal of heat is removed from a room every hour then the refrigeration tonnage will be nearly equal to					
	a) 30.24TR	b) 3.024TR	c) 1TR	d) <u>10 TR</u>		
16.	HVDS (High Voltage	ge Distribution System)) is preferred to			
	b) Reduce con c) Reduce cap	hnical loss in distribunmercial loss in distribuntial investment ergy bill for the end cons	ition system			

17.	When evaporator t	emperature is red	luced,					
		capacity increas						
	 b) refrigeration capacity decreases c) specific power consumption remains same 							
		oad increases						
18.	A 4 pole 50 Hz ind	uction motor is ru	nning at 147	70 rpm. Wh	nat is the	slip va	alue?	
	a) 0.2	b) <u>0.02</u>		c) 0.04		C	d) 0.4	
19.	The basic function	of an air dryer in	an air comp	ressor is to)			
	,	from entering th	•	or				
	,	isture before the isture in compres						
	· · · · · · · · · · · · · · · · · · ·	oisture in air sur		e plants				
20.	Power factor is hig		of					
	a) Sodium vapb) Induction lar	•						
	c) LED Lamps							
	d) <u>Incandesce</u>							
21.	If the COP of a var 90% motor efficien							
	a) <u>34 kW</u>		b) 42 kW		c) 2.8 k	κW	d) 3.4 kW	I
22.	The blow down red CoC of 3 is		r of a coolin	g tower wit	th evapo	ration	rate of 16	m ³ /hr and
	a) 4	b) 5.3		c) <u>8</u>				d) 48
23.	The percentage reto 0.95 is		tion losses	when tail e	nd powe	r facto	or is raised	I from 0.8
	a) <u>29.4%</u>	k)15.5%	c)16.6%			d)24.7%
24.	Energy performand consumption to	, ,	/h/m² /yr is t	he ratio of	total buil	ding a	nnual ene	rgy
	a) Built up area							
	b) Carpet area c) Roof Area							
	d) Window and W	all Area						
25.	Which of the follow	ing is not a clima	te zone as p	er ECBC o	classifica	tion?		
	a) hot-dry	b) warm-hun	nid (c) <u>Cold-hu</u>	<u>mid</u>		d)	cold
26.	In a pumping then		e tempera	ature of	the lic	quid	handled	increases,
	a) NPSHa increase	es						
	b) NPSHa decreas c) NPSHa remains							
	d) NPSHa and NP		lent of temp	erature				

27.	Which of the following component has maximum effect on cooling tower performance?						
	a) <u>Fill media</u> b) drift	c) louvers d) casing					
28.	In a vapour compression refrigeration system condenser is more than the energy transferred at _ a) Compressor						
	b) Expansion Valve c) Evaporator d) All of the above						
29.	Demand side Management helps						
	a) to reduce the energy losses b) c) to promote energy efficiency among users.	to reduce system peak demand All of the above					
30.	Which one of the following is true to estimate the ra	ange of cooling tower?					
	 a) Range = Cooling water inlet temperature – Wet b) Range = Cooling water outlet temperature – Wet c) Range = Wet Bulb Temperature – Cooling Wate d) None of the above 	et bulb temperature					
31.	Modest flow variation between 80% to 100%, in a centrifugal fan is achieved more efficiently with						
	a) Inlet damperb) Outlet damperc) Inlet guide vanesd) Impeller Change						
32.	is used as refrigerant both in va	pour compression and vapour absorption					
	a) Lithium Bromide b) Water c)	HFC 134A d) Ammonia					
33.	In electrical distribution system, commercia	I loss covers discrepancies due to					
	Meter Reading b) Metering c) Collect	tion Efficiency d) All of the above					
34.	Which of the following parameters is not required f reciprocating air compressor?						
35.	a) Power input b) FAD c) Cyl	inder Stroke d) Cylinder bore					
00.	a) Variable Frequency drive b) Soft starter c) Hydraulic coupling Eddy current drives						
36.	When compared to standard motors, energy efficiency a) Higher slip b) Higher starting torque c) Lower No load current All the above	nt motors will have					

