19th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS - September, 2018

PAPER - 4: ENERGY PERFORMANCE ASSESSMENT FOR EQUIPMENT AND UTILITY SYSTEMS

Section - I: BRIEF QUESTIONS

Marks: 10 x 1 = 10

- (i) Section I contains <u>**Ten**</u> questions
- (ii) Each question carries **<u>One</u>** mark

S-1	The speed of an energy efficient motor will be more than the standard motor of same capacity because decreases.
Ans	Slip
S-2	A typical co-generation system in a cement plant will come under the category of topping cycle. True or False
Ans	False
S-3	To minimize scale losses in a reheating furnace, the furnace should be operated at a negative pressure. True or False
Ans	False
S-4	O2 % in flue gas is required in the direct method efficiency evaluation of a boiler. True or False
Ans	False
S-5	The heat rate of a power plant will reduce when there is an increase in the inlet cooling water temperature to the condenser. True or False
Ans	False
S-6	The capacity of a screw compressor cannot be controlled by discharge throttling. True or False
Ans	True
S-7	A package air conditioner of 5 TR capacity delivers a cooling effect of 4 TR. If Energy
	Efficiency Ratio (W/W) is 2.90, the power in kW drawn by compressor would be
Ans	=(4*3024)/860 = 14.065/2.90 = 4.85
S-8	If the steam generation in a boiler is reduced to 45%, the radiation loss from the surface of
	the boiler will reduce by the same ratio. True or False

Ans	False
S-9	If the coal Gross Calorific Value is 4200 kcal/kg and specific coal consumption is 0.6 kg/kWh, what is the power station gross efficiency ?
Ans	$(860 / (4200 \ge 0.6)) \ge 34.12\%$
S-10	If the measured input power of a 90 kW motor is 45 kW, then the calculated loading of the motor is 50 %. True or False
Ans	False

..... End of Section - I

Section - II: SHORT NUMERICAL QUESTIONS

Marks: 2 x 5 = 10

- (i) Section II contains \underline{Two} questions
- (ii) Each question carries **<u>Five</u>** marks

L-1	Milk is flowing in a pipe cooler at a rate of 0.95 kg/sec. Initial temperature of the milk is				
	55 °C and it is cooled to 18 °C using a stirred water bath with a constant temperature of				
	10 °C around the pipe. Specific heat of milk is 3.86 kJ/kg °C. Calculate the heat transfer				
	rate (kCal/hr) and also Logarithmic Mean Temperature Difference (LMTD) of the exchanger.				
	Heat transfer in cooling milk = $0.95 * 3.86 * (55 - 18)$ = 135.7 kJ/sec = $(135.7 * 3600)$ = $(488520 \text{ kJ/hr}) / (4.18)$ = 116871 kcal/hr				
Ans					
	$DT1 = 55 - 10 = 45 ^{\circ}C$				
	DT2 = 18 - 10 = 8 °C				
	LMTD of the heat exchanger = $(45 - 8)/\ln(45 / 8) = 21.4$ °C				
L-2	A coal based power plant A is having a Gross Unit Heat Rate of 2400 kCal/kWh with				
	Auxiliary power consumption of 7 % whereas Plant B of same size and make, has an				
	operating Net Heat Rate of 2500 kCal/kWh. In your opinion, which plant is more efficient				
	and why?				
Ans	Gross Heat Rate of Plant A – 2400 kcal/kWh Auxiliary Power Consumption – 7%				
	Net Heat Rate of Plant A = Gross Heat Rate/(1- APC) = 2400/(1- 0.07) = 2580.65 kcal/kWh				
	Therefore, Plant B is more efficient with a lower Net Heat Rate of 2500 kcal/kWh than that of Plant A (2580.65 kcal/kWh).				

