Paper 4 Set A

19th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS - September, 2018

• *

PAPER - 4: ENERGY PERFORMANCE ASSESSMENT FOR EQUIPMENT AND UTILITY SYSTEMS

Section - I: BRIEF QUESTIONS Marks: 10 x 1 = 10

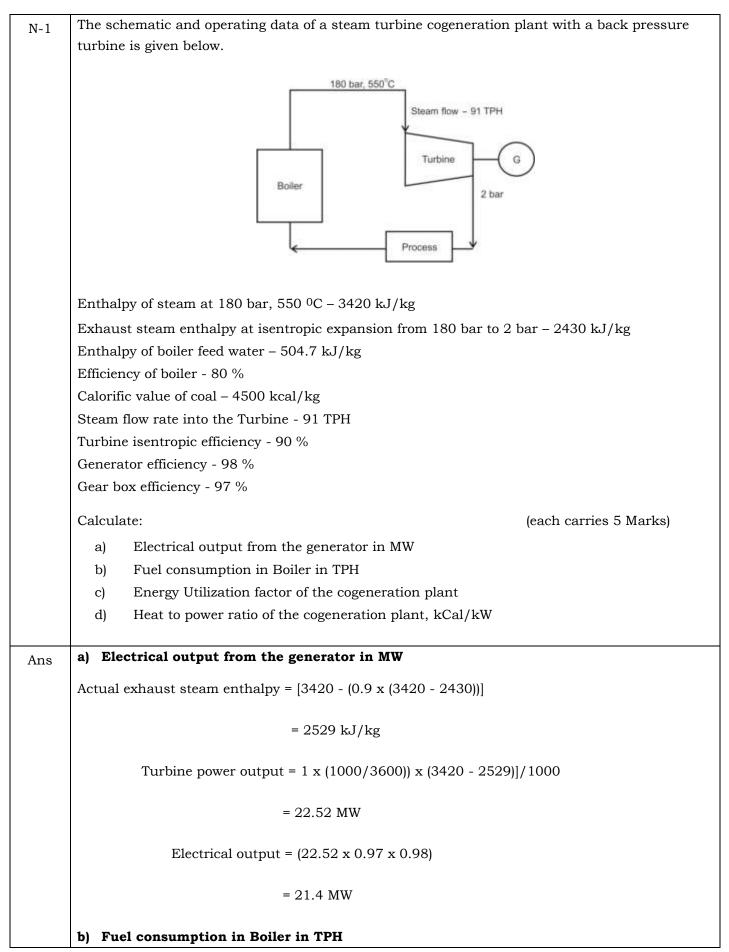
- (i) Section I contains <u>**Ten**</u> questions
- (ii) Each question carries <u>One</u> mark

S-1	The capacity of a screw compressor cannot be controlled by discharge throttling.
	True or False
Ans	True
S-2	A package air conditioner of 5 TR capacity delivers a cooling effect of 4 TR. If Energy Efficiency
	Ratio (W/W) is 2.90, the power in kW drawn by compressor would be
Ans	=(4*3024)/860 = 14.065/2.90 = 4.85
S-3	If the steam generation in a boiler is reduced to 45%, the radiation loss from the surface of the
	boiler will reduce by the same ratio. True or False
Ans	False
S-4	If the coal Gross Calorific Value is 4200 kcal/kg and specific coal consumption is 0.6 kg/kWh, what
	is the power station gross efficiency ?
Ans	$(860 / (4200 \ge 0.6)) \ge 34.12\%$
S-5	If the measured input power of a 90 kW motor is 45 kW, then the calculated loading of the motor
	is 50 %. True or False
Ans	False
S-6	The speed of an energy efficient motor will be more than the standard motor of same capacity
	because decreases.
Ans	Slip
S-7	O_2 % in flue gas is required in the direct method efficiency evaluation of a boiler.
	True or False
Ans	False
S-8	To minimize scale losses in a reheating furnace, the furnace should be operated at a negative
	pressure. True or False
Ans	False

S-9	The heat rate of a power plant will reduce when there is an increase in the inlet cooling water
	temperature to the condenser. True or False
Ans	False
S-10	A typical co-generation system in a cement plant will come under the category of topping cycle.
	True or False
Ans	False

..... End of Section - I

Section - II: SHORT NUMERICAL QUESTIONS


Marks: 2 x 5 = 10

- (i) Section II contains \underline{Two} questions
- (ii) Each question carries **<u>Five</u>** marks

