19th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – SEPTEMBER, 2018 PAPER – 2: ENERGY EFFICIENCY IN THERMAL UTILITIES

Section – I: OBJECTIVE TYPE

Marks: $50 \ge 1 = 50$

- (i) Answer all **<u>50</u>** questions
- (ii) Each question carries <u>One</u> mark
- (iii) Please hatch the appropriate oval in the OMR answer sheet with **HB pencil only**, as per instructions

1.	Density of liquid fuel is measured by an	n instrument called
	a) Anemometer	b) <u>Hydrometer</u>
	c) Luxmeter	d) All the above
2.	The measured O_2 in flue gas is 5.5 % by	y volume, the excess air percentage will be
	a) 41 %	b) 55.9 %
	c) 35.5 %	d) None of the above
2	The officiency of a reheating furnace on	, noroting at 10 tannag par baur consuming furnage
5.	oil of 230 kg/hour for reheating the mat	terial from 40 °C to 1100 °C (consider specific heat
	of material is 0.13 kCal / kg °C and ca	calorific value of furnace oil is $10,000$ kCal/kg) is
	a) 60%	b) 70 %
	c) 80 %	d) None of the above
4.	In FBC boiler the combustion is carried	l out at a temperature
	a) Closer to saturated steam temperatu	ure
	b) Below ash fusion temperature of fu	fuel used
	c) At adiabatic combustion temperature	re of fuel
	d) At and above ash fusion temperature	re of fuel
5.	Turbine cylinder efficiency is given as a	ratio of
	a) Actual enthalpy drop and isentrop	<u>pic enthalpy drop</u>
	b) Useful heat and power output	
	c) Useful power and heat output	
	d) All of the above	
6.	The effectiveness of a heat exchanger de	epends on
	a) Specific heat of hot fluid	b) Specific heat of cold fluid
	-c) Inlet temperature of hot fluid	d) LMTD
Not	e: 1 Mark is awarded to all candidate who ha	have attempted this question.
7.	Efficiency evaluation requires	
	a) Ash in tuel	
	- c) Sulphur in fuel	d) NOx in flue gas
Not	e: 1 Mark is awarded to all candidate who ha	have attempted this question.
8.	The evaporation ratio of a coal-fired boild	ler is 4. Steam enthalpy is 640 kCal/kg; feed water
	temperature is 55 °C, Calorine value of	of coal is 4000 kCal/kg. The boller efficiency is
	$\overline{a} + 49\%$	b) 82 %
	c) 585%	d) 70 %
0	Removal of dissolved gases from the boil	iler feed water is called
9.	a) Degasification	b) Description
	c) Deoxidation	d) None of the above
10	ej Deoxidation	
1.10		
10.	Which one of the following is a high tem	nperature heat recovery device?
10.	Which one of the following is a high temp a) <u>Regenerator</u>	b) Heat pump
10.	 Which one of the following is a high temp a) <u>Regenerator</u> c) Heat wheel 	b) Heat pump d) Heat pipe
10.	 Which one of the following is a high temp a) <u>Regenerator</u> c) Heat wheel In reheating furnace, scale losses will 	b) Heat pump d) Heat pipe
10.	 Which one of the following is a high temp a) <u>Regenerator</u> c) Heat wheel In reheating furnace, scale losses will a) <u>Increase with excess air</u> 	 b) Heat pump d) Heat pipe b) Decrease with the excess air