- (i) Section III contains **Four** questions
- (ii) Each question carries **<u>Twenty</u>** marks

N-1	In a process industry, the wet products are to be dried in a drier. The plant has a pressurized hot water boiler which supplies hot water at 145 °C to the heating coils in the drier. The return water to the boiler is at a temperature of 110 °C. The boiler is fired by saw dust briquettes.						
	The other relevant data are given below.						
	• Fuel firing rate	=	375 kg/hr				
	• O_2 in flue gas	=	12.2 %				
	• CO in flue gas	=	189 ppm				
	• CO ₂ in flue gas	=	8.5 %				
	• Avg. exit flue gas temperature	=	235 ⁰ C				
	Ambient temperature	=	31 ⁰ C				
	• Humidity in ambient air	=	0.0204 kg / kg dry air				
	Gross Calorific Value of ash	=	800 kCal/kg				
	Radiation & other unaccounted losses	=	0.5 %				
	• Specific heat of flue gas	=	0.23 kCal/kg ⁰ C				
	Fuel (briquettes) Ultimate Analysis (in %)						
	• Ash	=	8.0				
	• Moisture	=	7.5				
	Carbon	=	45.3				
	• Hydrogen	=	4.4				
	• Nitrogen	=	1.4				
	• Oxygen	=	33.3				
	• Sulphur	=	0.1				
	• Gross Calorific Value of saw dust briquette	=	3500 kCal/kg				
	Calculate the hot water circulation rate (m^3/hr) in the bo	oiler.					
Ans	1. Theoretical air required for complete combustion						
	= $[(11.6xC) + {34.8x(H_2 - O_2/8)} + (4.35xS)]/10$	00 kg/k	g of coal				
	= [(11.6 x 45.3) + {34.8 x (4.4 – 33.3/8)} + (4.35 x	0.1)] / 1	00				
	= 5.34 kg / kg of briquette.						
	2. Excess air supplied						

Actual O_2 measured in flue gas	= 12.2 %
% Excess air supplied (EA)	$= \frac{O_2\%}{21 - O_2\%} \times 100$
	$= \frac{12.2\%}{21 - 12.2\%} \times 100$
	= 138.6 %
3. Actual mass of air supplied	$(4 + \Gamma \Lambda / 400) \times the exertised air$
	= $\{1 + EA/100\}$ x theoretical air
	$= \{1 + 138.6/100\} \times 5.34$
	= 12.74 kg/kg of briquette
4. To find actual mass of dry flue gas	
Mass of dry flue gas = Mass of CO_2 +Mas Mass of N ₂ in the combustion air suppl gas + Mass of SO ₂ in flue gas	ss of N ₂ content in the fuel+ lied + Mass of oxygen in flue
$= \frac{0.453 x 44}{12} + 0.014 + \frac{12.74 x 77}{100}$	$+\frac{(12.74-5.34) \times 23}{100} + \frac{0.001 \times 64}{32}$
= 13.19 kg / kg of briquette	
5. To find all losses	
a) % Heat loss in dry flue gas (L1)	$= \frac{m x C_p x (T_f - T_a)}{GCV \text{ of fuel}} x 100$
	$= \frac{13.19 \times 0.23 \times (235 - 31)}{3500} \times 100$
	- 17 69 %
b) 0/ Heat less due to formation of .	-17.00%
b) % Heat loss due to formation of v	water from H_2 in fuel (L2)
	$= \frac{9 \text{ x H}_2 \text{ x} \{584 + \text{C}_p (\text{T}_f - \text{T}_a)\}}{\text{GCV of fuel}} \text{ x 100}$
	$= \frac{9 \times 0.044 \times \{584 + 0.45 (235 - 31)\}}{3500} \times 100$
	= 7.65 %

$$= \frac{M \times \{584 + C_p (T_f - T_a)\}}{GCV \text{ of fuel}} \times 100$$
$$= \frac{0.075 \times \{584 + 0.45 (235 - 31)\}}{3500} \times 100$$
$$= 1.45 \%$$

d) % Heat loss due to moisture in air (L4) =
$$\frac{AAS x humidity x C_p x (T_f - T_a)}{GCV of fuel} x 100$$

$$=\frac{12.74 \text{ x } 0.0204 \text{ x } 0.45 \text{ x } (235 - 31)}{3500} \text{ x } 100$$

e) % Heat loss due to partial conversion of C to CO (L5)

$$= \frac{\%CO \ x \ C}{\%CO + \%CO_2} \ x \frac{5654}{GCV \ of \ fuel} \ x \ 100$$
$$= \frac{0.0189 \ x \ 0.453}{0.0189 + 8.5} \ x \frac{5654}{3500} \ x \ 100$$

