19th NATIONAL CERTIFICATION EXAMINATION

FOR

ENERGY MANAGERS & ENERGY AUDITORS – SEPTEMBER, 2018

PAPER – 3 : ENERGY EFFICIENCY IN ELECTRICAL UTILITIES

Section – I: OBJECTIVE TYPE

- (i) Answer all **<u>50</u>** questions
- (ii) Each question carries **<u>One</u>** mark
- (iii) Please hatch the appropriate oval in the OMR answer sheet with **HB pencil only**, as per instructions

1.	Select the incorrect statement:						
	a)	Harmonics occur	as spikes at inte	ervals which are	multiples of the supply frequency		
	b)	Devices that d	raw sinusoidal	currents whe	n a sinusoidal voltage is applied		
	<u>cre</u>	eate harmonics					
	c)	Harmonics are m	ultiples of the su	ipply frequency			
	d) Transformers operating near saturation level create harmonics						
2.	The illu	minance is 10 lm/	m ² from a lamp a	at 1 meter dista	nce. The illuminance at half the		
	distance	e will be					
	a)	None of the below	V	b)	10 lm/m ²		
	c)	5 lm/m^2		d)	<u>40 lm/m²</u>		
3.	In an er	ngine room 15 m lo	ong, 10 m wide a	nd 4 m high, ve	ntilation requirement in m3/hr		
	for 20 a	ir changes/hr is					
	a)	None of the below	V	b)	9000		
	c)	<u>12000</u>		d)	6000		
4.	A packa	ge air conditioner	of 5 TR capacity	delivers a coolir	ng effect of 4 TR. If Energy		
	Efficien	cy Ratio (W/W) is 2	2.90, the power i	n kW drawn by	compressor would be:		
	a)	None of the below	V	b)	1.38		
	c)	1.724		d)	<u>4.84</u>		
5.	A 5 kVA	r, 415 V rated pov	ver factor capacit	tor was found to	be having 5.5 kVAr operating		
	capacity	v. The operating st	upply voltage at 1	the same supply	r frequency would be		
	approxi	mately.					
	a)	None of the below	V	b)	415 V		
	c)	<u>435 V</u>		d)	400 V		
6.	The Sola	ar Heat Gain Coeff	icient (SHGC) of	window of a bui	lding is 0.30. This means that		
	a) Th	e window reflects l	back to exterior a	a minimum of 30	0 % of the sun's heat		
	b) <u>Th</u>	e window allows	30 % of the sun	's heat to pass	through into the building interior		
	c) 70	% of the sun's hea	at is incident on	the window			
	d) Th	e window allows 7	0 % of the sun's	heat to pass thr	ough into interior of the buildings		