L-1	A coal based power plant A is having a Gross Unit Heat Rate of 2400 kCal/kWh with Auxiliary			
	powerconsumption of 8 % whereas Plant B of same size and make, has an operating Net Heat			
	Rate of 2500 kCal/kWh. In your opinion, which plant is more efficient and why?			
	Gross Heat Rate of Plant A – 2400 kcal/kwh			
	Auxiliary Power Consumption – 8%			
	Net Heat Rate of Plant A = Gross Heat Rate/(100- APC)			
Ans	^{1S} = 2608.70 kcal/kwh			
	Therefore, Plant B is more efficient with a lower Net Heat Rate of 2500 kcal/kwh than that of Plant A (2608.70 kcal/kwh).			
L-2	Milk is flowing in a pipe cooler at a rate of 0.85 kg/sec. Initial temperature of the milk is			
	55 °C and it is cooled to 18 °C using a stirred water bath with a constant temperature of			
	10 °C around the pipe. Specific heat of milk is 3.86 kJ/kg °C. Calculate the heat transfer rate			
	(kCal/hr) and also LogrithmicMeanTemprature Difference (LMTD) of the exchanger.			
	Heat transfer in cooling milk = $0.85 \times 3.86 \times (55 - 18)$			
	= 121.4 kJ/sec			
	= (121.4* 3600)			
	= (437040 kJ/hr) / (4.18)			
Ans	= 104555 kcal/hr			
	LMTD:			
	DT1 = 55 - 10 = 45 °C			
	$DT2 = 18 - 10 = 8 \ ^{\circ}C$			
	LMTD of the heat exchanger = $(45 - 8)/\ln(45 / 8)$			
	= 21.4 °C			

..... End of Section - II

- (i) Section III contains**Four** questions
- (ii) Each question carries **<u>Twenty</u>** marks

Fuel consumption in Boiler = (91,000 x (3420 - 504.7)) / (4.18 x 4500 x 0.80)
= 17.6 TPH
c) Energy Utilization factor of the cogeneration plant
= [(21,400 x 860) + (91000 x ((2529 - 504.7)/ 4.18))] / (17,600 x 4500)
= [(1,84,04,000 + 44069689) / (7,92,00,000)]
= 0.79
d) Heat to power ratio of the cogeneration plant, kCal/kW
Heat to power ratio, kcal/kW = (91000 x (2529 - 504.7)/4.18) / 21400
= 2059 kCal/kWh (or)
= 2.39 kWthermal/kWelectrical

In a process plant, the hot effluent having a flow rate of 63450 kg/hr at 80 °C from the process is N-2 sent to a finned tube air cooled heat exchanger for cooling. The outlet temperature of theeffluent from the heat exchanger is 38 °C. Air at a temperature of 30 °C enters the heat exchanger and leaves at 60 °C. The fan develops a static pressure of 30 mmWC. The operating efficiency of the fan is 65 % and fan motor efficiency is 90 %. The plant operates for 5000 hours per year. The management decided to replace the existing air-cooled heat exchanger with water-cooled Plate Heat Exchanger (PHE). Following are the relevant data: **Existing:** • Specific heat of air $0.24 \text{ kcal/kg} ^{\circ}\text{C}$: • Specific heat of hot effluent same as water : • Density of air 1.29 kg/m^3 : **Proposed:** 75%• Cooling water pump efficiency : 90 % • Pump motor efficiency : 0.4 • Effectiveness of water cooled heat exchanger : 25 ⁰C • Cooling water inlet temperature : • Total head developed by the cooling water pump : 30 m • Over all heat transfer coefficient of PHE 22300 kcal/hrm² ⁰C : Calculate the following:

	water cooled counter flo	-		(15 Marks)
	•Area of the proposed wate	-	-	(5 Marks)
Ans	Heat duty in hot fluid	= 101	1 x Cp _{hot} x (Ti - To)	
			= 63450 x 1 x (80	
			= 2664900 kcal /	hr
	In a heat exchanger,			
	Heat duty in hot fluid		= Heat duty in col	d Air
	Mass of the cold air	of the cold air = 2664900 / (0.24		X (60-30))
			= 370125 kg/hr	
	Existing System:			
	Fan Shaft Power	= Volume,m	³ /s X Static Press mmWc	
		102	X Fan Efficiency factor	
		= (370125	5/(3600x 1.29)) x 30	
		10	02 X 0.65	
		= 36.06 k	kW	
	Motor Input Power =	36.06/ 0.9 =	= 40.07 kW	
	Proposed System:			
	Effectiveness of water	cooled heat	exchanger= 0.4	
	Cold Water outlet temp	perature	= T _{wo}	
	Cold water inlet tempe	rature	= T _{Wi}	
	Hot effluent inlet temp	erature	= T _{Eff.in}	
	Hot effluent outlet tem	perature	= T _{Eff.out}	
			T _{wo} – T _{wi}	
	Effectiveness =			
		(2.4.4)	$T_{Eff.in} - T_{Wi}$	
	Cold Water Outlet		80 – 25)) + 25	
		= 47 °C		
	Mass flow rate of cooling wat	or (NA)-	Heat duty in hot fluid	
	Mass flow rate of cooling water (M)=		Cp x (T _{W0} – T _{Wi})	
		:	= 2664900	
			1 x (47 – 25) x 1000	