12.	Transfer of heat without a conveying medium is possible with		
	a) Conduction	b)	<u>Radiation</u>
	c) Convection	d)	None of the above
1.3	Which of the following increases, when high	nres	sure steam is discharged to atmosphere?
10.	a) Sensible heat	b)	Total enthalpy of steam
	c) Saturation temperature	d)	Specific volume
		,	
14.	Removal of condensate from main steam line	e 1s d	lone to prevent
	a) Steam locking	D) -1)	All of the above
15	C) water nammer	u)	All of the above
10.	a) Condensate pressure and flash steam	nress	
	b) Steam pressure	<u>p103.</u>	<u>surc</u>
	c) Steam enthalpy at atmospheric pressure	:	
	d) Total heat of flash steam		
16.	Air venting in a steam system is required be	caus	e air is
	a) A good conductor	b)	<u>An insulator</u>
	c) Inert	d)	Diluent
17.	Furnace wall heat loss does not depend on		
	a) Temperatures of external wall surfaces	b)	Velocity of air around the furnace
	c) Thermal conductivity of wall brick	d)	<u>Material of stock to be heated</u>
18.	In a CFBC boiler are required to	capti	ure large recycled amount of bed material
	a) Settling chambers	b)	Mechanical cyclones
	c) Bag filters	d)	Scrubbers
10	Energy la fan basis trons of nofesstarra is	-	
19.	a) Chrome	b)	Chrome magnesite
	c) Alumina	(U (b	All the above
20	Which material is used to control SO_2 emis	sions	a in FBC boilers
20.	which inatchar is used to control 50_2 chins	510113 b)	Lime stone
	c) Silica	d)	Sand
01	The effectiveness of a best such an are does	an at a	
21.	a) Specific heat of het fluid	not a	Specific heat of cold fluid
	c) Inlet temperature of hot fluid	(U d)	
	ej met temperature of not nuld	uj	
22.	Which of the following fuel needs max	kimuı	m amount of excess air for complete
	combustion?	1 \	
	a) Furnace oil	b)	Natural gas
	c) Pulverised coal	a)	wood
23.	In a coal fired boiler, which parameter influ	lence	s flame profile the most?
	a) Fixed carbon	b)	Volatile matter
	c) Hydrogen	d)	All of the above
24.	Which one of the following boilers utilize	es th	e combination of suspension and grate
	firing?		
	a) Spreader stoker boiler	b)	Fluidized bed boiler
	c) Traveling grate stoker boiler	d)	Pulverized fuel boiler
25	In an oil fired steam hoiler the Air to Fuel	roti	o by mass is 15:1 & evanoration ratio is
20.	$14\cdot 1$ The flue gas to fuel ratio will be	lian	
	a) 29:1	b)	16:1
	c) 1:1	d)	15:1
06	· · · · · · · · · · · · · · · · · · ·	, 	
26.	Ine maximum possible evaporation ratio o	nab acri	oller (From & At 100 °C basis) fired with
	coal naving a calorine value of 4050 kcal/kg	g anc	
	a) 5	(U d)	<u>0</u> 9.4
		uj	
27.	When solutions of differing concentrat	ions	are separated by a semi-permeable
	membrane, water from less concentrated	solu	ation passes through the membrane to
	dilute the liquid of high concentration. This	18 Ca	
	a) Reverse osmosis	(D	lon exchange
	Cj Sultening	u)	03110313