Marks: 50 x 1 = 50

7.	The most energy intensive heat transfe	er loop of a vap	our c	compression refrigeration
	system is:			
	a) <u>Condenser water loop</u>		b)	Chilled water loop
	c) Refrigerant loop		d)	Indoor air loop
8.	One of the thermal power plants opera	ting with 2 no	s. of S	500 MW units has reported the
	operating heat rate of 11250 kJ/kW. T	`he Plant Load	Facto	or (PLF) of the power plant is 73
	%.	1 / 111		
	The operating efficiency of the power p	lant will be	b)	25.0/
	a) 32.70		D) 1)	
	c) 30 %		d)	38 %
9.	Aggregate Technical & Commercial los	s in distributio	on sys	stem covers
	a) Energy and monetary loss	b)	Tra	ansmission & distribution loss
	c) Only transmission losses	d)	[2]	R losses of all transformers
10.	The power measured in a boiler ID fan	is 52 kW oper	rating	at 49 Hz. As an energy
	conservation measure the Variable Fre	equency Drive	(VFD)	was installed and the fan was
	operated at 34 Hz. The estimated powe	er savings will	be	
	a) 35.7 kW		b)	17.2 kW
	c) <u>34.7 kW</u>		d)	36 kW
11.	The isothermal power of a 500 cfm air	compressor is	72 k	W and the efficiency is 78 %.
	The actual power drawn by the compre	essor will be		
	a) None of the below		b)	<u>92 kW</u>
	c) 72 kW		d)	56 kW
12.	A heat pump used in a heat recovery a	pplication ext	racts	66220 kcal/hr and the power
	consumed by the heat pump is 23 kW	. The estimated	d hea	t supplied by the heat pump is
			• •	45000 1 1/1
	a) <u>86000 kcal/hr</u>		b)	47300 kcal/hr
	a) <u>86000 kcal/hr</u> c) 86860 kcal/hr		b) d)	47300 kcal/hr 2916 kcal/hr
13.	 a) <u>86000 kcal/hr</u> c) 86860 kcal/hr A coal fired boiler primary air fan is m 	aintaining a ve	b) d) clocity	47300 kcal/hr 2916 kcal/hr 7 pressure of 70 mmWC and the
13.	 a) <u>86000 kcal/hr</u> c) 86860 kcal/hr A coal fired boiler primary air fan is mair temperature is 380C. The density coal fired boiler primary air fan is mair temperature is 380C. 	aintaining a ve of the air is 1.1	b) d) clocity 35 kg	47300 kcal/hr 2916 kcal/hr y pressure of 70 mmWC and the g/m3 and the pitot tube constant
13.	 a) <u>86000 kcal/hr</u> c) 86860 kcal/hr A coal fired boiler primary air fan is mair temperature is 380C. The density of is 0.85. The velocity of air in m/sec with the bolt of the bolt. 	aintaining a ve of the air is 1.1 Il be	b) d) elocity 35 kg	47300 kcal/hr 2916 kcal/hr 7 pressure of 70 mmWC and the g/m3 and the pitot tube constant
13.	 a) <u>86000 kcal/hr</u> c) 86860 kcal/hr A coal fired boiler primary air fan is mair temperature is 380C. The density of is 0.85. The velocity of air in m/sec with a) None of the below 	aintaining a ve of the air is 1.1 Il be	b) d) elocity 35 kg b)	47300 kcal/hr 2916 kcal/hr 7 pressure of 70 mmWC and the g/m3 and the pitot tube constant 29.56
13.	 a) <u>86000 kcal/hr</u> c) 86860 kcal/hr A coal fired boiler primary air fan is mair temperature is 380C. The density of is 0.85. The velocity of air in m/sec with a) None of the below c) 28.67 	aintaining a ve of the air is 1.1 ll be	b) d) elocity 35 kg b) d)	47300 kcal/hr 2916 kcal/hr 7 pressure of 70 mmWC and the g/m3 and the pitot tube constant 29.56 25.6
13.	 a) <u>86000 kcal/hr</u> c) 86860 kcal/hr A coal fired boiler primary air fan is mair temperature is 380C. The density of is 0.85. The velocity of air in m/sec wi a) None of the below c) 28.67 A two stage air compressor drawing 75 	aintaining a ve of the air is 1.1 Il be 5 kW has heat	b) d) elocity 35 kg b) d) reject	47300 kcal/hr 2916 kcal/hr 7 pressure of 70 mmWC and the g/m3 and the pitot tube constant 29.56 25.6 tion of 862 kCal/kWh.
13.	 a) <u>86000 kcal/hr</u> c) 86860 kcal/hr A coal fired boiler primary air fan is mair temperature is 380C. The density of is 0.85. The velocity of air in m/sec wi a) None of the below c) 28.67 A two stage air compressor drawing 75. The required capacity of the cooling to of 5 0C will be TR 	aintaining a ve of the air is 1.1 Il be 5 kW has heat wer when the o	b) d) elocity 35 kg b) d) reject	47300 kcal/hr 2916 kcal/hr 7 pressure of 70 mmWC and the g/m3 and the pitot tube constant 29.56 25.6 tion of 862 kCal/kWh. ting temperature difference

	c)	22.93		d)	21.55
15.	The star	rating scheme of Fluorescent Tube lig	ht as	per Bl	EE Standards & Labelling
	Scheme	is based on			
	a)	<u>Lumen per Watt at different</u>		b)	Lux per Watt
		operating hours			
	c)	Lux per Watt per m ²	Ċ	l) Lu	men Output
16.	A pump	with 230 mm diameter impeller is del	iverir	ng a flo	w of 150 m3/hr. If the flow is to
	be redu	ced to 110 m3/hr by trimming the imp	eller,	what	should be the approximate
	impeller	size ?			
	a)	207 mm		b)	175 mm
	c)	<u>169 mm</u>		d)	195 mm
17.	Which o	of the following incandescent bulbs will	have	the le	ast resistance ?
	a)	<u>115 V, 100 W</u>		b)	220 V, 100 W
	c)	115 V, 60 W		d)	220 V, 60 W
18.	In a roll	ing mill, the loading on the transforme	r was	1200	kVA with the power factor of
	0.86. Tł	ne plant improved the power factor to	0.98 1	by add	ling capacitors. What is the reduction
	in kVA î	2			
	a)	163.3	b)	<u>14</u>	7
	c)	171	d)	144	1
19.	A 22 kW	7, 415 V, 45 A, 0.8 pf, 1475 rpm, 4 pole	e 3 ph	nase in	duction motor operating at
	420 V, 4	40 A and 0.8 pf. What will be the motor	effici	iency ?	
	a)	None of the below		b)	94.5 %
	c)	89.9 %		d)	<u>85.0 %</u>
20.	The pur	pose of inter-cooling in a multistage co	mpre	ssor is	s to
	a)	None of the below	b) <u>F</u>	Reduce	e the work of compression
	c)	Separate moisture and oil vapour	d)	Incre	ase the pressure of air
21.	One ton	of refrigeration is not equal to	•		
	a)	<u>860 kCal/hr</u>		b)	3.51 kW
	c)	12000 Btu/hr		d)	3024 kCal/hr
22.	If two id	entical pumps operate in series, their	shut-	off hea	ld is
	a)	Less than double		b)	More than double
	c)	Doubled		d)	Not affected
23.	Which o	of the following is not a part of vapour of	compr	ression	refrigeration cycle ?
	a)	Generator		b)	Evaporator
	c)	Condenser		d)	Compressor

