19th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – SEPTEMBER, 2018

PAPER – 1: GENERAL ASPECTS OF ENERGY MANAGEMENT & ENERGY AUDIT

Section – I: OBJECTIVE TYPE

Marks: $50 \ge 1 = 50$

- (i) Answer all **<u>50</u>** questions
- (ii) Each question carries **<u>one</u>** mark
- (iii) Please hatch the appropriate oval in the OMR answer sheet with **HB pencil only**, as per instructions

1.	A waste	A waste heat recovery system requires Rs. 50 lakhs investment and Rs. 2 lakhs per						
	year to operate and maintain. If the annual savings is Rs. 22 lakhs, the payback							
	period v	will be						
	a)	10 years	b)	<u>2.5 years</u>				
	c)	3 years	d)	2.28 years				
2.	What is	the heat content of the 200 liters of wate:	r at E	500 OC in terms of the basic				
	unit of	energy in Kilo Joules?						
	<u>—a)</u>	41870		-23880				
	<u>с)</u>	10000	<u>d)</u>	-30000				
	Note: 1	Mark is awarded to all candidate who have	atter	npted this question.				
3.	Which	Which of the following GHGs has the longest atmospheric life time?						
	a)	PFC	b)	SF ₆				
	c)	CFC	d)	CH ₄				
4.	Which	of the following is used for non-contact me	easui	rement of temperature?				
	a)	All of the below	b)	Infrared Thermometer				
	c)	Leaf type contact probe	d)	Thermocouples				
5.	The for	ce field analysis in energy action planning	cons	siders				
	a)	No forces	b)	Negative forces only				
	c)	Both negative and positive forces	d)	Positive forces only				

6.	Which of the following equation is used to calculate the future value of the cash flow?				
	a)	NPV/ $(1 + i)^n$	b)	NPV / (1 – i) ⁿ	
	c)	<u>NPV (1 + i)ⁿ</u>	d)	NPV (1 – i) ⁿ	
7.	For inv	estment decision, ROI must always be	pr	evailing interest rate.	
	a)	No relation	b)	<u>Higher than</u>	
	c)	Equal to	d)	Lower than	
8.	Large s	cattering on production versus energy cor	isum	ption trend line indicates	
	a)	None of the below	b)	Inefficient equipment	
	c)	Inefficient process	d)	Poor process control	
9.	Freque	ncy of energy audit for designated consum	ners i	S	
	a)	Once in five years	b)	Once in two years	
	c)	<u>Once in three years</u>	d)	Once in a year	
10.	The rot	or axis is aligned with the wind direction	in a v	vind mill by control	
	a)	All of the below	b)	Pitch	
	c)	Disc brake	d)	Yaw	
11.	Produc	er gas basically comprises of			
	a)	Only CO and H_2	b)	Only CH ₄	
	c)	CO and CH ₄	d)	<u>CO, H₂ and CH4</u>	
12.	The low	vest theoretical temperature to which wate	er car	n be cooled in a cooling tower	
	is				
	a)	<u>WBT of the atmospheric air</u>			
	b)	Average DBT and WBT of the atmospher	ric air		
	c)	DBT of the atmospheric air			
	d)	Difference between DBT and WBT of the	atmo	ospheric air	
13.	In a sol	ar thermal power station Molten salt is pr	referr	ed as it provides an efficient	
	low cos	t medium to store energy			
	a)	Potential	b)	<u>Thermal</u>	
	c)	Kinetic	d)	Electrical	