=

f) % Heat loss due to Ash (L6)

Gross Calorific Value of Ash = 800 kCal/kg

Amount of Ash in 1 kg of coal = 0.08 kg/kg coal

Heat loss in bottom ash

0.08 x 800 =

64 kcal/kg of coal =

% Heat loss in bottom ash

(64x 100) / (3500) 1.83 % =

g) % Heat loss due to radiation & other unaccounted losses (L7) = 0.5% (given)

=

HWG efficiency by indirect method	=	100 - (L1+ L2+ L3+ L4+ L5+ L6+ L7)

100 - (17.685 + 7.65 + 1.45 + 0.682 + =

		0.162+1.83+0.5)
	=	70.04 %
Hot water circulation rate in m ³ /hr:		
HWG efficiency %	=	$\frac{(\text{Mass of hot water } x \ C_p \ x \ \Delta T)}{\text{Mass of fuel } x \ \text{GCV of fuel}} \ x \ 100$
Mass of hot water	= =	$\frac{375 \times 3500 \times 0.7004}{(145 - 110) \times 1}$ 26265 kg/hr
	=	26.265 m³/hr

In a process plant, the hot effluent having a flow rate of 63450 kg/hr at 80 $^{\circ}$ C from the							
proces	ss is sent to a finned tube air cooled heat exchanger f	or co	oling. The outlet temperature				
of the	effluent from the heat exchanger is 38 °C.						
Air at a temperature of 30 0 C enters the heat exchanger and leaves at 60 0 C. The fan							
develops a static pressure of 30 mmWC. The operating efficiency of the fan is 65 % and fan							
motor	motor efficiency is 90 %. The plant operates for 5000 hours per year.						
The m	nanagement decided to replace the existing air-cooled	heat	exchanger with water-cooled				
Plate	Heat Exchanger (PHE).						
Follo	wing are the relevant data:						
Follo	wing are the relevant data:						
Follo	wing are the relevant data: Existing: • Specific heat of air	:	0.24 kcal/kg ⁰ C				
Follo	 wing are the relevant data: Existing: Specific heat of air Specific heat of hot effluent 	:	0.24 kcal/kg ⁰ C same as water				
Follo	 wing are the relevant data: Existing: Specific heat of air Specific heat of hot effluent 	:	0.24 kcal/kg ⁰ C same as water				
Follo	 wing are the relevant data: Existing: Specific heat of air Specific heat of hot effluent Density of air 	::	0.24 kcal/kg ⁰ C same as water 1.29 kg/m ³				
Follo	 wing are the relevant data: Existing: Specific heat of air Specific heat of hot effluent Density of air Proposed: 	::	0.24 kcal/kg ⁰ C same as water 1.29 kg/m ³				
Follow	 wing are the relevant data: Existing: Specific heat of air Specific heat of hot effluent Density of air Proposed: Cooling water pump efficiency 	::	0.24 kcal/kg ⁰ C same as water 1.29 kg/m ³ 75 %				
Follo	 wing are the relevant data: Existing: Specific heat of air Specific heat of hot effluent Density of air Proposed: Cooling water pump efficiency Pump motor efficiency 	: : :	0.24 kcal/kg ⁰ C same as water 1.29 kg/m ³ 75 % 90 %				
Follo	 wing are the relevant data: Existing: Specific heat of air Specific heat of hot effluent Density of air Proposed: Cooling water pump efficiency Pump motor efficiency Effectiveness of water cooled heat exchanger 	: : : :	0.24 kcal/kg ⁰ C same as water 1.29 kg/m ³ 75 % 90 % 0.4				
Follow	 wing are the relevant data: Existing: Specific heat of air Specific heat of hot effluent Density of air Proposed: Cooling water pump efficiency Pump motor efficiency Effectiveness of water cooled heat exchanger Cooling water inlet temperature 	: : : : :	0.24 kcal/kg ⁰ C same as water 1.29 kg/m ³ 75 % 90 % 0.4 25 ⁰ C				