24.	If the power consumed by an air conditioner compressor is 1.7 kW per ton of				
	referigeration, then its energy efficiency ratio (Watt	/Watt)	is		
	a) None of the below	b)	<u>2.1</u>		
	c) 0.59	d)	1.7		
25.	The adsorption material used in an adsorption air	dryer is	3		
	a) Potassium chloride	b)	Magnesium chloride		
	c) Activated alumina	d)	Calcium chloride		
26.	The cooling tower size is to the enter heat load, range and approach are constant.	ering W	et Bulb Temprature (WBT), when the		
	a) None of below	b)	Inversely proportional		
	c) Constant	d)	Directly proportional		
27.	The T5, T8 and T12 fluorescent tube light are cate	gorized	based on		
	a) Power consumption	b)	Length of the tube		
	c) Both diameter and length of the tube	d)	Diameter of the tube		
28.	If the wet bulb temperature of air is $38~^{0}$ C, then it?	s relativ	ve humidity is%.		
	a) <u>Insufficient data</u>	b)	90 %		
	c) 100 %	d)	38 %		
29.	The hydraulic power in a pumping system depends	s on			
	a) <u>None of the below</u>	b)	Motor efficiency		
	c) Both motor and pump efficiency	d)	Pump efficiency		
30.	Small diameter by-pass lines are installed in pump	os some	times to		
	a) Reduce pump power consumption	b)	Control pump delivery head		
	c) Prevent pump running at zero flow	d)	Save energy		
31.	It is acceptable to run pumps in parallel provided t	heir	are similar		
	a) Total head at full flow	b)	Discharge heads		
	c) <u>Closed valve heads</u>	d)	Suction heads		
32.	L / G ratio in a cooling tower is the ratio of				
	a) Air mass flow rate and water flow rate	b) Lei	ngth and Temperature gradient		
	c) <u>Water flow rate and air mass flow rate</u>	d)	Length and girth		
33.	Fiberglass Reinforced Plastic (FRP) fans consume l	ess ene	rgy than aluminum fans because		
	a) They deliver less air flow	b)	<u>They have better efficiencies</u>		
	c) They encounter less system resistance	d)	They are lighter		
34.	Ratio of luminous flux (lumen) emitted by a lamp t	o the p	ower consumed (watt) by the		
	lamp is called				
	a) Luminance	b)	Luminous efficacy		
	c) Reflectance	d)	Luminous intensity		

35.	Illumina	ance of a surface is expressed in			
	a)	LPD		b)	Lux
	c)	Lumens		d)	Radians
36.	Use of s	soft starters for induction motors resu	lts in	L	
	a)	All the below		b)	Lower power factor
	c)	Higher maximum demand		d)	Lower mechanical stress
37.	The Energy Performance Index (EPI) of a building as per Energy Conservation Building Code (ECBC) and as defined in the Energy Conservation Act, 2001 is:				
	a)	kWh per year b) kWh per square meter			
	c)	kW per square meter	d)	<u>kWh p</u>	er square meter per year
38.	Energy	Conservation Act covers buildings have	ving a	a conneo	cted load of
	a)	All buildings with HT connection		b)	100 kVA and above
	c)	500 kW and above		d)	100 kW and above
39.	In a sol	ar PV system the conversion from DC	to A	C is carr	ied out by
	a)	Inverter		b)	Charger
	c)	Battery		d)	Converter
40.	The inle	et air temperature to a two stage recip	rocat	ing air c	compressor is 35 0C. At which of
	the follo	owing 2nd stage inlet temperature's th	ne cor	npresso	r will consume least power ?
	a)	<u>50 °C</u>		b)	65 ⁰ C
	c)	60 °C		d)	75 ⁰ C
41.	A fan is	drawing 16 kW at 800 RPM. If the sp	eed i	s reduce	ed to 600 RPM then the power
	drawn l	by the fan would be			
	a)	None of the below		b)	9 kW
	c)	<u>6.75 kW</u>		d)	12 kW
42.	In whic	h of the following fans air enters and l	leave	s the far	n with no change in direction ?
	a)	<u>Propeller</u>		b)	Backward curved
	c)	Radial		d)	Forward curved
43.	Increas	ing the Cycles of Concentration (C.O.C	C) of o	circulati	ng water in a cooling tower,
	the blow	w down quantity will			
	a)	None of the below		b)	Decrease
	c)	Not change		d)	Increase
44.		can be achieved using infrared, ac	ousti	c, ultras	sonic or microwave sensors for
	energy	efficient lighting control.			
	a)	Localized switching		b)	Daylight-linked control
	c)	Occupancy-linked control		d)	Time-based control