28.	Radiation losses from the surface of a boile	r pra	ctically
	a) Increase with increase in boiler loading		
	b) Decrease with increase in boiler loading	S	
	c) <u>Are independent of boiler loading</u>		
29	Desirable boiler water pH should be ?		
25.	a) 5 - 7	b)	7 - 9
	c) 9 - 11	d)	None of the above
30.	Soot deposition on boiler tubes is due to	,	
	a) Poor water treatment	b)	High moisture content in fuel
	c) High excess air	d)	Incomplete combustion
31	If 10 % air is entrained in a steam system a	t 5 k	xg/cm^2g then the saturation temperature
01.	of steam will be		is on g then the bacaration temperature
	a) Less than the saturation temperature	e at l	5 kg/cm ² g
	b) More than the saturation temperature a	at 5 1	$\frac{1}{\sqrt{2}}$
	c) Equal to the saturation temperature at	5 kg	/cm ² g
	d) Equal to the saturation temperature at	551	χg/cm ² g
32	In a pressure reduction valve, which of the	se do	es not change?
01.	a) Temperature	b)	Pressure
	c) Velocity	d)	<u>Enthalpy</u>
33.	Steam at 6 bar has a sensible heat of 159.3	3 kc	al/kg and latent heat of 498.59 kcal/kg.
	If the steam is 95 % dry then the total enthe	alpy	is
	a) 625 kCal/kg	b)	649.95 kCal/kg
	c) 553 kCal/kg	d)	<u>633 kCal/kg</u>
34.	Select the wrong statement with respect to	stea	m traps
	a) Discharges condensate as soon as it is	form	ed
	b) Does not allow steam to escape		
	c) Capable of discharging air and other in	cond	ensable gases
	a) Does not allow condensate to escape		
25	Valagity of stoom in stoom ning is directly n		ntional to
35.	Velocity of steam in steam pipe is directly p	ropo b)	rtional to
35.	Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe	ropo b) d)	rtional to Specific volume of steam Diameter of the pipe
35.	Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe	ropo b) d)	rtional to <u>Specific volume of steam</u> Diameter of the pipe
35. 36.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is 	ropo b) d) ne co	rtional to <u>Specific volume of steam</u> Diameter of the pipe pmmonly used trap for main steam pipe
35. 36.	Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap	ropo b) d) he co b)	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap
35. 36.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap 	ropo b) d) ne cc b) d)	rtional to <u>Specific volume of steam</u> Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap
35.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap 	ropo b) d) he cc b) d)	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap
35. 36. 37.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap For same inlet conditions of the steam, while mechanical power 2 	ropo b) d) ne cc b) d) ch o	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum
35. 36. 37.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) <u>Thermodynamic trap</u> For same inlet conditions of the steam, whit mechanical power ? a) Condensing turbine 	ropo b) d) he co b) d) ch o	rtional to <u>Specific volume of steam</u> Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine
35. 36. 37.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap For same inlet conditions of the steam, whit mechanical power ? a) Condensing turbine c) Extraction-cum-condensing turbine 	ropo b) d) ne cc b) d) ch o b) d)	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine
35. 36. 37.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) <u>Thermodynamic trap</u> For same inlet conditions of the steam, whit mechanical power ? a) <u>Condensing turbine</u> c) Extraction-cum-condensing turbine 	ropo b) d) ne cc b) d) ch o b) d)	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine
35. 36. 37. 38.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap For same inlet conditions of the steam, white mechanical power ? a) Condensing turbine c) Extraction-cum-condensing turbine In an oil fired heat treatment furnace, white its efficiency by direct method ? 	ropo b) d) ne cc b) d) ch o b) d) ch of	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine
35. 36. 37. 38.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap For same inlet conditions of the steam, whit mechanical power ? a) Condensing turbine c) Extraction-cum-condensing turbine In an oil fired heat treatment furnace, which its efficiency by direct method ? a) Weight of input material 	ropo b) d) he cc b) d) ch o b) d) h of	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine Oxvgen percentage in flue gas
35. 36. 37. 38.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) <u>Thermodynamic trap</u> For same inlet conditions of the steam, white mechanical power ? a) <u>Condensing turbine</u> c) Extraction-cum-condensing turbine In an oil fired heat treatment furnace, white its efficiency by direct method ? a) Weight of input material c) Fuel consumption 	ropo b) d) ne cc b) d) ch o b) d) h of b) d)	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine Oxygen percentage in flue gas Calorific value of fuel
35. 36. 37. 38.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap For same inlet conditions of the steam, which mechanical power ? a) Condensing turbine c) Extraction-cum-condensing turbine In an oil fired heat treatment furnace, which its efficiency by direct method ? a) Weight of input material c) Fuel consumption 	ropo b) d) ne cc b) d) ch o b) d) h of b) d)	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine Oxygen percentage in flue gas Calorific value of fuel
35. 36. 37. 38. 39.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap For same inlet conditions of the steam, white mechanical power ? a) Condensing turbine c) Extraction-cum-condensing turbine In an oil fired heat treatment furnace, white its efficiency by direct method ? a) Weight of input material c) Fuel consumption In a coke fired cupola, carbon monoxide is a) Preheating zone 	ropo b) d) he cc b) d) ch of b) d) h of b) d) prod	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine Oxygen percentage in flue gas Calorific value of fuel uced in the Paducing some
35. 36. 37. 38. 39.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap For same inlet conditions of the steam, whit mechanical power ? a) Condensing turbine c) Extraction-cum-condensing turbine In an oil fired heat treatment furnace, which its efficiency by direct method ? a) Weight of input material c) Fuel consumption In a coke fired cupola, carbon monoxide is a) Preheating zone c) Combustion zone 	ropo b) d) he cc b) d) ch of b) d) b) d) prod b) d)	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine <u>Oxygen percentage in flue gas</u> Calorific value of fuel uced in the <u>Reducing zone</u> Melting zone
35. 36. 37. 38. 39.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap For same inlet conditions of the steam, which mechanical power ? a) Condensing turbine c) Extraction-cum-condensing turbine In an oil fired heat treatment furnace, which its efficiency by direct method ? a) Weight of input material c) Fuel consumption In a coke fired cupola, carbon monoxide is a) Preheating zone c) Combustion zone 	ropo b) d) ne cc b) d) ch of b) d) b) d) prod b) d)	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine <u>Oxygen percentage in flue gas</u> Calorific value of fuel uced in the <u>Reducing zone</u> Melting zone ith