	• Over all heat transfer coefficient of PHE : $23200 \text{ kcal/hr m}^2 ^{\circ}\text{C}$	
	Calculate the following:	
	• Annual energy savings due to replacement of existing air-cooled plate	heat
	exchanger by water cooled counter flow plate heat exchanger. (15 Marks)	
	• Area of the proposed water-cooled plate heat exchanger. (5 Marks)	
Ans	Heat duty in hot fluid = M x Cp _{hot} x (Ti - To)	
	= 63450 x 1 x (80 - 38)	
	= 2664900 kCal / hr	
	In a heat exchanger,	
	Heat duty in hot fluid = Heat duty in cold Air	
	Mass of the cold air = 2664900 / (0.24 X (60-30))	
	= 370125 kg/hr	
	Existing System:	
	Fan Shaft Power = Volume,m ³ /s X Static Pressure, mmWc	
	102 X Fan Efficiency factor	
	= (370125/(3600x 1.29)) x 30	
	102 X 0.65	
	= 36.06 kW	
	Motor Input Power = 36.06/ 0.9 = 40.07 kW	
	Proposed System:	
	Effectiveness of water cooled heat exchanger = 0.4	
	Cold Water outlet temperature $= T_{W_0}$	
	Cold water inlet temperature = T _{wi}	
	Hot effluent inlet temperature = T _{Eff.in}	
	Hot effluent outlet temperature = T _{Eff.out}	
	$T_{Wo} - T_{Wi}$	
	Effectiveness =	
	$I_{Eff.in} = I_{Wi}$	
	Cold Water Outlet = $(0.4 \times (80 - 25)) + 25$	
	= 47 °C	
	Heat duty in hot fluid Mass flow rate of cooling water (M) =	
	$Cp \times (T_{Wo} - T_{Wi})$	

	= <u>2664900</u> 1 x (47 - 25) x 1000
	= 121.13 m ³ /hr
Hydraulic Power Requirement for one	e Cooling Water Pump:
	= (Flow in m ³ /hr x Head in m x Density in kg/m ³ x g in m/s ²
	(1000 x 3600)
	= (121.13 x 30 x 1000 x 9.81)
	(1000 x 3600)
	= 9.9 kW
Pump input Power Requirement	= 9.9 kW / 0.75
	= 13.2 kW
Pump Motor Input Power	= 13.2 / 0.9
	= 14.67 kW
Thus savings	= Power consumption by fans – Water Pumping Power
	= 40.07 – 14.67
	= 25.4 kW
Annual energy savings in kWh	= 25.4 kW x 5000 hrs
	= 127000 kWh/annum
Calculations for LMTD for Proposed	counter flow PHE:
LMTD for counter flow in PHE	= {(80-47) – (38-25)} / ln {(80-47) / (38-25)}
	= 21.5 °C
Considering overall heat transfe	er coefficient (U) = 23200 kCal/hr m ² ⁰ C
Heat transfer Area	= Q / (U x ΔT_{Imtd})
	= 2664900 /(23200 x 21.5) = 5.34 m ²

N-3 The schematic and operating data of a steam turbine cogeneration plant with a back pressure turbine is given below.