37.	For a given air requirement, providing higher volume air receiver will					
	a) Increase energy consumption					
	b) Reduce energy consumption					
	c) Reduce Unload Power d) Reduce Pressure fluctuations					
38.	Harmonics generation will be more in					
	a. Inverter drives b. LED Lamps c. Transformers d. Resistance heaters					
39.	Thermal Power Plant efficiency is low due to					
	a) Higher steam Pressure					
	b) Higher superheat temperature					
	c) Low GCV coal d) <u>Higher Heat loss in condenser</u>					
40.	Among the following, has highest design efficiency.					
	a) High tension motors					
	b) Power transformers					
	c) Alternators d) Electric melting furnaces					
41.	The difference between wet bulb temperature and cooling water inlet temperature in a cooling					
	tower is called					
	a)Approach b) Range c) Effectiveness d) None of the above					
42.	Technical loss in a distribution system can be reduced by					
	a) Maintaining low HT/LT ratio b) Accurate meter reading					
	c) <u>High voltage supply to consumers</u> d) Improving Collection Efficiency					
43.	Pressure drop can be reduced in a compressed air distribution line by providing					
	·					
	a) After Coolers b) Small diameter distribution pipes					
	c) High pressure air flow					
	d) <u>Large Diameter Distribution pipes.</u>					
44.	Power consumption is very high for type of compressed air dryers. a) Refrigeration type					
	b) Blower reactivated type					
	c) Heat of compression type					
45.	d) Heatless purge type A DC excitation is used to vary the speed of					
40.	A DC excitation is used to vary the speed of					
	a) Eddy Current Coupling b) fluid coupling					
	c) variable frequency drive					
	d) None of the above					
46.	The isothermal power of 500 CFM air compressor is 72 kW and the efficiency is 76 %. The					
	actual power drawn by the compressor will be					

	a) 56 kW	<u>b) 94.7 kW</u>	c) 89 kW	d) 72 kW		
47.	Power factor imp	provement of a 75-kW con	mpressor motor will	_		
		power to the motor empressor motor shaft po		b) Increase input power to the motord) None of the above		
48.		otal transformer loss is 1	load loss of 750 watts and load 662 watts. What will be the pe			
	a) 54.8 %	b) 29 %	c) <u>40 %</u>	d) 25.7 %		
49.	Rating of PF correction capacitors for Induction Motors terminal should be a) 100 % kVAr of the induction motor b) 20 % of Motor Rating c) 25 % of Motor rating d) 90 % of the no-load kVAr induction motor					
50.	a) Light Load factory Light Lux factory Light Lux factory Light loss f	actor or				

..... End of Section – I

Marks: $8 \times 5 = 40$

Section - II: SHORT DESCRIPTIVE QUESTIONS

- (i) (ii) Answer all <u>Eight</u> questions Each question carries <u>Five</u> marks

S1	Write short notes on any two of the following:	
	 Integrated Part Load Value (IPLV) for chillers Evaporative Cooling Heat Pump 	(Each 2.5 Marks)
	Ans:	
	 Integrated Part Load Value (IPLV) for chillers, Evaporative Cooling, Heat Pump 	(Page No. 126) (Page No. 136) (Page No. 133)
S2	Write short notes on any two of the following:	
	 Solar Heat Gain Coefficient (SHGC) Visible Light Transmittance (VLT) Cool Roof 	(Each 2.5 Marks)
	Ans	
	 Solar Heat Gain Coefficient (SHGC), Visible Light Transmittance (VLT), Cool Roof, 	(Page No. 272) (Page No. 272) (Page No. 271)
S3	One of the Machining centres has installed 2 No operation and also for cleaning operation of compon operated at 7 kg/cm²(g) and are on-load for 80 % of Power of each 270 cfm compressor is, 40 kW and 15 that cleaning air requirement is 60% of the air generated Calculate the daily energy consumption for cleaning air the compressor.	ents after machining. The compressors are the time. The load Power and the un-load kW respectively. The energy audit estimated ed.
	Ans:	
	Compressor capacity % Loading Air Delivered by 2 compressors	= 270 cfm = 80 % = (270 X 0.80 x 2) = 432 cfm
	Loading Power drawn by the compressors Un-Loading power drawn by the compressors	= (40 + 40) = 80 kW = (15 + 15) = 30 kW
	Average kW drawn by the compressors	= [(80 x (0.8 x24))+ (30x (0.2 x 24))]/(24) = 70 kW
	SEC of compressor	= (70/432) = 0.162 kW/cfm