 35. 36. 37. 38. 39. 40. 	Velocity of steam in steam pipe is directly pa) Number of bends in pipec) Length of pipeIn a typical industrial steam distribution, the lines isa) Thermostatic trapc) Thermodynamic trapFor same inlet conditions of the steam, white mechanical power ?a) Condensing turbinec) Extraction-cum-condensing turbineIn an oil fired heat treatment furnace, whice its efficiency by direct method ?a) Weight of input materialc) Fuel consumptionIn a coke fired cupola, carbon monoxide isa) Preheating zonec) Combustion zoneTuyeres is a part of the equipment associata) Induction furnace	ropo b) d) ne cc b) d) ch o b) d) b) d) prod b) d) ed w b)	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine Oxygen percentage in flue gas Calorific value of fuel uced in the Reducing zone Melting zone ith Re-heating furnace
35. 36. 37. 38. 39. 40.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap For same inlet conditions of the steam, whit mechanical power ? a) Condensing turbine c) Extraction-cum-condensing turbine In an oil fired heat treatment furnace, which its efficiency by direct method ? a) Weight of input material c) Fuel consumption In a coke fired cupola, carbon monoxide is a) Preheating zone c) Combustion zone Tuyeres is a part of the equipment associat a) Induction furnace c) Electrical melting arc furnace 	ropo b) d) he cc b) d) ch o b) d) b) d) prod b) d) ed w b) d)	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine Oxygen percentage in flue gas Calorific value of fuel uced in the Reducing zone Melting zone ith Re-heating furnace Cupola
35. 36. 37. 38. 39. 40.	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap For same inlet conditions of the steam, which mechanical power ? a) Condensing turbine c) Extraction-cum-condensing turbine In an oil fired heat treatment furnace, which its efficiency by direct method ? a) Weight of input material c) Fuel consumption In a coke fired cupola, carbon monoxide is a) Preheating zone c) Combustion zone Tuyeres is a part of the equipment associat a) Induction furnace 	ropo b) d) he cc b) d) ch of b) d) b) d) prod b) d) ed w b) d)	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine Oxygen percentage in flue gas Calorific value of fuel uced in the Reducing zone Melting zone ith Re-heating furnace Cupola
 35. 36. 37. 38. 39. 40. 41. 	Velocity of steam in steam pipe is directly pa)Number of bends in pipec)Length of pipeIn a typical industrial steam distribution, the lines isa)Thermostatic trapc)Thermodynamic trapFor same inlet conditions of the steam, white mechanical power ?a)Condensing turbinec)Extraction-cum-condensing turbineIn an oil fired heat treatment furnace, whice its efficiency by direct method ?a)Weight of input materialc)Fuel consumptionIn a coke fired cupola, carbon monoxide isa)Preheating zonec)Combustion zoneTuyeres is a part of the equipment associata)Induction furnacec)Electrical melting arc furnaceAn increase in bulk density of a refractory isa)Thermal conductivity	ropo b) d) he cc b) d) ch of b) d) b) d) prod b) d) prod b) d) ed w b) d) ncre	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine Oxygen percentage in flue gas Calorific value of fuel uced in the Reducing zone Melting zone ith Re-heating furnace Cupola ases its Heat canacity
 35. 36. 37. 38. 39. 40. 41. 	Velocity of steam in steam pipe is directly pa) Number of bends in pipec) Length of pipeIn a typical industrial steam distribution, the lines isa) Thermostatic trapc) Thermodynamic trapFor same inlet conditions of the steam, whit mechanical power ?a) Condensing turbinec) Extraction-cum-condensing turbineIn an oil fired heat treatment furnace, which its efficiency by direct method ?a) Weight of input materialc) Fuel consumptionIn a coke fired cupola, carbon monoxide isa) Preheating zonec) Combustion zoneTuyeres is a part of the equipment associata) Induction furnacec) Electrical melting arc furnaceAn increase in bulk density of a refractory ia) Thermal conductivityc) Resistance to slag penetration	ropo b) d) he cc b) d) ch o b) d) b) d) b) d) ed w b) d) ncre b) d)	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine Oxygen percentage in flue gas Calorific value of fuel uced in the Reducing zone Melting zone ith Re-heating furnace Cupola ases its Heat capacity All of the above
 35. 36. 37. 38. 39. 40. 41. 	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap For same inlet conditions of the steam, white mechanical power ? a) Condensing turbine c) Extraction-cum-condensing turbine In an oil fired heat treatment furnace, whice its efficiency by direct method ? a) Weight of input material c) Fuel consumption In a coke fired cupola, carbon monoxide is a) Preheating zone c) Combustion zone Tuyeres is a part of the equipment associat a) Induction furnace c) Electrical melting arc furnace 	ropo b) d) he cc b) d) ch of b) d) b) d) prod b) d) d) d) ncre b) d)	rtional to Specific volume of steam Diameter of the pipe mmonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine <u>Oxygen percentage in flue gas</u> Calorific value of fuel uced in the <u>Reducing zone</u> Melting zone ith Re-heating furnace <u>Cupola</u> ases its Heat capacity <u>All of the above</u>
 35. 36. 37. 38. 39. 40. 41. 42. 	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap For same inlet conditions of the steam, whith mechanical power ? a) Condensing turbine c) Extraction-cum-condensing turbine In an oil fired heat treatment furnace, which its efficiency by direct method ? a) Weight of input material c) Fuel consumption In a coke fired cupola, carbon monoxide is a) Preheating zone c) Combustion zone Tuyeres is a part of the equipment associat a) Induction furnace c) Electrical melting arc furnace An increase in bulk density of a refractory i a) Thermal conductivity c) Resistance to slag penetration 	ropo b) d) ne cc b) d) ch of b) d) b) d) prod b) d) prod b) d) d) ncre b) d) ncre	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine Oxygen percentage in flue gas Calorific value of fuel uced in the Reducing zone Melting zone ith Re-heating furnace Cupola ases its Heat capacity All of the above can be best reduced by
 35. 36. 37. 38. 39. 40. 41. 42. 	 Velocity of steam in steam pipe is directly p a) Number of bends in pipe c) Length of pipe In a typical industrial steam distribution, the lines is a) Thermostatic trap c) Thermodynamic trap For same inlet conditions of the steam, whith mechanical power ? a) Condensing turbine c) Extraction-cum-condensing turbine In an oil fired heat treatment furnace, which its efficiency by direct method ? a) Weight of input material c) Fuel consumption In a coke fired cupola, carbon monoxide is a) Preheating zone c) Combustion zone Tuyeres is a part of the equipment associat a) Induction furnace c) Electrical melting arc furnace An increase in bulk density of a refractory i a) Thermal conductivity c) Resistance to slag penetration The storage heat losses in a batch type furnal a) Fire Clay brick a) High aluming brief 	ropo b) d) he cc b) d) ch of b) d) b) d) b) d) prod b) d) d) ed w b) d) ncre b) d) ncre b)	rtional to Specific volume of steam Diameter of the pipe ommonly used trap for main steam pipe Inverted bucket trap Open bucket trap f the following will generate the maximum Back pressure turbine Extraction-cum-back pressure turbine the following is not required to determine Oxygen percentage in flue gas Calorific value of fuel uced in the Reducing zone Melting zone ith Re-heating furnace Cupola ases its Heat capacity All of the above can be best reduced by Ceramic fibre High silica briefy