		= 17.6 TPH						
	c) Ene	rgy Utilization factor of the cogeneration plant						
		= [(21,400 x 860) + (91000 x ((2529 – 504.7)/ 4.18))] / (17,600 x 4500)						
		= [(1,84,04,000 + 44069689) / (7,92,00,000)]						
		= 0.79						
	d) Hea	t to power ratio of the cogeneration plant, kCal/kW						
	Heat to	power ratio, kcal/kW =						
		$= (91000 \times (2529 - 504.7)/4.18) / 21400$ $= 2059 \text{ kCal/kWh (or)}$						
		= $2.39 \text{ kW}_{\text{thermal}}/\text{kW}_{\text{electrical}}$						
N-4	Answer	any ONE of the following						
A)	In the e	nergy audit of a 6-stage Preheater (PH) section of a 4000 TPD (clinke	er) Cement kiln					
	operatir	g at full load, the following were the field measurements taken.						
	 	1						
	S.No.	Description	Value					
	1.	Reference temperature (°C)	0					
	2.	Reference pressure and the Barometric pressure (mmWG)	10323					
	3.	Average Dynamic Pressure (mmWC)	17.1					
	4.	Static Pressure at Fan Inlet (mmWC)	-860					
	5.	Static Pressure at Fan outlet (mmWC)	-16					
	6.	Temperature (°C)	328					
	7.	Density of the PH Gas (NM ³ /kg), at reference condition	1.422					
	8.	Pitot Tube constant	0.854					
	9.	Diameter of PH Duct (m)	3.2					
	10.	Cp of PH Gas (kcal/kgºC)	0.245					
	11.	Power Input to the PH fan motor (kW)	1812					
	12.	PH fan Motor Efficiency (%)	95					
	13.	GCV of coal (kcal/kg)	5600					
	14.	Annual Operating Hours	7300					

15.	Cost of Coal (Rs./T	on)	4836				
a) Es	timate the specific	c heat losses (kCal/kg clinker) carried away	y by PH (5 Mark	gases. (s)			
b) Es	timate the PH fan Ef	ficiency.	(5 Mark	s)			
c) Es an mo	timate the envisage nual monetary savin odification in the PH	d specific fuel savings (kCal/kg clinker), annual ngs by reduction in PH gas temperature to 290 cyclones.	fuel saving °C by appro (5 Mark	gs and opriate xs)			
d) Es ter rec bo	d) Estimate energy savings in fan power consumption in the proposed case with temperature is reduced to 290 °C. Also consider the static pressure at the reduce by 6 % from the present level due to PH modification (Fan and motor both the cases are same).						
a) Speci	fic heat losses by PH g	ases (kCal/kg clinker)					
Density o operating	f gas at Present ; Conditions (kg/m³)	$\rho_{t,p} = \rho_{stp} \times \frac{10323^* - P_s}{10323} \times \frac{273}{273 + t_e} \text{ kg/m}^3$ = 1.422*(273/(273+328))*((10323-860)/10323) kg/r	n ³ 0	.59			
Velocity c	$= 1.422^{(2/3/(2/3+328))^{*}((10323-860)/10323)} \text{ kg/m}^{3}$ $Velocity = P_{t} \times \sqrt{(2g(\Delta P_{rms})_{avg} / \rho_{t,p})} \text{ m/sec}$ $= 0.854^{*} ((2^{*} 9.81^{*} 17.1/0.59))^{0.5}$			0.36			
Area of th	ne PH Duct (m²)	$= Pi/4 * D^{2}$ = 3.14 * (3.2 ²)/4	8	.04			
Flow rate (m ³ /hr)	of the PH Gas	= Area * Velocity = 8.04 * 20.36 *3600 m ³ /hr	589	299.8			
Flow rate (Nm ³ /hr)	of the PH Gas	= Flow rate of the PH Gas (m ³ /hr) x (0.59/1.422) = 589299.8 X (0.59/1.422)	244	505.5			
Specific P (Nm ³ PH gas	H Gas generation /kg _{Clinker})	= Flow rate of Ph gas (Nm ³ /hr) / Clinker Production (kg/hr) = 244505.5/ ((4000x1000)/24)	1.	467			
Specific P (kg _{PH gas} /k	H Gas generation g _{Clinker})	 Specific PH Gas generation (Nm³_{PH gas}/kg _{Clinker}) x 1.4 kg/Nm³ =1.467 x 1.422 	22 2.	086			
Specific H case (kca	eat Loss in existing I/kg _{Clinker})	$= m C_p (T_{ph}-T_{ref.})$ =2.086*0.245*(328-0)	16	67.6			
	n officiana;						
Air Power	r (kW)	= ((Q (m ³ /hr)/3600)x (P _{st} (mmWC)))/102 = (589299.8/3600)* (-16+860)/102	13	54.5			
Fan Efficie	ency (%)	= Air power*100/(motor power *motor effi) = (1354.5*100)/(1812*0.95)	7	8.7			
c) Envis	aged fuel and moneta	ry savings	I				
Specific H	eat Loss in the case (Kcal/Kg Clinker)	$= M C_p (T_{ph-new}-T_{ref.})$ =2.086 * 0.245 * (290-0)	14	8.21			
Fuel Savir	ngs (Kcal/Kg Cli	=old heat loss/kg cli- new heat loss/kg cli =167.6-148.21	19	9.39			
Annual Fu	uel Savings	=Clinker prod. * run hrs/yr* heat saving/kg cli /coal g	cv 421	12.79			