Cleaning air consumption at 7 Kg/cm² = (60 % of generation)

 $= (0.60 \times 432)$ = 259 cfm

Energy requirement for Cleaning air per day = $(259 \times 0.162 \times 24)$ = 1007 kWh/day

(or) Alternate Solution

=(Load Power x load time) +(Unload Power x Unload

time)

 $=(40 \times 0.8) + (15 \times 0.2)$

=32+3 =35 KW

Average KW drawn by the compressors $= 35 \times 2 = 70 \text{ KW}$

Energy requirement for Cleaning air per day = (70 kW x 0.6) x 24

=1008 kWh/day

S-4 In a pharmaceutical industry a centrifugal pump is pumping 80 m³/hr of water into a pressurized container. The container pressure is 3 kg/cm²(g). The discharge head of the pump is 5 kg/cm²(g) and water level is 5 meters below the pump central line. If the power drawn by the motor is 22 kW, find out the pump efficiency. Assume motor efficiency as 90% and the water density as 1000 kg/m³.

Ans:

SI. No.	Parameter	Process	Value
1	Water Flow Rate (m³/hr)	given	80
2	Discharge Head (meters)	given	50
3	Suction Head (meter)	given	-5
4	Power input to Motor (kW)	given	22
5	Motor Efficiency	given	90%
6	Power Input to Pump (kW)	SI. 4* SI. 5	=22 x 0.9 = 19.8
7	Liquid kW	(Sl. 1/3600)*((Sl. 2*10) - Sl. 3)*9.81	= (80/3600) x (50 - (-5) x 9.81=11.98
8	Pump Efficiency	SI. 7 / SI. 6	60.56%

A Refrigeration system designed with 10 TR AHU is operating at 8.25 TR. The measured air parameters are given below:

 $\begin{array}{ll} \mbox{Inlet enthalpy} & = 10.26 \ \mbox{kcal/kg} \\ \mbox{Outlet enthalpy} & = 7.26 \ \mbox{kcal/kg}. \\ \mbox{Specific volume of air} & = 0.83 \ \mbox{m}^3\mbox{/kg} \\ \end{array}$

Calculate the volume of air in m³/hr handled by AHU.

	Ans:		
	= (Hi – Ho)	e in enthalpy) x (Volume of air / sp. volume x 3024) x V / (v x 3024)	
	Volume of air handled by AHU = (TR x v x = ((8.25 x = 6903 m ³	0.83 x 3024) / (10.26-7.26))	
S6		d drawing 3 kW. If the fan is operated with VFD at 37 ir, when air is supplied through 150 mm diameter duct	
	Ans:		
	Power Drawn at 50 HZ Operating frequency Flow at 37 Hz Diameter of the duct Area of the duct	= 3 kW = 37 Hz = 1300 x (37 / 50) = 962 m ³ /hr = 150 mm = 0.0177 m ²	
	Velocity of the air in the duct Power consumption with 37 Hz	= $[(962 / 3600)] / [(0.0177)]$ = 15.09 m/s = $(37/50)^3 \times 3$	
	Annual Energy Savings for 6000 hours op	= 1.22 kW eration = 6000 x (3 -1.22) = 10,680 kWh	
S7	A foundry unit draws power to the tune of 2500 kW. The demand observed during furnace operation is given below:		
	5 minutes : 2940 kVA 7 minutes : 2550 kVA 3 minutes : 2777 kVA		
	If the billing meter is monitoring demand registered and also the average PF, during t	every 15 minutes, calculate the maximum demand he demand interval.	
	Ans:		
	Maximum demand registered	= [2940 * (5/15) + 2550 * (7/15) + 2777 * (3/15)] = [980 + 1190 + 555.4] = 2725.4 kVA	
	PF 5 minutes: 2940 KVA	= (2500 / 2940) = 0.85	
	7 minutes 2550 KVA	= (2500 / 2550) = 0.98	
	3 minutes 2777 kVA.	= (2500 / 2777) = 0.90	
	Average PF	= [0.85 *(5/15) + 0.98* (7/15) + 0.9 * (3/15)] = 0.92	
S8	at 40 kW at 1450 rpm. As a part of the ene	ower, with 45 kW CT fans for each cell and operating rgy conservation program, the existing fan motors are uld operate at 1450 rpm and 740 rpm. The cooling	