43.	En	nissivity is a measure of material's ability	r to	
	a)	Only absorb heat	b)	Only radiate heat
	c)	Absorb and radiate heat	d)	None of the above
44.	Wł	nich of the following depends on physical	l prop	perties of fluids as well as geometry of the
	hea	at exchanger ?		
	a)	Overall heat transfer coefficient	b)	Fouling coefficient
	c)	LMTD	d)	Effectiveness
45.	Tł	ne waste heat boiler application is not su	itable	e for which of the following?
	a)	Gas turbine	b)	Diesel engine
	c)	Oil fired furnaces	d)	<u>Hot air dryers</u>
46.	Мо	pisture content in coal		
	a)	Increases heat loss due to evaporation a	and s	superheating of water vapour
	b)	Helps in binding fines		
	C)	Aids in radiation heat transfer		
	d)	<u>All of the above</u>		
47.	Wi	th respect to properties of steam		
	a)	The sensible heat decreases as the pres	sure	increases
	b)	The latent heat increases as the pressu	re ine	creases
	c)	The specific volume increases as the pr	essur	re increases
	d)	The specific volume decreases as the	pres	ssure increases
48.	Oxi	dation of carbon to CO_2 yields 8084 kca	al/kg	of carbon. Oxidation of carbon to CO in
	the	flue gas yields 2430 kcal/kg of carbon. (Dxida	tion of CO to CO_2 will yield
	a)	<u>5654 kCal</u>		b) 5800 kCal
	c)	5464 kCal		d) 540 kCal
49.	The	e maximum loss that takes place in a full	y con	densing steam turbine power plant is
	a)	Flue gas loss		b) Steam distribution loss
	c)	Radiation and insulation loss		d) <u>Condenser losses</u>
50.	The	e difference between mean solid and mear	n gas	velocity in FBC boiler is called
	a)	Fluidization factor		b) <u>Slip velocity</u>
	c)	Settling velocity		d) Terminal velocity
L				