45.	The 5 th and 7 th harmonic in a 50 Hz power supply system will have:				
	a) No voltage and current distortion at all				
	b) Voltage and current distortions with 500 Hz & 700 Hz				
	c)	Voltage and current distortions wit	h 250 H	Iz &	<u>350 Hz</u>
	d)	Voltage and current distortions with 5	5 Hz &	57 I	łz
46.	A 7.5 kV	W, 415 V, 15 A, 970 RPM, 3 phase rate	d induc	tion	motor with full load efficiency of
	86 % dr	aws 7.5 A and 3.23 kW of input power.	. The pe	rcer	tage loading of the motor is
	about				
	a)	None of the below		b)	43 %
	c)	50 %		d)	<u>37 %</u>
47.	A two p	ole induction motor operating at 50 Hz,	, with 1	% s	lip will run at an actual speed of
	a)	None of the below	b)	303	30 RPM
	c)	<u>2970 RPM</u>	d)	300	DO RPM
48.	The valu	ie, by which the pressure in the pump	suction	exc	eeds the liquid vapour pressure,
48.	The valu is expre	ie, by which the pressure in the pump ssed as	suction	exc	eeds the liquid vapour pressure,
48.	The valu is expre a)	ue, by which the pressure in the pump ssed as Suction head	suction b)Stat	exc	eeds the liquid vapour pressure, ead
48.	The valu is expre a) c)	ue, by which the pressure in the pump ssed as Suction head Dynamic head	suction b)Stat d) <u>N</u>	exc ic he et p	eeds the liquid vapour pressure, ead ositive suction head available
48.	The valu is expre a) c) Which c	ue, by which the pressure in the pump ssed as Suction head Dynamic head of the following ambient conditions will	suction b)Stat d) N evapora	exc ic ho et p	eeds the liquid vapour pressure, ead ositive suction head available ninimum amount of water in a
48. 49.	The valu is expre a) <u>c)</u> Which c cooling	ae, by which the pressure in the pump ssed as Suction head <u>Dynamic head</u> of the following ambient conditions will tower ?	suction b)Stat d) N evapora	exc ic ho et p	eeds the liquid vapour pressure, ead <u>ositive suction head available</u> ninimum amount of water in a
48. 49.	The valu is expre a) c) Which c cooling a)	ue, by which the pressure in the pump ssed as Suction head Dynamic head of the following ambient conditions will tower ? 35 °C DBT and 29 °C WBT	suction b)Stat d) N evapora	exc ic ho et p ate n b)	eeds the liquid vapour pressure, ead ositive suction head available ninimum amount of water in a 38 °C DBT and 31 °C WBT
48.	The valu is expre a) c) Which c cooling a) c)	ae, by which the pressure in the pump ssed as Suction head Dynamic head of the following ambient conditions will tower ? 35 °C DBT and 29 °C WBT <u>38 °C DBT and 37 °C WBT</u>	suction b)Stat d) N evapora	exc ic ho et p ute n b) d)	eeds the liquid vapour pressure, ead ositive suction head available ninimum amount of water in a 38 °C DBT and 31 °C WBT 35 °C DBT and 30 °C WBT
48. 49. 50.	The value is expresed a) c) Which co cooling a) c) A fan is	ae, by which the pressure in the pump ssed as Suction head Dynamic head of the following ambient conditions will tower ? 35 °C DBT and 29 °C WBT <u>38 °C DBT and 37 °C WBT</u> operating at 970 RPM developing a flow	suction b)Stat d) N evapora w of 300	exc ic ho et p ite n b) d) 00 N	eeds the liquid vapour pressure, ead <u>ositive suction head available</u> ninimum amount of water in a 38 °C DBT and 31 °C WBT <u>35 °C DBT and 30 °C WBT</u> m3/hour at a static pressure of
48. 49. 50.	The value is expresed a) c) Which co cooling a) c) A fan is 650 mm	 ae, by which the pressure in the pump ssed as Suction head Dynamic head of the following ambient conditions will tower ? 35 °C DBT and 29 °C WBT <u>38 °C DBT and 37 °C WBT</u> operating at 970 RPM developing a flow WC. If the speed is reduced to 700 RPI 	suction b)Stat: d) N evapora w of 300 M, the s	exc ic ho et p tte n b) d) 00 N tatio	eeds the liquid vapour pressure, ead ositive suction head available ninimum amount of water in a 38 °C DBT and 31 °C WBT 35 °C DBT and 30 °C WBT m3/hour at a static pressure of c pressure (mmWC) developed
48. 49. 50.	The value is expresed a) c) Which co cooling a) c) A fan is 650 mm will be	 ae, by which the pressure in the pump ssed as Suction head Dynamic head of the following ambient conditions will tower ? 35 °C DBT and 29 °C WBT <u>38 °C DBT and 37 °C WBT</u> operating at 970 RPM developing a flow a flow 	suction b)Stat d) N evapora w of 300 M, the s	exc ic ho et p tte n b) d) 00 N tatio	eeds the liquid vapour pressure, ead ositive suction head available ninimum amount of water in a 38 °C DBT and 31 °C WBT 35 °C DBT and 30 °C WBT m3/hour at a static pressure of c pressure (mmWC) developed
48. 49. 50.	The value is expresed a) c) Which of cooling a) c) A fan is 650 mm will be a)	 a, by which the pressure in the pump ssed as Suction head Dynamic head of the following ambient conditions will tower ? 35 °C DBT and 29 °C WBT 38 °C DBT and 37 °C WBT operating at 970 RPM developing a flow WC. If the speed is reduced to 700 RPI 	suction b)Stat d) N evapora w of 300 M, the s	exc ic ho et p tte n b) d) 00 N tatio b)	eeds the liquid vapour pressure, ead ositive suction head available ninimum amount of water in a 38 °C DBT and 31 °C WBT 35 °C DBT and 30 °C WBT m3/hour at a static pressure of c pressure (mmWC) developed 650