14.	From V	oltage, Amps and Power factor given in the	e nar	ne plate of a motor, one can			
	calculate						
	a)	Both (b) & (c)	b)	Shaft power			
	c)	Rated input power	d)	Rated output power			
15.	RPM of	an electric motor is measured using					
	a)	Rotameter	b)	<u>Stroboscope</u>			
	c)	Lux meter	d)	Ultrasonic meter			
16	If a sect	domination is considered them not once		ash inflormented by			
10.	II asset	Nows of the below	ung L)				
	a)		U)				
	C)	No effect	α)	Lower			
17.	Which	of the following comes under capital cost i	n a p	project?			
	a)	<u>All of the below</u>	b)	Installation cost			
	c)	Commissioning cost	d)	Design cost			
18.	Energy	consumption per GDP is termed as					
	a)	All of the below	b)	Energy intensity			
	c)	Energy efficiency index	d)	Energy factor			
19.	A three	phase induction motor is drawing 10 Am	pere	at 440 Volts. If the operating			
	power f	actor of the motor is 0.9 and the efficiency	of t	he motor is 95 %, then the			
	mechar	nical shaft power of the motor is					
	a)	7.21 kW	b)	4.18 kW			
	c)	<u>6.51 kW</u>	d)	3.76 kW			
20.	For an	activity in a project, Latest start time is 8	week	s and Latest finish time is 12			
	weeks.	If the earliest finish time is 9 weeks, Slack	tim	e for the activity is			
	a)	None of the below	b)	4 weeks			
	c)	1 week	d)	<u>3 weeks</u>			
21.	The am	ount of CO ₂ produced in complete combu	stion	of 18 kg of carbon is			
	a)	792	b)	44			
	c)	<u>66</u>	d)	50			

22.	Which	mode of heat transfer does not require me	diun	ı;			
	a)	Conduction	b)	Forced convection			
	c)	Radiation	d)	Natural convection			
23.	If the fi	xed energy consumption of a company is a	2000	kWh per month and the line			
	slope of	f the energy (y) versus production (x) char	t is 0	.3, then the energy consumed			
	in kWh per month for a production level of 60,000 tons/month is						
	a)	None of the below	b)	18,000 kWh			
	c)	22,000 kWh	d)	16,000 kWh			
24.	Which	technique takes care of time value of mon	ey in	evaluation?			
	a)	Both (b) & (c)	b)	IRR			
	c)	NPV	d)	Payback period			
25.	The heat rate of a power plant is expressed as						
	a)	kWh / kVA	b)	<u>kCal/kWh</u>			
	c)	kg of steam / kg of fuel	d)	kWh/kg of steam			
26.	Which	equipment does not come under mandato	ry lal	celling program?			
	a)	Distribution transformer	b)	Frost free refrigerator			
	c)	Induction motors	d)	Room Air conditioners			
27.	Furling	speed of wind turbine indicates					
	a)	None of the below	b)	Cut in speed			
	c)	Rated speed	d)	<u>Cut out speed</u>			
28.	One Sil	icon cell in a PV module typically produce	es				
	a)	12 V	b)	1 V			
	c)	2 V	d)	<u>0.5 V</u>			
29.	The inp	out to a fuel cell is.					
	a)	All of the below	b)	Hydrogen			
	c)	Oxygen	d)	Electricity			
30.	The pro	oduction factor is defined as the ratio of					
	a)	Reference year production to the current	t yea	r production			
	b)	Current year production to the reference	e mor	th production			
	c)	Reference month production to the curre	ent n	onth production			
	d)	Current year production to the refere	nce y	vear production			

31.	To reduce the distribution losses within a plant, the capacitors should be located						
	a) Before the billing meter b) Farthest from the load						
	c) In the substation d) <u>Closest to the load</u>						
32.	Absolute pressure is measured as						
	a) None of the belowb)Gaugepressure + Atmospheric pressure						
	c) Gauge pressure/Atmospheric pressure d)Gauge pressure – Atmospheric pressure						
33.	The dryness (x) fraction of superheated steam is taken as						
	a) $x = 1$ b) $x = 0.9$						
	c) $x = 0.87$ d) $x = 0$						
34.	When the evaporation of water from a wet substance is zero, the relative humidity						
	of the air is lilkely to be						
	a) Unpredictable b) 100 %						
	c) 50 % d) 0 %						
35.	Which of the following type of collector is used for low temperature systems?						
	a) None of the below b) Line focusing parabolic collector						
	c) Parabolic trough collector d) <u>Flat plate collector</u>						
36.	Which among the following is not a renewable source of energy?						
	a) Wind b) Rice husk						
	c) <u>Nuclear</u> d) Bagasse						
37.	What is shale Oil?						
	a) Combustible brownish-black sedimentary rock						
	b) Heavy black viscous oil combination of clay, sand, water and bitumen						
	c) A form of naturally compressed peat						
	d) Sedimentary rock containing solid bituminous materials						
38.	Which of the following has the lowest energy content in terms of MJ/kg?						
	a) Furnace oil b) Diesel						
	c) <u>Bagasse</u> d) LPG						
39.	and consume major share of Natural Gas consumption in India.						
	a) Domestic Sector and Fertilizer Industries						
	b) Transport sector and Fertilizer Industry						
	c) Power Generation and Fertilizer Industries						