..... End of Section – I

Section - II: SHORT DESCRIPTIVE QUESTIONS

Marks: 8 x 5 =

40

(i) Answer all **<u>Eight</u>** questionss

(ii) Each question carries **<u>Five</u>** marks

S1	Write short notes on wet and dry methods of preservation of boiler.
Ans	Refer BEE Guide Book 2- Chapter 2, Page No: 54 - 55
S2	Explain the phenomenon of water hammer in steam system and how it can be eliminated ?
	Refer BEE Guide Book 2- Chapter 3, Page No: 91
Ans	
S3	A counter flow double pipe heat exchanger using hot process liquid is used to heat water which
	flows at 20 m ³ /hr. The process liquid enters the heat exchanger at 180 0 C and leaves at 130
	⁰ C. The inlet and exit temperatures of water are 30 ⁰ C and 90 ⁰ C. Specific heat of water is
	4.187 kJ/kg K. Calculate the heat transfer area if overall heat transfer coefficient is
	820 W/m^2 K. What would be the percentage increase in the area if fluid flow were parallel
	assuming same overall heat transfer coefficient?

	Counter Flow
Ans	 Water inlet temperature 30 °C
	 Water outlet temperature 90 °C
	 Flow rate of water 20 m³/hr
	Heat content in water = 20000*(60)* 4.187=5024400 kJ/hr=1395.6 kW
	Process fluid inlet temperature = 180 °C
	Process fluid outlet temperature = 130 °C
	$ T_{1} = 50, \Delta T_2 = 100 $ $ T_{1} = 50, \Delta T_2 = 100 $ $ T_{1} = 50, \Delta T_2 = 100 $
	$U = 820 \text{ W/m}^{20}\text{C}$
	• $H = UAT_{LMTD} = 1395.6*1000/(95*820) = 17.9 m^2$
	Parallel flow:
	$\Delta T_1 = 150, \Delta T_2 = 40$
	• $T_{LMTD} = (\Delta T_1 - \Delta T_2)/(\ln(\Delta T_1 / \Delta T_2)) = 110/\ln(150/40) = 83.2 ^{\circ}C$
	• $U = 820 \text{ W/m}^{20}\text{C}$
	H= UAT _{LMTD} = 1395.6*1000/(83.2*820) = 20.45 m ²
	% Increase in area = $((20.45-17.9)/17.9) \times 100 = 14.24$ % increase
	A continuous process industry is operating with a 2 MW DG Set with 80 % load to meet the
S4	power requirements of the plant. The specific fuel consumption of the DG set is 4 kWh/liter. On
	energy auditor's suggestion, a waste heat recovery boiler was installed to recover heat from
	exhaust gas and generating 800 kg/hr of saturated steam at 10 kg/cm ² .
	The waste heat recovery boiler operating data are given below.
	• Feed water temperature = $60 \circ C$
	• Enthalpy of steam at 10 kg/cm^2 = 660 kCal/kg
	• Specific gravity of diesel = 0.85
	• GCV of diesel = 10500 kCal/kg
	Calculate the following. (each carries 2.5 Marks)
	a) Efficiency of DG set before waste heat recovery boiler installation
	b) Cogeneration system efficiency after waste heat recovery boiler installation
4.000	Diesel consumption Litre / hour
Alls	= ((2 x 1000) x 0.8)) / 4 = 400 litre / hour
	a) DG set efficiency
	= <u>2000 kWh/hr x 0.8 loading x 860 kcal/kWh x100</u> = 38.54 %
	400 lit x 0.85 kg/lit x10500 kcal/kg
	b) Co-gen System Efficiency after WHR boiler installation
	[2000 kW x 0.8 loading x 860 kcal/hr/kW + (800 kg steam /hr x (660-60) kcal/kg]x100 = 52%
	[400 lit x 0.85 kg/lit x10500 kcal/kg]
S5	A coal fired thermic fluid heater is used to supply heat to a dryer. The hot oil circulation is
	supplied at 270 °C, with a flow of 100 m^3/hr and operating with temperature difference of 20
	°C. Estimate the coal requirement if the thermal efficiency of the heater is 65 % and GCV of the
	coal is 4200 kCal/hr.
	Consider specific heat & density of the thermic fluid to be 0.55 kcal/kg \circ C& 820 kg/m ³
	respectively.