----- End of Section - I ------

Section - II: SHORT DESCRIPTIVE QUESTIONS

Marks: 8 x 5 = 40

- (i) Section II contains **<u>Eight</u>** questions (S1- S8)
- (ii) Each question carries **<u>Five</u>** marks

S-1	S-1 During the performance evaluation of a DG set, the following parameters were noted					
	Capacity of DG set	1500	kVA			
	Test duration	36	minutes			
	Units generated	442	kWh			

	Average Power factor	0.92	pf	
	Length of diesel tank	90	cm	
	Width of diesel tank	90	cm	
	Height of the diesel tank	90	cm	
	Initial tank dip level (from top)	63	cm	
	Final tank dip level (from top)	79	cm	
	Calculate the following:			
	1. Diesel consumption (Litres)	(1 Mark)		
	2. Average load (kW)	(1 Mark)		
	3. Percentage Loading (%)	(2 Marks)		
	4. Specific power generation (kWh/Litre)	(1 Mark)		
	1. Diesel Consumption =	0.9x0.9x0.16	=129.6 Liters	•
Ans	2. Average load (kW) =	(442/36)x60	=736.7 kW	
	3. Percentage Loading (%) =	(736.7/.92)/150	0 =53%	
	4. Specific power generation (kWh/Litre)	(442/129.6)	=3.41 kWh/I	itre
S-2	In a Thermal Power Station, the steam inc	out to a turbine ope	erating on a fully co	ondensing
	mode is 100 TPH. The heat rejection requi	rement of the stear	m turbine condens	er is 555
	kcal/kg of steam condensed. The tempera	ture of cooling wat	er at the inlet and	outlet of the
	tenting on steam condensed. The tempera	entire les Einel east d		
	turbine condenser is 27 °C and 37 °C resp	bectively. Find out	the circulating cool	ing water
	flow.			
Ans	The quantum of heat rejected in the turbin	ne condenser		
	= Ouantum of steam condensed (k	g) x heat rejection ((kcal/kg)	
	$= 100\ 000\ x\ 555$ = 55.5 Millio	n kcal/h		
	Heat gained by circulating cooling water =	Heat rejected in th	e condenser	
	Circ	ulating appling wat	or flow	
	$= 100,000 \times 555 / (37-27) \times \text{specification}$	ic heat (1)		
	= 5550 m ³ /hr			
S-3	A medium sized engineering industry has B. Compressor-A is operating at full load condition. The load power of both the con Compressor-B is 26 kW. Both the com percentage loading of the Compressor-B leakage in the system, the loading of the energy savings per day.	and Compressor- mpressor is 74 kW pressors are oper during working da compressor was fo	CFM screw compu- B is running in low and the unload p- ated during working by is 64 %. After a bound to be 35 %. E	ressors, A & ad – unload ower of the ing day.The rresting the Stimate the