	d) Domestic sector and Transport sector						
40.	The sector consuming major share of energy	rgy in India is					
	a) Domestic Sector	b) Transport Sector					
	c) <u>Industrial Sector</u>	d) Agriculture Sector					
41.	Which of the following designated consum	her has the lowest energy intensity?					
	a) Chlor alkali	b) Iron and Steel					
	c) Cement	d) <u>Aluminium</u>					
42.	Which of the following is not a Demand S	ide Management measure?					
	a) Use of ice bank system						
	b) Maximizing fossil fuel based en	ergy utilization					
	c) Replacement of inefficient electric	cal appliances					
	d) Implementing Time of the Day (T	oD) Electricity Tariff					
43.	Which of the following does not meet the	Designated Consumer criteria?					
	a) Textile Industries with minimum and	nual energy consumption of 3000 toe.					
	b) Cement Industries with minimum ar	nual energy consumption of 30,000 toe.					
	c) <u>Chlor-Alkali Industries with min</u>	imum annual energy consumption of					
	<u>7500 toe.</u>						
	d) Pulp and Paper Industries with r 30,000 toe.	ninimum annual energy consumption of					
44.	The kW or HP of a motor given on the nar	ne plate indicates					
	a) The input power to the motor at a	any load					
	b) The shaft output of the motor	at full load					
	c) The input power to the motor at	the best efficiency point					
	d) The shaft output of the motor at	part load					
45.	Which of the following has the highest Sp	ecific Heat?					
	a) <u>Water</u>	b) Aluminium					
	c) Copper	d) Steel					
46.	Heat transfer in an air cooled condenser of	occurs predominantly by					
	a) None of the below	b) <u>Convection</u>					
	c) Radiation	d) Conduction					

47.	Definiti	Definition of Energy Audit as per EC Act does not include:					
	a)	Action plan required for energy saving					
	b)	Evaluation of Techno-economics					
	c)	Verification, monitoring and analysis of	energ	gy use			
	d)	Creation of an Energy Management S	ysten	n (EnMS)			
48.	The ISC) standard for Energy Management System	n is				
	a)	ISO 18001	b)	<u>ISO 50001</u>			
	c)	ISO 9001	d)	ISO 14001			
49.	To arriv	re at the relative humidity at a point we no	eed to	o knowof air			
	a)	<u>Both b & d</u>	b)	Wet bulb temperature			
	c)	Enthalpy	d)	Dry bulb temperature			
50.	As per l	Energy Conservation Act, 2001 appointme	ent of	BEE Certified Energy Manger			
	is mano	latory for					
	a)	All commercial buildings					
	b)	All large Industrial consumers					
	c)	All designated consumers					
	d)	All State designated agencies					
		End of Section I	•••••	•••••			

Section - II: SHORT DESCRIPTIVE QUESTIONS

Marks: 8 x 5 = 40

- (i) Answer all**<u>Eight</u>**questions
- (ii) Each question carries **<u>Five</u>** marks

S-1	A thermal power plant uses 0.72 kg of coal to generate one KWh of electricity. If the coal contains 38 % carbon by weight, calculate the amount of CO2 emission/kWh under complete combustion.
Ans	Amount of carbon present in coal = $0.72*38/100$ = 0.2736 kg As per chemical reaction, C + O ₂ = CO ₂ 1 kg of carbon generates 44/12 kg of carbon dioxide (CO2) under complete combustion Amount of CO2 generation while generating one KWh of electricity = $0.2736*44/12$ = 1.0032 Kg/KWh