towers are operated at high speed mode for 5300 hours and at low speed mode for 1800 hours, in a year.						
Estimate the annual energy savings when compared to operation of fans continuously at a fixed speed of 1450 rpm.						
Ans:						
Present energy consumption of all 4 fans	= (4 x 40 x (5300 + 1800)) = 11,36,000 kWh					
Energy consumption for fans at 1450 rpm for 5300 hours	= (4 x 40 x 5300) = 8,48,000 kWh					
Energy consumption for fans at 740 rpm for 1800 hours	= [(740/1450) ³ x 40 x 4 x 1800] = 38281 kWh					
Annual savings	= [11,36,000 - (8,48,000+38,281)] = 2,49,719 kWh					

..... End of Section - II

Marks: $6 \times 10 = 60$

Section - III: LONG DESCRIPTIVE QUESTIONS

- (i) Answer all **Six** questions
- (ii) Each question carries **Ten** marks
- L- a) In an energy audit of a fan, it was observed that the fan was delivering 24,000 Nm³/hr of air. Suction static pressure was recorded as -15 mm WC and discharge static pressure as 35 mmWC.

The power measurement of the motor using power analyser was recorded as 7 kW. The motor operating efficiency taken from motor performance curve was 90%. What is the static efficiency of the fan?

b) Match the Following

Heat Pump – NPSHR
 Compressor – Static Head
 Pumping Pressure – Static Pressure
 Fan – Compressor

5. Pump – Free air delivery test

Soln:

a)

Q = 24.000 Nm³ / hr. = 6.67 m³/sec Static pressure rise = 35 - (-15)= 50 mmWC

 $\eta_s = ?$

Power input to motor = 7 kW

Power input to fan shaft = $7 \times 0.90 = 6.3 \text{ kW}$

Fan static $\eta = \frac{\text{Volume in } m^3/\text{sec } x \Delta P_{\text{st}} \text{ in } mmWc}{102 \text{ x Power input to shaft}}$ = $(6.67 \times 50) / (102 \times 6.3)$

= 0.519 (or) = 51.9 %

- b) Match the Following
- 1. Heat Pump Compressor
- 2. Compressor Free air delivery test
- Pumping Pressure Static Head
 Fan Static Pressure
- 5. Pump NPSHR
- L- A. For each one of the following, mention whether they belong to "Prescriptive Method" or "Whole Building Performance Method".

(5 Marks)

- 1. Compliance by meeting or exceeding specific levels for each individual element of building
- 2. Allows Trade-off option for building envelope
- 3. Allows use of energy simulation software
- 4. Computer model of the proposed design (energy consumption) is compared with Standard Design
- 5. Compliance if energy use in proposed design is less than energy use in standard design
- B. Match the Following:

(5 Marks)

1.	Building envelope	a)	Day lighting of building
2.	Passive solar design strategy	b)	Exfiltration and Infiltration of air
3.	Visual Light Transmittance	c)	Roof, walls, windows, skylights, doors
			and other openings
4.	Weather stripping	d)	Property of high solar reflectance and
			emittance
5.	Cool roof	e)	Cross ventilation

Ans:

Α.

- 1. Prescriptive Method
- 2. Prescriptive Method
- 3. Whole Building Performance Method
- 4. Whole Building Performance Method
- 5. Whole Building Performance Method

В.

1	Building envelope	С	Roof, walls, windows, skylights, doors and other openings
2	Passive solar design strategy	Е	Cross-ventilation
3	Visual Light Transmittance	Α	Day lighting of building
4	Weather stripping	В	Exfiltration and Infiltration of air
5	Cool roof	D	Property of high solar reflectance and emittance

An energy audit was conducted in a large machine shop and the audit report suggested

3

Motor Rating in kW	Operating Load %	Old Motor Efficiency%	New Motor efficiency%	No of motors
7.5	75	86	89	12
11.5	85	88	91	7
15	70	89	92	11

replacing 30 machine motors with energy efficient motors. The loading details of old and new motors are given below:

Assuming motor loading in both cases remains same, calculate the annual energy savings, for 4000 hours operation per year.