Ans	Existing Case:	74 1-111			
	Energy consumed per hour by Compressor -A=	14 KW 0.64 x 74 ± 0.36 ¥ 96 = 56.79 1-34			
	Total energy consumed (Compressor A& B) = 7	74 + 5672 = 13072 kW/hr			
	Energy consumed per day= 130.72×24 hrs = 3	137.3 kWh/day			
	Leakage Calculation:	101.0 http://day			
	Energy consumed per hour by Compressor -B= $0.64 \times 74 + 0.36 \times 26 = 56.72 \text{ kW}$				
	Energy consumed per hour by Compressor -B=	0.35 x 74 + 0.65 X 26 = 42.8 kW			
	Difference in power consumption = 56.72 - 42	.8 = 13.92 kW/hr			
	Savings by arresting leakage per day= 13.92 X 2	24 = 334 kWh/day			
S-4	A plant is operating a chilled water system always at full load. The chilled water inlet and outlet temperatures are 12 °C and 7 °C respectively. The chilled water pump discharge pressure is 3.6 kg/cm ² g and the suction is 5 meters above the pump centreline. The power drawn by the chilled water pump's motor is 70 kW and an efficiency of 90 %. The chilled water pump efficiency at the operating point from pump characteristic curve is 60 %. Find out the operating refrigeration load in TR				
Ans	Total head	36 – 5 = 31 m			
	Pump shaft power	70 x 0.9			
		63 kW			
	Flow rate	(63 x 1000) X 0.6 / 31 x 1000 x 9.81			
		0.124297 m³/s			
		447.5 m ³ /hr			
	Refrigeration load	(447500 x 5) / 3024			
		740 TR			
S-5	How does a motor lose its efficiency upon rewine What two parameters will indicate the efficacy o	ding? (2.5 Marks) f the rewinding? (2.5 Marks)			
Ans	• Refer Guide Book No 3, Chapter 2, Page No	61			
	The operating data of an induced draft-cooling t	ower is as follows:			
S-6	Observed range	: 8 ⁰ C.			
	Cooling water flow rate	: 12,500 m ³ /hr			
	Drift loss	: 0.1 % of circulation rate			
	Wet Bulb Temperature	: 27 ⁰ C			
	Ambient Dry Bulb Temperature	: 35 °C			
	Effectiveness	: 67 %			
	Cycle of Concentration	: 3			
	Estimate the evaporation loss; make up water requirement and TR load of cooling tower.				

Ans	Evaporation loss = $0.00085 \times 1.8 \times 12500 \times 8 = 153 \text{ m}^3/\text{hr}$ Blow Down = $153 / (3-1) = 76.5 \text{ m}^3/\text{hr}$ Make up = $153 + 76.5 + (12500*0.001) = 242 \text{ m}^3/\text{hr}$ Heat load = $12500*1000*8/3024 = 33069 \text{ TR}$
S-7	List any five benefits of power factor improvement in an industrial power distribution system.
Ans	Refer Guide Book No 3, Chapter 1, Page No 11
S-8	In an air washer of a textile humidification system with an airflow of 3000 m3/h at 25 0C and 10 % relative humidity is humidified to 60 % relative humidity by adding water through spray nozzles. The specific humidity of air at inlet and outlet are 0.002 kg/kg of dry air and 0.0062 kg/kg of dry air respectively. The density of air at 25 0C is 1.184 kg/m3. Calculate the amount of water required in kg/hr.
Ans	The amount of water required: $mw = v \rho (\bigcup out - \bigcup in) $ $= 3000 \times 1.184 \times (0.0062 - 0.002)$
	= 14.9 kg/h

----- End of Section - II ------

Section – III: LONG DESCRIPTIVE QUESTIONS

Marks: 6 x 10 = 60

- (i) Section III contains <u>Six</u> questions (L1- L6)
- (ii) Each question carries **<u>Ten</u>** marks

L-1 A 7.5 TR package air conditioner is provided for a UPS room for removing the heat generated from the UPS of rated capacity 40 kVA. The following parameters were noticed while performing the assessment of the total system.

UPS Parameters:

Rating		Input Power (kW)	Output Power (kW)		
	On Load (16 hrs) 11.94		8.61		
40 kVA	No Load (8 hrs)	1.16	0.00		
Air conditioner par Installed capacity	rameters: y of Air conditioner		7.5	TR	
Outdoor unit (condenser) air velocity			6.1	m/s	
Radius of the fan opening at the point of velocity measurement in outdoor unit			0.30	m	
Air Density			1.174	kg/m ³	