	= (Flow in m ³ /hr x Head in m x Density in kg/m ³ x g in m/s ²
	(1000 x 3600)
	= (121.13 x 30 x 1000 x 9.81)
	(1000X3600)
	= 9.9 kW
Pump input Power Requirement	= 9.9 kW / 0.75
:	2 kW
Pump Motor Input Power	= 13.2 / 0.9
	= 14.67 kW
Thus savings = Power co	onsumption by fans – Water Pumping Power
= 40.07 - 1	4.67
= 25.4 kW	
Annual energy savings in kW	h = 25.4 kW x 5000 hrs
= 127000 kWh/annum	
Calculations for LMTD for Propose	d counter flow PHE:
LMTD for counter flow in PHI	E= {(80-47) – (38-25)} / In {(80-47) / (38-25)}
	= 21.5 °C
Considering overall heat tran	sfer coefficient (U) = 22300 kCal/hrm ²⁰ C
Heat transfer Area	= $Q / (U \times \Delta T_{Imtd})$
	= 2664900 /(22300 × 21.5) = 5.56 m ²

	be dried in a drier. The plant has a pressurized to the heating coils in the drier. The return water er is fired by saw dustbriquettes.
The other relevant data are given below.	
• Fuel firing rate	= 375 kg/hr
• O ₂ in flue gas	= 12.2 %
• CO in flue gas	= 189 ppm
• CO ₂ in flue gas	= 8.5 %
• Avg. exit flue gas temperature	$= 235 \ ^{0}\text{C}$
• Ambient temperature	= 31 ⁰ C
• Humidity in ambient air	= 0.0204 kg / kg dry air
Gross Calorific Value of ash	= 800 kCal/kg
Radiation & other unaccounted losses	= 0.5 %
• Specific heat of flue gas	$= 0.23 \text{ kCal/kg}^{0}\text{C}$
Fuel (briquettes) Ultimate Analysis (in %)	
• Ash	= 8.0
Moisture	= 7.5
Carbon	= 45.3
• Hydrogen	= 4.4
Nitrogen	= 1.4
• Oxygen	= 33.3
• Sulphur	= 0.1
Gross Calorific Value of saw dust briq	uette = 3300 kCal/kg
Calculate the hot water circulation rate (m ³ /hr) i	in the boiler.
1. Theoretical air required for complete combustion	 ו
$= [(11.6xC) + \{34.8x(H_2 - O_2/8)\} + (4.35)$	5xS)]/100 kg/kg of coal
= [(11.6 x 45.3) + {34.8 x (4.4 - 33.3/8)} +	- (4.35 x 0.1)] / 100
= 5.34 kg / kg of briquette.	
2. Excess air supplied	
Actual O ₂ measured in flue gas =	12.2 %
% Excess air supplied (EA) =	$\frac{O_2\%}{21 - O_2\%} \times 100$
=	$\frac{12.2\%}{21 - 12.2\%} \times 100$

3. Actual mass of air supplied {1 + EA/100} x theoretical air = = {1 + 138.6/100} x 5.34 12.74 kg/kg of briquette = 4. To find actual mass of dry flue gas Mass of dry flue gas = Mass of CO_2 + Mass of N_2 content in the fuel+ Mass of N_2 in the combustion air supplied + Mass of oxygen in flue gas + Mass of SO₂in flue gas $= \frac{0.453 x 44}{12} + 0.014 + \frac{12.74 x 77}{100} + \frac{(12.74 - 5.34) x 23}{100} + \frac{0.001 x 64}{32}$ = 13.19 kg / kg of briquette 5. To find all losses a) % Heat loss in dry flue gas (L1) $= \frac{m x C_p x (T_f - T_a)}{GCV \text{ of fuel}} x 100$ $=\frac{13.19\,x\,0.23\,x\,(235-31)}{3300}\ x\ 100$ = 18.75 % b) % Heat loss due to formation of water from H₂ in fuel (L2) $= \frac{9 \text{ x H}_2 \text{ x} \{584 + C_p (T_f - T_a)\}}{\text{GCV of fuel}} \text{ x 100}$ $=\frac{9 \times 0.044 \times \{584 + 0.45 (235 - 31)\}}{3300} \times 100$ = 8.1 % c) % Heat loss due to moisture in fuel (L3) $= \frac{M x \{584 + C_{p} (T_{f} - T_{a})\}}{GCV \text{ of fuel}} x 100$ $=\frac{0.075 \text{ x } \{584+0.45(235-31)\}}{3300} \text{ x } 100$ = 1.54 %