	=166.67*7300*19.39/5600	
Annual Monetary savings (Rs. Lakhs/yr)	= fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000	203.73
d) Fan energy savings		
Envisaged static pressure at Fan Inlet after PH modification (mmWC)	 = 94% of Original Static pressure at Fan inlet (reduction in Friction loss due to temperature reduction- given) = 94% * 860 	-808.4
Envisaged Fan Flow after PH modification	= Flow (Nm3/hr) * ((273+T _{ph-new})/273) * (10323/(10323+P _{st-new})) = 244505.5* ((273+290)/273)*(10323/(10323-808.4))	547078
Fan efficiency (%)	Already estimated above (considering the same)	78.7
Fan motor Input power in the proposed case (kW)	= ((Q (m ³ /hr)/3600)x (P _{st} (mmWC)))/102 = ((547078.7/3600)* (-16+808.4))/(102*.787*.95)	1579
Fan Power saving (kW)	=Fan power (old-new) =1812 - 1579	233
Annual Energy saving (Lakh kWh/yr)	=(power saved * Annual operating hrs)/10 ⁵ = (233* 7300) / 10^5	17.01

OR

B)	A 60 MW captive power plant (CPP) of a chemical plant has a coal fired Boiler, condensing	
	steam Turbine and Generator. The CPP after meeting its auxiliary power consumption is exporting power to the chemical plant. The operating data of CPP is as follows:	
	Generator output	: 60 MW
	Auxiliary power consumption	: 6 MW
	Steam flow to the turbine	: 231 Tons/hr
	Steam inlet pressure and temperature	: 105 kg/cm 2 (a) and 480 $^0\mathrm{C}$
	Enthalpy of inlet steam at operating pressure and tempera	uture: 793 kCal/kg
	Enthalpy of feed water to boiler	: 130 kCal/kg
	Condenser exhaust steam pressure and temperature	: 0.1 kg/cm^2 (a) and $45.5 ^{0}\text{C}$
	Enthalpy of water at operating pressure	
	and temperature of condenser	: 45.5 kCal/kg
	Latent heat of vaporisation of steam at operating	
	pressure and temperature of condenser	: 571.6 kCal/kg
	Enthalpy of exhaust steam	: 554 kCal/kg
	GCV of coal used	: 4240 kCal/kg
	Efficiency of the boiler	: 86 %
	Based on the above data, calculate the following parameters	of the power plant:
	a) Gross Heat Rate	(8 Marks)
	b) Net Heat Rate	(3 Marks)
	c) Dryness fraction of exhaust steam	(2 Marks)
	d) Condenser heat load	(3 Marks)
	e) Specific coal consumption	(2 Marks)