Ans:

Motor Rating in KW	Operating Load %	Actual Old Motor Load In kW	Actual New Motor Load In kw	Old Motor efficiency	New Motor efficiency	No of motors
7.5	75	7.5/0.86=8.72 =8.72x	7.5/0.89=8.43 =8.43x 0.75=	86	89	12
7.5	70	0.75=6.54	6.32	00	09	12
11.5	85	11.5/0.88=13.07 =13.07 x 0.85= 11.11	11.5/0.91=12.64 =12.64 x 0.85= 10.74	88	91	7
15	70	15/0.89=16.85 =16.85x 0.7= 11.79	15/0.92=16.30 =16.30 x 0.7 11.41	89	92	11

Annual Savings for 7.5 KW Motors, 12 numbers, operating 4000 hours

 $= [4,000 (6.54-6.32) \times 12]$

= 10,560 kWh

Annual Savings for 11 KW Motors, 7 numbers, operating 4000 hours

 $= [4000 (11.11 - 10.74) \times 7]$

= 10,360 kWh

Annual Savings for 15 KW Motors, 11 numbers operating 4000 hours

 $= [4,000 (11.79-11.41) \times 11]$

= 16,720 kWh

Total annual savings for 30 high efficiency motors

= 37,640 kWh

- L- A 10 MW co-generation plant is operating at a daily load factor of 85 %. Power is generated at 11 KV.
 - > 35 % of the power generated, is exported to grid, through a 7.5 MVA Transformer with 99 % efficiency.
 - ➤ 32 % power generated, is supplied to mill motors, at 600 Volts, through a 5 MVA step down transformer, with 98 % efficiency.
 - ➤ The balance power generated is supplied to other LT Loads and auxiliaries, at 415 Volts, through a 2 MVA transformer, with 98 % efficiency.

Calculate the following:

- 1) Daily energy exported to grid at 33 KV.
- 2) Daily mill motors consumption at 600 V.
- 3) Daily LT loads and auxiliary consumption at 415 V.
- 4) Daily transformers losses in kWh and % transformers losses

(Each 2.5 Marks)

Ans:

1.

Daily generation $= (10,000 \times 0.85 \times 24)$ = 2,04,000 kWh

Daily energy generation for export purpose = (2,04,000 x 0.35) = 71,400 KWh

7.5 MVA transformer loss = $[71,400 - (71,400 \times 0.99)]$

= (71,400 - 70,686)

= 714 kWh

Net energy export to the Grid at 33 KV level = (71,400 kWh - 714 kWh)

=70.686 KWh

2.

Daily energy generation for mill motor consumption = $(2,04,000 \times 0.32)$ = 65,280 kWh

5 MVA Transformer loss = $[65,280 - (65,280 \times 0.98)]$

= (65,280 - 63,974.4)

= 1,306 kWh Net mill Consumption = 63,974 KWh

3.

Daily generation for LT loads & Auxiliary consumption = $(2,04,000 \times 0.33)$

= 67,320 kWh 2MVA Transformer loss = [67320 - (6732

= [67320 - (67320 x 0.98)]

= 67,320 - 65,974 = 1,346 kWh

Net LT loads & Auxiliary Consumption = 65,974 kWh

4.

Transformers losses = (714 + 1306 + 1346)= 3,366 kWh day

% transformers losses = $(3,366 / 2,04,000) \times 100$

= 1.65 %

(Or)

To meet the plant LT loads and co-gen auxiliary load the transformer capacity should be more than 2 MVA.

A small machine shop has installed 220 cfm screw compressor to meet air requirement for various operation. The operating details are given below:

	Shift reference (8 hrs/ Shift)	Load time in sec	Un-Load time in sec
	I	60	10
ſ	II	45	25
ſ	III	25	45

Load Power = 37 KW Un-load power = 11 KW

Calculate	the	fol	lowina:
Calculate	uic	101	iowiiig.

- 1. Energy loss per day (4 Marks)
- 2. Shift wise average air requirement in cfm (2 Marks)
- 3. The plant has proposed to install a VFD for the compressor. Calculate the energy savings after installing the VFD operated compressor, if the VFD loss is 3 % of load power.