d) % Heat loss due to moisture in air (L4) = $\frac{AAS x humidity x C_p x (T_f - T_a)}{GCV of fuel} x 100$ $=\frac{12.74\,x0.0204\,x0.45\,x(235-31)}{3300}\,x\,100$ = 0.723 % e) % Heat loss due to partial conversion of C to CO (L5) $= \frac{\%CO \ x \ C}{\%CO + \%CO_2} \ x \frac{5654}{GCV \ of \ fuel} \ x \ 100$ $\frac{0.0189 \times 0.453}{0.0189 + 8.5} \times \frac{5654}{3300} \times 100$ = 0.172 % = f) % Heat loss due to Ash (L6) Gross Calorific Value of Ash =800 kCal/kg Amount of Ash in 1 kg of coal = 0.08 kg/kg coalHeat loss in bottom ash = 0.08 x 800 =64 kcal/kg of coal % Heat loss in bottom ash = (64x 100) / (3300) 1.94 % = g) % Heat loss due to radiation & other unaccounted losses (L7) = 0.5% (given) HWG efficiency by indirect method = 100- (L1+ L2+ L3+ L4+ L5+ L6+ L7) =100-(18.75 + 8.1+ 1.54+ 0.723+ 0.172 +1.94+0.5) = 68.28 % Hot water circulation rate in m³/hr: HWG efficiency % = $\frac{(\text{Mass of hot water x } C_p \times \Delta T)}{\text{Mass of fuel } \times \text{GCV of fuel}} \times 100$ Mass of hot water = $\frac{375 \times 3300 \times 0.6828}{(145 - 110) \times 1}$ =24,141.86kg/hr =24.142 m³/hr

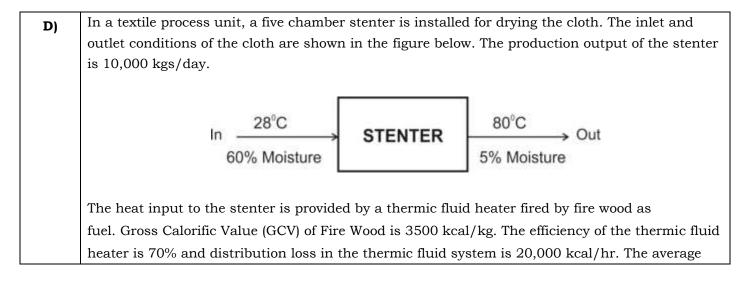
N-4 Answer any ONE of the following

A)	A 60 MW captive power plant (CPP) of a	chemical plant has a c	oal fired Boiler, condensing steam				
Ај	Turbine and Generator. The CPP after r	-	_				
	power to the chemical plant. The operation						
	Generator output		: 60 MW				
	Auxiliary power consumption		: 6 MW				
	Steam flow to the turbine	: 231 Tons/hr					
	Steam inlet pressure and tempera	: 105 kg/cm 2 (a) and 480 0 C					
	Enthalpy of inlet steam at operating	ure : 793 kCal/kg					
	Enthalpy of feed water to boiler	: 130 kCal/kg					
	Condenser exhaust steam pressu	re and temperature	: 0.1 kg/cm ² (a) and 45.5 ⁰ C				
	Enthalpy of water at operating pro	essure					
	and temperature of condenser		: 45.5 kCal/kg				
	Latent heat of vaporisation of stea	m at operating					
	pressure and temperature of cond	lenser	: 571.6 kCal/kg				
	Enthalpy of exhaust steam		: 554 kCal/kg				
	GCV of coal used		: 4240 kCal/kg				
	Efficiency of the boiler		: 86.5 %				
	Based on the above data, calculate the	following parameters of	the power plant:				
	a) Gross Heat Rate	(8 Marks)					
	b) Net Heat Rate	(3 Marks)					
	c) Dryness fraction of exhaust steam	n (2 Marks)					
	d) Condenser heat load	(3 Marks)					
	e) Specific coal consumption	(2 Marks)					
	f) Overall efficiency	(2 Marks)					
s	(a) Gross heat rate						
			1 I (I)				
	Gross heat rate= Coal consumpt	ion (kg/hr) x GCV of coal (ксаі/кg) (1)				
	Generator output (kw)						
	Given : Coal consumption=?						
	GCV of coal=4240 Kcal/kg						
	Generator output= 60 MW						
	Boiler efficiency= Q (H-h)/ (q x GCV)(2)						
	Where, Q= Quantity of st	team generation (kg/hr)=2	231x1000				
		steam (Kcal/kg) =793					
	h=Enthalpy of boiler feed water (kcal/kg) =130 q=Coal consumption (kg/hr) =?						
	g=Coal consumption (kg/nr) = ? Boiler efficiency=0.865						
	Substituting the given values in equation (2) we get,					
	0.865=(231 x 1000 q= 41758 kg/hr	x (793—130))/q x 4240					
	Ч- 41/30 кg/П						