	Ambient temperature		305	0K	
	Temperature of hot air (condenser outlet)	:	313.5	⁰ K	
	Specific heat of air		1.009	kJ/kg K	
	Power drawn by the compressor		5.40	kW	
	Efficiency of the compressor motor		90	%	
	Calculate				
	a) Present delivery capacity of air conditioner (TR)			(3 Marks)	
	b) Power drawn per TR of refrigeration			(3 Marks)	
	c) Calculate the annual energy savings for 7200 hrs, if t air-conditioned ventilated area. Assume energy cost Rs	ne UPS i .8/kWh	s relo	cated to a (4 Marks)	non
			T		
Ans	Capacity Installed	7.5	TR		
	Outdoor unit air velocity	6.1	m/s		
	Radius of the opening	0.30	m		
	Area of cross section (3.14x0.3 ²)	0.283	m²		
	Total Air flow (0.283x6.1)	1.72	m³/s		
	Density of the air	1.174	kg/m	1 ³	
	Mass of air, m (1.72x1.174)	2.02	kg/s		
	Ambient temperature, T1	305	°К		
	Air temperature, T2	313.5	°К		
	Difference in Temperature (T2-T1), (dT)	8.5	°К		
	Specific Heat at Constant pressure, cp	1.009	kJ/kg	gΚ	
	Heat Transfer (mxCpx(T2-T1))	17.32	kJ/s		
	Heat transfer per hour	62352	kJ/hr		
		14917	kcal/	Hr	
	Heat input from the compressor (5.4x0.9x860)	4180	kcal/	Hr	
	Evaporator heat load (14949-4180)	10737	kcal/	Hr	
	1 Tonne of refrigeration	3024	kCal/	′Hr	

E	Effective TR					3.55	TR	
P	ower drawn	by the com	npressor			5.40	kW	
р	power taken per TR of refrigeration				1.52 kW/TR		R	
		Heat Lo	oad generat	ed by UPS	in Conditio	ned Space		
	Input Output				Heat Load			
Ratin	g/ Location	Power (kW)	Power (kW)	(kW)	kCal/Sec	kCal/Hr	TR/hr	Total TR/day
40 kV/	On Load (16hrs)	11.94	8.61	3.33	0.80	2880	0.95	15.2
	No Load (8hrs)	1.16	0	1.16	0.28	1008	0.33	2.64
			Т	otal				17.84
operation is given below. AC Load generated by UPS/ day = 17.84 TR Power taken by AC to generate 17.82 TR at 1.52 kW/ TR = 27.12 kW Annual energy savings at 300 days of operation = 8136 kWh								
Cost of	Cost of power = Rs.8/			= Rs.8/ k	kWh			
Annual	Annual Cost Savings = Rs.65			= Rs.65,	,088/-			
One of the textile processing plants has installed two numbers of 6 MW gas turbines and also Heat Recovery Steam Generator (HRSG) to generate steam from the hot gases. The steam generated from HRSG is utilized for process steam requirement and also for 500 TR Vapour Absorption Machine (VAM). The VAM consumes 4.4 kg steam per TR and is operated at full load. Due to increase in gas price the plant has stopped gas turbine operations and avails power supply from the grid. To meet the steam requirement the plant has installed two numbers of 10 TPH Agro Waste Boilers and steam is supplied to the process plant as well as to VAM machine. The average cost of steam is Rs.1200/- per ton from agro waste boiler. The plant operates for 7000 hours in a year.								

	Compare the annual operating costs of electrical chiller and VAM. The cost of grid power is				
	Rs 6.12/kWh. Consider all the other auxiliary power remains same in both the cases.				
	Do you agree with the management decision of operating VAM machine for chilling requirements?				
Ans	Capacity of VAM Machine = 500 TR				
	Steam required/TR =4.4 Kg/TR				
	Total Steam requirement $= 500 \text{ X } 4.4 = 2200 \text{ Kg/hr} = 2.2 \text{ TPH}$				
	Cost of steam from Agro Boiler $= 2.2 \text{ X } 1200 = \text{Rs } 2640 / \text{hr}$				
	Power consumed by electric chiller = $0.7 \times 500 = 350 \text{ kW}$				
	Cost of electricity $= \text{Rs } 6.12/\text{kWh}$				
	Operating cost of electric chiller $= 350 \times 6.12 = \text{Rs } 2142$				
	Savings by Electric chiller $= 2640 - 2142 = Rs.498/hr$				
	Annual operating savings $= 7000 \text{ X } 498 = \text{Rs } 34,86,000/\text{-}$				
	Disagree with the management decision.				
L-3	A distribution company has taken initiatives to reduce Aggregate Technical &Commercial				
	(AT & C) loss in their network. The energy supplied, received and revenue details are given				
	below :				
	Input energy = 60 MU				
	Metered Billed Energy = 43 MU				
	Average Billing= 3 MU				
	Amount Billed=Rs. 540 Million				
	Arrears collected = Rs. 80 Million				
	Amount received = Rs. 470 Million				
	a) Estimate the following : (each carries 2.5 Marks)				
	i) AT & C loss in % and revenue realized in Rs./kWh.				
	ii) Revenue loss per kwh and monthly loss, if the purchased energy cost is Rs. 8.10/kWh				
	b) List five measures to reduce commercial loss in the network (5 Marks)				
Ar ₂	a)				
Alls	Billing efficiency = $(43+3)/60 \times 100 = 76.7 \%$				
	Collection officiency = $((470, 80)/(540) \times 100 = 70.0.0)$				
	Conection enciency = $((470-80)/540) \times 100 = 72.2\%$				
	AT&C Loss = 1- (Billing efficiency x Collection Efficiency) x 100				