	f) Overall efficiency	(2 Marks)
Ans	(a) Gross heat rate	
	We have,	
	Gross heat rate= Coal consumption (kg/hr) x GCV of coal (kcal/kg)	(1)
	Generator output (kW)	
	Given Coal consumption=?	
	GCV of coal=4240 Kcal/kg	
	And	
	Boiler efficiency= Q (H-h)/ (q x GCV)	(2)
	Where, Q= Quantity of steam generation (kg/hr)=231x1000	
	H= Enthalpy of steam (Kcal/kg) =793	
	q=Coal consumption (kg/hr) =?	
	Boiler efficiency=0.86	
	Substituting the given values in equation (2) we get, $0.86=(231 \times 1000 \times (793-130))/0 \times 4240$	
	q= 42001 kg/hr	
	Substituting the calculated value of \mathfrak{q} in equation (1) we get.	
	Gross heat rate= (42001 x 4240) / (60x1000) =2968 kCal /kWh	
	(b) Net heat rate	
	we have, Net heat rate = Gross heat rate	(3)
	1—(% Auxiliary consumption/100)	
	Auxiliary consumption =6 MW Generation= 60 MW	
	% Auxiliary consumption=(6/60) x 100 = 10%	
	Substituting the values in the equation (3) we get,	
	Net neat rate= $2968/(1-10/100)= 3298$ kCal/kWn	
	(C) Dryness fraction of exhaust steam	
	Enthalpy of exhaust steam = Enthalpy of feed water + Dryness fraction of steam x L	.H. of vaporisation
	of steam Substituting the given values in the above, we get	
	554= 45.5+ dryness fraction of steam x 571.6	
	Dryness fraction of steam= (554—45.5)/571.6 = 0.889	
	(d)Condenser heat load	
	We have, heat load on condenser= Steam flow rate x L.H of vaporisation of steam of steam	x dryness fraction
	= 231x 1000 x 571.6 x 0.889	
	=117383.2 MCal/hr	

(e) Calculation of specific coal consumption
We have,
Specific coal consumption = Total coal consumption/Gross generation
= 42001 kg/hr / (60 x 1000) kW
=0.7 kg/kWh
(f) Calculation of overall efficiency of plant
Overall efficiency = 860/Gross heat rate, kCal/kWh(4)
Substituting the values we get, 860/2968 =28.98% ~= 30%
(OR)
Overall efficiency
= (Generator Output, kW x 860 kCal/kWh) / (Mass flow rate of coal kg/hr x GCV of coal, kCal/kg)
= (60 x 1000 x 860) / (42001 x 4240)
=29.98% ~= 30%

OR

Where,

W =Bone dry weight of the fabric, kg/hr

m_{in} = kg moisture / kg bone dry fabric at inlet

 $m_{out} = kg$ moisture / kg bone dry fabric at outlet

Q_{in} = Thermal energy input to the stenter (kCal/hr)

(a) Drier Efficiency

Amount of moisture removed:

Bone dry weight of fabric Hence, Total weight of inlet fabric	= (10,000 x (95%)) = 9500 kg/day = (9500)/(0.4/1.0) = 23,750 kg/day
	, 3 ,

Inlet Moisture weight

OR m _{in} = (14,250 kg/day) / (9500 kg/day) = 1.50 kg/kg dry fabric
= 10000 - 9500

Outlet Moisture weight

= 500 kg/day

= (23,750 - 9500) = 14,250 kg/day

OR m_{out} = (500 kg/day) / (9500 kg/day) = 0.053 kg/kg dry fabric

Moisture removed from fabric in Stenter

m_{in} m _{out} = 1.5 - 0.053
= 1.447 kg/kg dry fabric
$W \times (m_{in} m_{out}) = 9500 \times 1.447$
=13747 kg/day
= 573 kg/hr