Substituting the calculated value of	q in equation (1) we get,
Gross heat rate= (41758 x 4240) /	′ (60x1000) =2950.9 kcal /kWh
(b) Net heat rate	
Net heat rate = Gross he	eat rate (3)
1	––––––––––––––––––––––––––––––––––––––
Auxiliary consumption =6 MW	
Generation= 60 MW % Auxiliary consumption=(6/60) >	(100 = 10%
Substituting the values in the equat	
Net heat rate= 2950.9/(1-10/100)= 3278.8 kCal/kWh
(C) Dryness fraction of exhaust stea	am
Enthalpy of exhaust steam = Entha stean	lpy of feed water + Dryness fraction of steam x L.H. of vaporisation of
Substituting the given values in the	
554= 45.5+ dryness fraction	
Dryness fraction of steam=	(554—45.5)/571.6 = 0.889
(d) Condenser heat load	
Heat load on condenser= Steam flo	w rate x L.H of vaporisation of steam x dryness fraction of steam
= 231x 1000 x 571.6 x 0.889	
=117383.2 MCal/hr	
(e) Calculation of specific coalconst	umption
Specific coal consumption	n = Total coal consumption/Gross generation
	= 41758 kg/hr / (60 x 1000) kW
	= 0.696 kg/kWh
(f) Calculation of overall efficiency	of plant
•	t rate, kCal/kWh(4)
Substituting the values we ge	t, 860/2950.9 =29.14%
(OR)	
Overall efficiency	
	l/kWh) /(Mass flow rate of coal kg/hr x GCV of coal,kCal/kg)
= (60 x 1000 x 860)/(41758 x 4240) =29.14%	

OR

B) In the energy audit of a 6-stage Preheater (PH) section of a 4000 TPD (clinker) Cement kiln operating at full load, the following were the field measurements taken.


	S.No.		Description	Value	
	1.	Reference temperatur	re (°C)	0	
2. Reference pressure and			nd the Barometric pressure (mmWG)	10323	3
	3.	Average Dynamic Pre	essure (mmWC)	17.1	
	4.	Static Pressure at Fa	n Inlet (mmWC)	-860	
	5.	Static Pressure at Fa	n outlet (mmWC)	-16	
	6.	Temperature (°C)		328	
	7.	Density of the PH Ga	s (NM ³ /kg), at reference condition	1.422	
	8.	Pitot Tube constant		0.854	
	9.	Diameter of PH Duct	(m)	3.2	
	10.	Cp of PH Gas (kcal/k	cg ⁰ C)	0.245	
	11.	Power Input to the PI	H fan motor (kW)	1812	
	12.	PH fan Motor Efficien	ncy (%)	95	
	13. GCV of coal (kCal/kg)		5)	5600	
	14.	Annual Operating Ho	ours	7300	
	15.	Cost of Coal (Rs./Tor	n)	4836	
:	a) Es	Estimate the specific heat losses (kCal/kg clinker) carried away by PH gases. (
	b) Estimate the PH fan Efficiency.			(5 Marks	3)
 c) Estimate the envisaged specific fuel savings (kCal/kg clinker), annual fuel saving monetary savings by reduction in PH gas temperature to 290 °C by appropriate in the PH cyclones. (5 Marks) d) Estimate energy savings in fan power consumption in the proposed case w temperature is reduced to 290 °C. Also consider the static pressure at the fan inl by 8 % from the present level due to PH modification (Fan and motor efficience) 		ppropriate mo ed case where the fan inlet w r efficiency in	odification e PH exi vill reduce		
cases are same). (5 M			(5 Marks)		
ıs:	a) Spe	cific heat losses by PH g			
	-	of gas at Present ng Conditions (kg/m³)	$\rho_{t,p} = \rho_{stp} \times \frac{10323 * -P_s}{10323} \times \frac{273}{273 + t_e} \text{ kg/m}^3$		0.59
	Velocity	$= 1.422*(273/(273+328))*((10323-860)/10323) \text{ kg/m}^{3}$ $Velocity of PH Gas (m/s) = 0.854*((2*9.81*17.1/0.59))^{0.5}$ $20.$		20.36	
		the PH Duct (m²)	$= Pi/4 * D^2$		8.04