S-2	A solar photovoltaic power plant is installed with 350 Watts panel of size 1.5 m x
	1.5 m in a roof top area of a building having dimension of 9 m x 10 m. If solar
	insolation is 1,000 W/m ² , calculate the panel conversion efficiency?
Ans	Area of solar cell = 1.5×1.5 = 2.25 m^2
	Efficiency = (350 / (2.25 x 1000)) x 100 = 15.6 %
S-3	List any five equipment and appliances covered under Standards and Labelling
Ans	program. Refer BEE Guide Book 1- Page No 37
S-4	State true or false(each carries 1 Mark)a) When it is raining, there is a substantial difference between the dry and wet bulb temperaturesb) The specific gravity of light diesel oil is given in kg/m3c) The major constituent of LNG is propane d) Evaporative cooling of space requires use of refrigerant R134a
Ans	e) HSD needs preheating to increase viscosity a) False b) False
1113	c) False d) False
	e) False
S-5	In a textile plant monthly energy consumption is 7,00,000 kWh of electricity, 40 kL of furnace oil (specific gravity = 0.92) for thermic fluid heater, 360 tonne of coal for steam boiler and 10 kL of HSD (specific gravity = 0.885) for material handling equipment.Compute the energy consumption in terms of Metric Tonne of Oil Equivalent(MTOE) for the plant. Given Data: (1 kWh = 860 kcal, GCV of coal = 3450 kCal/kg, GCV of furnace oil = 10.000 kcal/kg, GCV of HSD = 10.500 kcal/kg, GCV of rice husk = 3100 kcal/kg.
	1 kg oil equivalent = 10,000 kCal)
Ans	Aggregate Energy Use= (40000 x0.92x 10000) + (360000 x 3450) + (7, 00,000 x 860) + (10,000x 0.885 x 10,500). MTOE = (36.8 x 107) + (124.2 x 107) + (60.2 x 107) + (9.2925 x 107)
	= 230.5 Metric Tonnes of Oil Equivalent per month
	Energy consumption of the textile plant = $230.5 \times 12 = 2766$ MTOE
S-6	For installing a recuperator in a furnace, the plant has assessed the following time
	estimates
	Optimistic Time : 2.5 weeks
	Most Likely Time : 3 weeks

	Pessimistic Time : 3.5 weeks								
	Find out the "Expected Time", "Standard Deviation" and "Variance" to complete the								
	activity								
Ans	Expected time = (= (= 3	$\frac{\text{activity}}{\text{Expected time} = (\text{Optimistic Time} + 4 \text{ X Most Likely Time} + \text{Pessimistic Time})/6$ $= (2.5 + 4 \text{ x } 3 + 3.5)/6$ $= 3$							
	Standard Deviatio Variano	on = (3.5-2.5)/6 = ce = {(PT-OT/6)} ² = 1 / 36 = 0.02	1/6 = 0.167 78						
S-7	A paint drier requires 75.4 m3/min of air at 93°C, which is heated in a steam-coil unit. How many kg of steam at 4 bar does this unit require per hour ? The density of air is 1.2 kg/m3 and specific heat of air is 0.24 kcal/kg°C. The ambient temperature is 32°C.								
		_		Enthalpy, kCa	l/kg				
	Pressure, bar	°C	Water	Evaporation	Steam				
	4	143	143	510	653				
Ans	Solution: Air flow rate Air flow rate	= 75.4 r = 4524 = 5428	n³/min * 60 = 4 * 1.2 .8 kg/hr	524 m³/hr					
	Sensible hea	t of air = m = 54 = 79	1 * Cp * DT 428.8 * 0.24 * (9 9477.6 kcal/hr	93-32)					
	Latent heat of Steam = 510 Kcal/kg Steam required = 79477.6 / 510 Steam required = 156 kg/hr								
S-8	An ESCO company is required to invest in a waste heat recovery project, which is expected to yield an annual saving of Rs.10,00,000 and the life of the equipment is 7 years. If the ESCO expects 30 % IRR on this project, calculate the investment required to be made.								
Ans	The PV of the Ann Investment	ual Savings of Rs 1000000 10000	.1,000,000 per y 00000000	year: 1000000 10000	00 100000	1000000			
	$0 = -\frac{(1+0.3)^{0}}{(1+0.3)^{0}} +$	$\overline{(1+0.3)^{1}}^{+}$ $\overline{(1+0.3)^{1}}^{+}$	$\overline{3}^{2} + \overline{(1+0.3)^{3}} +$	$\overline{(1+0.3)^4}^+$ + $\overline{(1+0.3)^4}^+$	$\overline{3}^{5} + \overline{(1+0.3)^{6}} + \overline{(1+0.3)^{6}}$	$(1+0.3)^7$			
	or Investment = Rs.1 = Rs.	.,000,000/year (P 1,000,000/year (2	/AIN Factor) 2.8021) = Rs. 2,8	302,100					