(4 Marks)

Ans:

Ist shift consumption = $((60 / 70) \times 37) + (10 / 70) \times 11) \times 8)$

 $= (31.71+1.57) \times 8$

= 266.24 kWh

IInd shift consumption = $((0.64 \times 37 + 0.36 \times 11) \times 8)$

 $= (23.68 + 3.96) \times 8$

= 221.12 kWh

IIIrd shift consumption = $((0.36 \times 37 + 0.64 \times 11) \times 8)$

 $= (13.32 + 7.04) \times 8)$

= 162.88 kWh

Daily Total Energy consumption = (266.24 + 221.12 + 162.88)

= 650.24 kWh

Daily Energy loss due to unloading = $(1.57 + 3.96 + 7.04) \times 8$

= 100.56 kWh

Daily load cycle Energy consumption = (650.24 - 100.56)

= 549.68 kWh

Daily energy consumption with VFD = (549.68 / 0.97)

= 566.68 kWh

Daily Energy loss due to VFD = (566.68 - 549.68)

= 17 kWh

Daily Net Energy savings with VFD compressor = (100.56 - 17)

= 83.56 kWh

 I^{st} shift air requirement = (0.86×220)

= 189.2 cfm

	II nd shift air requirement	= (0.64 x 220)	
		= 140.8 cfm	
	III rd shift air requirement	= (0.36 x 220)	
		= 79.2 cfm	
	(a) What is L/G ratio and how it is use	ful in operation of a cooling tower?	
3	(b) What are the functions of fill media	a in a cooling tower?	(3 Marks)
	(c) Calculate the L/G ratio for the cool	ling tower given the following:	(3 Marks)
	Water Flow	= 4540 m ³ /hour	(4 Marks)
	Approach	= 4.45 °C	
	Air entering enthalpy at 26.67 °C		
	Air leaving enthalpy at 37.8 °C Hot water temperature	= 39.67 Kcal/kg = 47.77 °C	
	Cold water temperature	= 31.11°C	
	Ans:		
	rates".	tower is the "ratio between the water and tuning variations require, adjustment and tuning	
	rates". Against the design values, seasonal values, to get the best cooling tower changes, blade angle adjustments etc.	variations require, adjustment and tuning er effectiveness, through measures like, w	of water and ai
	rates". Against the design values, seasonal flow rates, to get the best cooling tower.	variations require, adjustment and tuning er effectiveness, through measures like, w	of water and ai
	rates". Against the design values, seasonal values, to get the best cooling tower changes, blade angle adjustments etc.	variations require, adjustment and tuning er effectiveness, through measures like, w	of water and ai
	rates". Against the design values, seasonal values, to get the best cooling tower changes, blade angle adjustments etc. By energy balance, $L(T_1 - T_2) = G(h_2 - h_1)$ $L/G = (h_2 - h_1)/(T_1 - T_2)$ $L/G = \text{Liquid to gas mass flow residues}$	variations require, adjustment and tuning er effectiveness, through measures like, w . atio (kg/kg) re at exhaust wet bulb temperature	of water and ai
	rates". Against the design values, seasonal of flow rates, to get the best cooling tower changes, blade angle adjustments etc. By energy balance, L(T ₁ - T ₂) = G(h ₂ - h ₁) L/G = (h ₂ - h ₁)/(T ₁ - T ₂) L/G = Liquid to gas mass flow of the water temperature of the cooling toward of the cooling to the cooling toward of the cooling toward o	variations require, adjustment and tuning er effectiveness, through measures like, where the state of the sta	of water and ai
	rates". Against the design values, seasonal of flow rates, to get the best cooling towe changes, blade angle adjustments etc. By energy balance, $L(T_1 - T_2) = G(h_2 - h_1)$ $L/G = (h_2 - h_1)/(T_1 - T_2)$ $L/G = \text{Liquid to gas mass flow of the cooling towers.}$ Where: $T_1 = \text{hot water temperature oC}$ $T_2 = \text{cold water temperature oC}$ $h_2 = \text{Enthalpy of air water vapour mixtuence}$ $h_1 = \text{Enthalpy of air water vapour mixtuence}$	variations require, adjustment and tuning er effectiveness, through measures like, where the state of the sta	of water and ai

----- End of Section - III -----