Flow rate of the PH Gas	= Area * Velocity = $8.04 * 20.26 * 2600 m^{3}/hr$	589299.
(m ³ /hr)	$= 8.04 * 20.36 * 3600 \text{ m}^3/\text{hr}$	244505
Flow rate of the PH Gas (Nm³/hr)	= Flow rate of the PH Gas (m ³ /hr) x (0.59/1.422) = 589299.8 X (0.59/1.422)	244505.
Specific PH Gas generation	= Flow rate of Ph gas (Nm ³ /hr) / Clinker Production	1.467
(Nm ³ _{PH gas} /kg _{Clinker})	(kg/hr)	1.407
	= 244505.5/ ((4000x1000)/24)	
Specific PH Gas generation	= Specific PH Gas generation ($Nm_{PH gas}^3/kg_{Clinker}$) x 1.422	2.086
(kg _{PH gas} /kg _{Clinker})	kg/Nm ³	
	=1.467 x 1.422	
Specific Heat Loss in existing	$= m C_p (T_{ph} - T_{ref})$	167.6
case (kcal/kg _{Clinker})	=2.086*0.245*(328-0)	
b) PH fan efficiency		
Air Power (kW)	$= ((Q (m^{3}/hr)/3600)x (P_{st}(mmWC)))/102$	1354.5
	= (589299.8/3600)* (-16+860)/102	
Fan Efficiency (%)	= Air power*100/(motor power *motor effi)	78.7
- / X - /	= (1354.5*100)/(1812*0.95)	
Specific Heat Loss in the proposed case (Kcal/Kg _{Clinker})	$= M C_{p} (T_{ph-new}-T_{ref.})$ =2.086 * 0.245 * (290-0)	148.21
	=2.086 * 0.245 * (290-0) =old heat loss/kg cli- new heat loss/kg cli	19.39
Fuel Savings (Kcal/Kg Cli	=167.6-148.21	
	=Clinker prod. * run hrs/yr* heat saving/kg cli /coal gcv	4212.79
Annual Fuel Savings	4.55 57*7200*40 20/5500	1212.7.
Annual Fuel Savings	=166.67*7300*19.39/5600	1212.7.
Annual Monetary savings (Rs.	=fuel savings in tons * fuel cost in (Rs. Ton)	
Annual Monetary savings (Rs. Lakhs/yr) d) Fan energy savings	=fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000	203.73
Annual Monetary savings (Rs. Lakhs/yr) d) Fan energy savings Envisaged static pressure at	=fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000 = 92% of Original Static pressure at Fan inlet (reduction in	203.73
Annual Monetary savings (Rs. Lakhs/yr) d) Fan energy savings Envisaged static pressure at Fan Inlet after PH modification	 =fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000 = 92% of Original Static pressure at Fan inlet (reduction in Friction loss due to temperature reduction- given) 	203.73
Annual Monetary savings (Rs. Lakhs/yr) d) Fan energy savings Envisaged static pressure at	=fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000 = 92% of Original Static pressure at Fan inlet (reduction in	
Annual Monetary savings (Rs. Lakhs/yr) d) Fan energy savings Envisaged static pressure at Fan Inlet after PH modification (mmWC)	 =fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000 = 92% of Original Static pressure at Fan inlet (reduction in Friction loss due to temperature reduction- given) 	-791.2
Annual Monetary savings (Rs. Lakhs/yr) d) Fan energy savings Envisaged static pressure at Fan Inlet after PH modification (mmWC) Envisaged Fan Flow after PH	 =fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000 = 92% of Original Static pressure at Fan inlet (reduction in Friction loss due to temperature reduction- given) = 92% * 860 	-791.2
Annual Monetary savings (Rs. Lakhs/yr) d) Fan energy savings Envisaged static pressure at Fan Inlet after PH modification (mmWC) Envisaged Fan Flow after PH modification	=fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000 = 92% of Original Static pressure at Fan inlet (reduction in Friction loss due to temperature reduction- given) = 92% * 860 = Flow (Nm3/hr) * ((273+Tph-new)/273) * (10323/(10323+Pst-new)) = 244505.5* ((273+290)/273)*(10323/(10323-791.2))	203.73 -791.2 546091.
Annual Monetary savings (Rs. Lakhs/yr) d) Fan energy savings Envisaged static pressure at Fan Inlet after PH modification (mmWC) Envisaged Fan Flow after PH	 =fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000 = 92% of Original Static pressure at Fan inlet (reduction in Friction loss due to temperature reduction- given) = 92% * 860 = Flow (Nm3/hr) * ((273+Tph-new)/273) * (10323/(10323+Pst-new)) 	203.73
Annual Monetary savings (Rs. Lakhs/yr) d) Fan energy savings Envisaged static pressure at Fan Inlet after PH modification (mmWC) Envisaged Fan Flow after PH modification Fan efficiency (%) Fan motor Input power in the	=fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000 = 92% of Original Static pressure at Fan inlet (reduction in Friction loss due to temperature reduction- given) = 92% * 860 = Flow (Nm3/hr) * ((273+T _{ph-new})/273) * (10323/(10323+P _{st-new})) = 244505.5* ((273+290)/273)*(10323/(10323-791.2)) Already estimated above (considering the same) = ((Q (m ³ /hr)/3600)x (P _{st} (mmWC)))/102	203.73 -791.2 546091.
Annual Monetary savings (Rs. Lakhs/yr) d) Fan energy savings Envisaged static pressure at Fan Inlet after PH modification (mmWC) Envisaged Fan Flow after PH modification Fan efficiency (%)	<pre>=fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000 = 92% of Original Static pressure at Fan inlet (reduction in Friction loss due to temperature reduction- given) = 92% * 860 = Flow (Nm3/hr) * ((273+Tph-new)/273) * (10323/(10323+Pst-new)) = 244505.5* ((273+290)/273)*(10323/(10323-791.2)) Already estimated above (considering the same)</pre>	203.73 -791.2 546091. 78.7
Annual Monetary savings (Rs. Lakhs/yr) d) Fan energy savings Envisaged static pressure at Fan Inlet after PH modification (mmWC) Envisaged Fan Flow after PH modification Fan efficiency (%) Fan motor Input power in the proposed case (kW)	=fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000 = 92% of Original Static pressure at Fan inlet (reduction in Friction loss due to temperature reduction- given) = 92% * 860 = Flow (Nm3/hr) * ((273+Tph-new)/273) * (10323/(10323+Pst-new)) = 244505.5* ((273+290)/273)*(10323/(10323-791.2)) Already estimated above (considering the same) = ((Q (m ³ /hr)/3600)x (Pst(mmWC)))/102 = ((546091.5/3600)* (-16+791.2))/(102*.787*.95) =Fan power (old-new)	203.73 -791.2 546091. 78.7
Annual Monetary savings (Rs. Lakhs/yr) d) Fan energy savings Envisaged static pressure at Fan Inlet after PH modification (mmWC) Envisaged Fan Flow after PH modification Fan efficiency (%) Fan motor Input power in the	<pre>=fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000 = 92% of Original Static pressure at Fan inlet (reduction in Friction loss due to temperature reduction- given) = 92% * 860 = Flow (Nm3/hr) * ((273+Tph-new)/273) * (10323/(10323+Pst-new)) = 244505.5* ((273+290)/273)*(10323/(10323-791.2)) Already estimated above (considering the same) = ((Q (m³/hr)/3600)x (Pst(mmWC)))/102 = ((546091.5/3600)* (-16+791.2))/(102*.787*.95) =Fan power (old-new) =1812 - 1541</pre>	203.73 -791.2 546091. 78.7 1541
Annual Monetary savings (Rs. Lakhs/yr) d) Fan energy savings Envisaged static pressure at Fan Inlet after PH modification (mmWC) Envisaged Fan Flow after PH modification Fan efficiency (%) Fan motor Input power in the proposed case (kW)	=fuel savings in tons * fuel cost in (Rs. Ton) = (4212.79 *4836)/100000 = 92% of Original Static pressure at Fan inlet (reduction in Friction loss due to temperature reduction- given) = 92% * 860 = Flow (Nm3/hr) * ((273+Tph-new)/273) * (10323/(10323+Pst-new)) = 244505.5* ((273+290)/273)*(10323/(10323-791.2)) Already estimated above (considering the same) = ((Q (m ³ /hr)/3600)x (Pst(mmWC)))/102 = ((546091.5/3600)* (-16+791.2))/(102*.787*.95) =Fan power (old-new)	203.73 -791.2 546091. 78.7 1541