OR

Moisture at I/L– moisture at O/L = (14,250-500) = 13,750 kg/day = 573 kg/hr

> Heat required for removing the moisture = $573 \times \{(80-28) + 540\}$ = 3,39,216 kcal/hr

Heat input to the Thermic	Fluid = (Firewood consumption rate x Calorific value x thermic fluid heater efficiency) = (427 kg/hr x 3600 kcal/kg x 70%) = 10,76,040 kcal/hr
Heat input to the Drier Stenter Efficiency (%)	= 10,76,040 – 20,000 = 10,56,040 kCal/hr = (Heat reqd. for removing moisture / Heat input to the stenter)
	= (3,39,216 / 10,56,040) x 100 = 32%

OR

D)	A building is currently using Vapour Compression Refrigeration (VCR) chillers for meeting		
	its cooling requirements. The following are the existing data pertaining to the building.		
	Existing System:		
	• Total Power drawn from grid for the whole		
	building including chiller loads : 1300 kW		
	• Grid Power required for VCR : 300 kW		
	• Building cooling load : 7,56,000 kCal/hr		
	Cost of Grid Power : Rs.10 /kWh		
	The management proposes to install a natural gas engine with a Waste Heat Recovery Boiler (WHRB), which will generate power as well as steam for an operating Vapour Absorption Machine (VAM). A part of the total chilling load and power requirement of the building is proposed to be met by this cogeneration system. The following are the data for the proposed system.		
	Proposed System:		
	• Total power generated from gas		
	engine co-gen plant : 1000 kW		
	• Gas engine efficiency : 40 %		
	Heat absorbed for steam generation		
	in WHRB (as a % of heat input to gas engine) : 21 %		

	• Specific steam consumption for	VAM : 5 kg/TR	
	Calorific value of Natural Gas	: 8500 kcal/sm ³	
	Cost of Natural Gas	: Rs.40/sm ³	
	Annual operating hours	: 4000	
	• Total enthalpy of steam	: 660 kCal/kg	
	• Feed water temperature to WHR	B : 60 ⁰ C	
	Calculate the following:		
	• Cost of generating one unit of ele	ectricity from the gas engine? (5 marks)	
	• TR generated from Vapour Absor	ption Chiller driven by WHRB generated steam?	
		(5 Marks)	
	• Total energy cost of existing &	proposed system and state whether the proposed	
	scheme is viable?	(10 marks)	
Ans	1. Cost of generating one unit of electricity fro	om gas engine?	
	Fuel Consumption	= 1000 kW X 860 / (0.4 X 8500) = 252.94 sm³/hr	
	 Cost per unit of electricity from gas engine = (252.94 sm³/hr X 40 Rs./ sm³) / 1000 kW = Rs.10.12/ kWh 2. TR generated from VAM driven by WHRB generated steam? Heat absorbed by WHRB for Steam generation = 21% x (252.94 x 8500) = 451497.9 kcal /hr 		
	 Amount of steam generated 	= 451497.9/(660-60) = 752.49 kg/hr	
	 TR generated by VAM 	= 752.49/5 = 150.49 TR	
	3. Techno-economic viability of the proposed	scheme?	
	 Present cost of Electricity (Grid) 	= 1300 x 10 = 13,000 Rs./hr	
	Proposed Scheme		
	Cost of NG for Electricity	= 252.94 sm ³ /hr X 40 Rs./ sm ³ = 10,118 Rs./hr	
	• TR required by the building	= 756000/3024 = 250 TR	
	• Energy performance of chiller (VCR)	= 300/250 = 1.2 kW/TR	

Cost of Electricity from Grid to meet the balance	e chiller load
	$= (250-150.49) \times 1.2 \times 10$
	= 1194.12 Rs./ nr
 Total energy cost with proposed system 	= 10118 +1194.12
	= 11,312.12 Rs./hr
Proposed project is viable, because total cost is scheme.	less in proposed scheme than in present

..... End of Section - III