Thus, we can pay Rs.2,802,100 for the Waste Heat Exchanger and still have a positive NPV.

..... End of Section II

Section - III: LONG DESCRIPTIVE QUESTIONS Marks: 6 x 10 = 60

- (i) Answer all <u>Six</u> questions
- (ii) Each question carries **<u>Ten</u>** marks

L-1	In a Chlor-Alkali plant, an evaporator was designed to containing solids of 7 % w/w (weight by weight) to 45 % Presently the output from evaporator has 30 % solids v suggested overhauling the evaporator to achieve the de output. Calculate the percentage improvement in water after overhauling of the evaporator.	conce % solie v/w. ′ sign i r reme	entrate 500 kg of liquor ds w/w in the output. The energy manager rate of solids w/w in the oval in the evaporator
Ans	Amount of feed (input) to the evaporator	=	500 Kg
	Concentration of solids in feed	=	7 wt%
	Amount of solids in feed (input)	=	500 * 7 / 100 35 Kg
		-	55 Kg
	Present scenario:		
	Concentration of solids in product (output)	=	30 wt% = 0.3
	Mass balance across the evaporator :		
	Amount of product (output) from the evaporator	=	35 / 0.3 116 7 Kg
			F00 116 7
	water vapour removed from the evaporator is	=	500 – 116.7 383 3 Kg
	<u>Design scenario :</u>		
	Concentration of solids in product (output) <u>Mass balance across the evaporator :</u>	=	45 wt% = 0.45
	Amount of product (output) from the evaporator	=	35 / 0.45
		=	77.8 Kg
	Water vapour removed from the evaporator is	=	500 - 77.8
		=	422.2 Kg
	Incremental water removal achieved is	=	422.2 - 383.3
		=	38.9 Kg
	% increase in water removal	=	38.9 / 383.3 * 100
	% improvement in water removal after overhaul	=	10.14 %

								Slack
		Activity	Duration	ES	EF	LS	LF	(LS-ES) or (LF-EF)
		Α	3	0	3	0	3	0
		В	5	0	5	6	11	6
		С	4	3	7	3	7	0
		D	6	3	9	5	11	2
		E	5	7	12	7	12	0
		F	3	7	10	10	13	3
		G	2	9	11	11	13	2
		н	1	12	13	12	13	0
		I	2	13	15	13	15	0
			X:	1 and X2 a	ire dummy	activitie	S	
	c) Crit d) Tot	ical Path: al time on c	A- C- E- I critical path	H- I (project d	uration):1	5 weeks		
_ _3	a) Expl	ain briefly t	hree types of	f Perform	ance Cont	racting	?	(6 Marks)
	b) Wha	t are the dr	awbacks of I	ESCO?				(4 Marks)
Ans	Refer B	EE Guide I	Book 1- Page	e No.178				
L-4	A mediu electrici requirer energy o	am size chea ty from coa nents. The details are g	mical plant r l based Capt fine coal fror given below:	receives e ive Power n CPP is	lectricity f r Plant (CF sold to ne:	rom gric PP). Coal ighborin	l and als l is also ע g plant.	o generates used for process The annual
	Electr	icity purcha	ased from gri	id		5 MU		
	Electr	icity exporte	ed to grid			11 MU		