C)	A building is currently using Vapour Compressi cooling requirements. The following are the exist		
	Existing System:		
	• Total Power drawn from grid for the v	vhole	1200.1 W
	building including chiller loads	:	1300 kW
	• Grid Power required for VCR	:	300 kW
	Building cooling load	:	7,56,000 kCal/hr
	Cost of Grid Power	:	Rs.8 /kWh
	The management proposes to install a r Boiler (WHRB), which will generate pow Absorption Machine (VAM). A part of the building is proposed to be met by this co the proposed system.	ver as well as s total chilling load	team for an operating Vapour d and power requirement of the
	Proposed System:		
	• Total power generated from gas		
	engine co-gen plant	:	1000 kW
	Gas engine efficiency	:	40 %
	• Heat absorbed for steam generation		
	in WHRB (as a % of heat input to gas	engine) :	21 %
	• Specific steam consumption for VAM	:	5 kg/TR
	Calorific value of Natural Gas	:	8500 kcal/sm ³
	Cost of Natural Gas	:	Rs.40/sm ³
	Annual operating hours	:	4000
	• Total enthalpy of steam	:	660 kCal/kg
	• Feed water temperature to WHRB	:	60 °C
	Calculate the following:		
	• Cost of generating one unit of electricity from	n the gas engine ?	(5 marks)
	• TR generated from Vapour Absorption	n Chiller driven b	y WHRB generated steam? (5 Marks)
	• Total energy cost of existing & proscheme is viable ?	oposed system a	· · · ·
Ans	1. Cost of generating one unit of electricity from ga	is engine?	
	•	= 1000 kW X 860 / (= 252.94 sm³/hr	0.4 X 8500)
	 Cost per unit of electricity from gas engine = 	-	0 Rs./ sm³) / 1000 kW