	= 1.	· (0.767 x 0.722) X100 = 44.62 %			
	Revenue realised / kwh = $(470-80)/60 = \text{Rs} 6.5/\text{kWh}$				
	Revenue loss / kwh = Rs 8.10- 6.5 = Rs. 1.6/kWh				
	Monthly Revenue loss = 60 X 1.6 = Rs 96 Million or (Rs.9,60,00,000/-)				
	b) Few measures to reduce commercial losses in distribution system include:				
	Refer Guide Book No 3, Chapter 1, Page No 27				
	Write short notes on	the following with respect to the compressed air system :			
L-4	(each carries 2	.5 Marks)			
	b) Heat of con	on drier			
	c) Role of air	receiver			
	d) Dew point				
Ans	 a) Refer Guide Book No 3, Chapter 3, Page No 94 b) Refer Guide Book No 3, Chapter 3, Page No 95 c) Refer Guide Book No 3, Chapter 3, Page No 97 d) Refer Guide Book No 3, Chapter 3, Page No 93 				
L-5	In a boiler, the forced	l draught fan develops a total static pressure of 300 mmWC.			
	Determine the shaft	power (in kW) required to drive the fan if 10,000 kg of coal is burnt			
	per hour with 13 kg	of air per kg of coal burnt. The boiler house temperature is 20 0C and			
	static efficiency of the fan is 80 %.				
	The operating air density may be calculated from the following:				
	R = 847.84 mmWC m ³ /kg mole K and Molecular weight of air, M = 28.92 kg/kg mole.				
Ans	Total Pressure = 300 mm of WC				
	Mass of air handled, m = 10000 × 13/ 3600 = 36.11 kg/s				
	Atmospheric pressure, $P = 1 \text{ kg/ cm} 2 = 10 \text{ mtr of WC} = 10,000 \text{ mm of WC}.$				
	Temperature T = $20 + 273 = 293$ K				
	Gas Constant for air, R = 847.84 mm WC m3/kg mole K				
	Molecular weight of air, M = 28.92 kg/kg mole				
	Density, kg/m3	= (P x M) / (R X T) = (10000 x 28.92) / (847.84 x 293) = 1.164 kg/m ³			
	Volume in m3/s	= mass (kg/s) / density (kg/m3) = 36.11 / 1.164 = 31.02 m ³ /s			
	Power to fan shaft, kW = [Volume (m3/s) x Total pressure (mm of WC)] / [102 x fan efficiency] = [31.02 x 300] / [102 x 0.8] = 114 kW				

L-6	A food processing plant has a contract demand of 2500 kVA with the power supply				
	company. The average maximum demand of the plant is 2000 kVA at a power factor of				
	0.95.				

The maximum demand is billed at the rate of Rs.300/kVA. The minimum billable maximum demand is 75 % of the contract demand. An incentive of 0.5 % reduction in energy charges component of electricity bill are provided for every 0.01 increase in power factor over and above 0.95. The average energy charge component of the electricity bill per month for the company is Rs.10 lakhs.

The plant decides to improve the power factor to unity. Determine the power factor capacitor kVAr required, annual reduction in maximum demand charges and energy charge component. What will be the simple payback period if the cost of power factor capacitors is Rs.800/kVAr ?

kW drawn	$2000 \ge 0.95 = 1900 \ge 0.000 \ge 0.000 \ge 0.000 \ge 0.0000 \ge 0.0000 \ge 0.00000 \ge 0.00000000$
Kvar required to improve power factor from 0.95 to 1	kW (tan θ 1 – tan θ 2)
	kW (tan (cos- θ 1) – tan (cos- θ 2)
	1900 (tan (cos-0.95) – tan (cos-1)
	1900 (0.329 - 0)
	625 kVAr
Cost of capacitors @Rs.800/kVAr	Rs.5,00,000
Maximum demand at unity power factor	1900/1 = 1900 kVA
75 % of contract demand	1875 kVA
Reduction in Demand charges	100 kVA x Rs.300
	Rs.30000 x 12
	Rs.3,60,000
Percentage reduction in energy charge from 0.95 to $1 @ 0.5 \%$ for every 0.01 increase	2.5 %
Monthly energy cost component of the bill	Rs.10,00,000
Reduction in energy cost component	10,00,000 x (2.5/100)
	Rs.25,000/month
Annual reduction	Rs.25,000 x 12
	Rs.3,00,000
Savings in electricity bill	Rs.6,60,000

Investment	Rs.5,00,000
Payback period	5,00,000/6,60,000
	0.76 years or 9 months

----- End of Section - III ------