	Power generation from CPF	3	36 MU							
	Power Supplied from CPP t	to Process plant 2	25 MU							
	Fine coal sold to neighborin	ng unit 1	1000 ton							
	Coal used for process plan	t 5	5000 ton							
	GCV of coal	4	4500 kcal/kg							
	Heat rate of CPP	3	3500 kcal/kWh							
	Annual Operating Hours	7	7200							
	Calculate the following:									
	a) Energy usage in toe (tons of oil equivalent) (5 Marks)									
	b) Coal used in CPP		(3 Marks)							
	c) Calculate the CPP operating power in MW (2 Marks)									
Ans	Energy usage in TOE (Tons of oil equivalent)									
	>Grid electricity Imported = $(5 \times 10^6 \text{kWh}) \times (860 \text{ kcal/kWh})$ = (+) 43 x 10^8 \text{ kcals/year}>Power generated from CPP = $(36 \times 10^6 \text{kWh}) \times (3500 \text{ kcal/kWh})$ = (+) 1260 x 10^8 \text{ kcals/year}>Coal imported for process = $(5000 \times 10^3 \text{kg}) \times (4500 \text{ kcal/kW})$ = (+) 225 x 10^8 \text{ kcals/year}>Power exported to grid = $(11 \times 10^6 \text{kWh}) \times (3500 \text{ kcal/kWh})$ = (-) 385 x 10^8 \text{ kcals/year}>Coal fines exported to neighbour = $(1000 \times 10^3 \text{kg}) \times (4500 \text{ kcal/kg})$ = (-) 45 x 10^8 \text{ kcals/year}>Net annual energy consumption = $(43+1260+225)-(385+45)$ = (+) 1098 x 10^8 \text{ kcals/year}									
	 a. Energy usage in TOE = (1098 x 10⁸ kcals/year) / (10⁷) = 10980 MTOE (1 MTOE = 10⁷ kcals) b. Coal used in CPP = ((36 x 10⁶ kWh)x (3500 kcal/kWh)) / (4500 kcal/kg) = 28 x 10⁶ kgs Coal/ Year = (28 x 10⁶)/10³ = 28000 Tons Coal/ Year c. Calculate the CPP operating MW = (36 x 10⁶ kWh/year)/ (7200 hrs/year) = 5000 kW = 5 MW 									
L-5	a) Write down the steps for computing energy saving using CUSUM over a period. (4Marks)									
	 b) Develop a table using a CUSUM technique to calculate energy savings for 8 months period for a production level of 2000 MT per month. Refer to field data given in the table below. (6 marks) 									
	Month	Actual SEC kWh/M'	T Predicted SEC kWh/MT							
	Мау	1225	1250							

	June		1227		1250							
	July Aug Sep Oct Nov		1240 1245 1238 1257 1248		1250 1250 1250 1250 1250 1250							
	D	ec	1264		1250							
Ans	a) Steps for CUSUM analysis: Refer BEE Guide Book 1 Page No. 229											
	b) Estimate the savings accumulated from use of the heat recovery system.											
	Month	Actual SEC kWh/MT	Predicted SEC kWh/MT	(# Pr	Difference Actual SEC - edicted SEC) kWh/MT	CUS Savi: kWh/	UM ngs 'MT					
	Мау	1225	1250		-25	-25						
	June	1227	1250		-23	-48						
	July	1240	1250		-10	-58						
	Aug	1245	1250		-5	-6	-63					
	Sep	1238	1250		-12	-75						
	Oct	1257	1250		+7	-68						
	Nov	1248	1250		-2	-70						
	Dec	1264	1250		+14	-50	6					
	Positive savings i.e. savings in energy consumption over a period of eight months are											
	56 x 2000 = 112,000 kWh											
L-6	Describe the stages of Gasification of Biomass process with a pictorial diagram and reaction equations ?											
Ans	Refer BEE Guide Book 1- Page No 275-276											

..... End of Section III