	=	= Rs.10.12/ kWh
2.	TR generated from VAM driven by WHRB generat	ted steam?
	 Heat absorbed by WHRB for Steam generation 	on = 21% x (252.94 x 8500) = 451497.9 kcal /hr
	 Amount of steam generated 	= 451497.9/(660-60) = 752.49 kg/hr
	 TR generated by VAM 	= 752.49/5 = 150.49 TR
3.	Techno-economic viability of the proposed schen	ne?
	 Present cost of Electricity (Grid) 	= 1300 x 8 = 10,400 Rs./hr
Prc	oposed Scheme	
	Cost of NG for Electricity	= 252.94 sm³/hr X 40 Rs./ sm ³ = 10,118 Rs. /hr
	• TR required by the building	= 756000/3024 = 250 TR
	• Energy performance of chiller (VCR)	= 300/250 = 1.2 kW/TR
	Cost of Electricity from Grid to meet the bala	nce chiller load = (250-150.49) x 1.2 x 8 = 955.30 Rs./ hr
	Total energy cost with proposed system	= 10118 +955.30 = 11,073 Rs./hr
	oposed project is not viable, because total content	

OR

	fire wood consumption rate is 427 kg/hr.		
	Calculate the following: (each carries 10 Marks)		
	a) Drier efficiency		
	b) Fuel savings in thermic fluid heater if the inlet moisture is reduced from 60 % to 50 % by mechanical squeezing. (Assume that drier efficiency does not change)		
Ans	Calculation of Stenter Efficiency		
	Stenter Efficiency, % = $W \times (m_{in} - m_{out}) \times \{(T_{out} - T_{in}) + 540\}$ x 100 Q_{in} OR Stenter Efficiency, % = (moisture removed from fabric) $\times \{(T_{out} - T_{in}) + 540\}$ x 100 Q_{in} W here, W =Bone dry weight of the fabric, kg/hr $m_{in} = kg$ moisture / kg bone dry fabric at inlet $m_{out} = kg$ moisture / kg bone dry fabric at outlet $Q_{in} = Thermal energy input to the stenter (kCal/hr)$ (a) Drier Efficiency Amount of moisture removed:		
	Bone dry weight of fabric $= (10,000 \times (95\%)) = 9500 \text{ kg/day}$ Hence, Total weight of inlet fabric $= (9500)/(0.4/1.0)$ = 23,750 kg/day		
	Inlet Moisture weight = $(23,750 - 9500)$ = 14,250 kg/day		
	OR		
	$ \begin{split} m_{in} &= (14,250 \ \text{kg/day}) \ / \ (9500 \ \text{kg/day}) \\ &= 1.50 \ \text{kg/kg} \ \text{dry} \ \text{fabric} \\ \\ \text{Outlet Moisture weight} &= 10000 \ - 9500 \\ &= 500 \ \text{kg/day} \\ \\ \text{OR} \\ \\ m_{out} &= (500 \ \text{kg/day}) \ / \ (9500 \ \text{kg/day}) \\ &= 0.053 \ \text{kg/kg} \ \text{dry} \ \text{fabric} \end{split} $		
	Moisture removed from fabric in Stenter		
	$ \begin{array}{l} m_{in} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		

OR		
Moisture at I/L– moisture at O/L = (14,250-500) = 13,750 kg/day = 573 kg/hr		
Heat required for removing the moisture = 573 x {(80-28) + 540} = 3,39,216 kcal/hr		
	Fluid = (Firewood consumption rate x Calorific value x thermic fluid heater efficiency)	
= (427 kg/hr x 3500 kcal/kg x 70%) = 10,46,150 kcal/hr		
Heat input to the Drier Stenter Efficiency (%) stenter)	= 10,46,150 – 20,000 = 10,26,150 kcal/hr = (Heat reqd. for removing moisture / Heat input to the	
Steritery	= (3,39,216 / 10,26,150) x 100 = 33%	
(b) Fuel savings if the inlet mo	isture reduced from 60 to 50%	
Moisture removed in Drier with	50% input moisture	
(At 50 % moisture : Bone dry we	ight = moisture weight = 9500 kg)	
Moisture removed from the fabric	in the Stenter = Inlet moisture – Outlet moisture = (9500-500) = 9000 kg/day = 375 kg/hr	
Drier efficiency, 33 %		
= [375 kg/hr x {(80-28) °C + 540 kCal/kg}] / [(Fuel consumption kg/hr x 0.70 x 3500 kCal/kg) – 20000kCal/hr]		
Therefore, Fuel consumption,	kg/hr (for reduction of inlet moisture)	
= [{(375 kg/hr x {(80-28) °C + 540 kCal/kg}) /0.33} + 20000] / (0.70 x 3500)		
= (672727 + 20000)/ (0.70 x 3500)		
= 283 kg/hr		
Fuel Savings = 427 – 283 = 144 kg/hr = 3456 kg/day		
	. End of Section - III	