Ans	Absorbed heat in thermic fluid = m $*$ Cp $* \Delta$ T	
	= (100 * 820) * 0.55 * 20	
	= 902000 kcal/hr	
	Thermal efficiency of the heater = absorbed duty / input heat duty	
	Mass of coal required = absorbed duty / (efficiency * calorific value of coal)	
	= 902000 / (0.65 * 4200)	
	= 330.4 kg/hr	
<i></i>	In a heat exchanger, steam is used to heat 3000 litres/hr of furnace oil from 30 °C to 100 °C.	
S6	The specific heat of furnace oil is 0.22 kCal/ kg/°C and the density of furnace oil is 0.95. How	
	much steam per hour is needed if steam at 4 kg/cm ² with latent heat of 510 kCal/kg is used ?	
	If steam cost is Rs.4/kg and electrical energy cost is Rs.8/kWh, which type of heating would be more economical in this particular case? (assume no losses in electrical and steam heating process)	
	Total heat required $= m Cp \Delta T$	
Ans	= (3000 x 0.95) x 0.22 x (100-30)	
	= 43890 kcal/hr	
	a) Amount of steam required = $43890/510$	
	= 86 kg/hr	
	Steam cost $= 86 \times Rs.4$	
	= Rs. 344/hr	
	b) Amount of electricity required = 43890/860	
	= 51 kWh	
	= 51 x Rs. 8	
	= Rs.408/ hr	
	Answer : Steam heating will be more economical	
S7	Calculate the reduction in pressure drop in meters when pipe diameter is increased from 250 mm to 350 mm for a length of 500 meters. The water velocity is 2 m/s in the 250 mm diameter pipe, and friction factor is 0.005.	
Ans	Pressure drop = $4fLV^2/2gD$	
	Pressure drop with250 mm = $(4 \times 0.005 \times 500 \times 2^2)/(2 \times 9.81 \times 0.250)$	
	= 8.155 m	
	Velocity of water in pipe of 350 mm diameter	
	= (0.25 x 0.25 x 2) /(0.35 x 0.35) = 1.02 m/s	
	Pressure drop with350 mm = $(4 \times 0.005 \times 500 \times 1.02^2)/(2 \times 9.81 \times 0.350)$	
	= 1.515 m	
	Pressure drop reduction $= 8.155 - 1.515 = 6.64 \text{ m}$	

S8	In a process plant 200 kg/hr of hot condensate at 6 bar(g) having a sensible heat of 166 kCal/kg is discharged. The plant also requires low pressure steam at a pressure of 1 bar(g) for heating application. Find out the quantity of flash steam generated in the flash vessel in kg/hr. The condensate at a pressure of 1 bar(g) has a sensible heat of 120 kCal/kg and a latent heat of 526 kCal/kg.
	S1 – S2
Ans	Flash steam available % = × 100
	L2
	Where,
	S_1 = is the sensible heat of higher pressure steam
	S_2 = is the sensible heat of steam at lower pressure
	L_2 = is the latent heat of flash steam at lower pressure
	166 - 120
	Flash steam generated = () × 200 Kg/hr = 17.49 kg/hr
	526

..... End of Section – II

Section - III: LONG DESCRIPTIVE QUESTIONS

Marks: $6 \ge 10 = 60$

٦

- (i) Answer all \underline{Six} questions
- (ii) Each question carries **<u>Ten</u>** marks

L1	 a) Write short notes on the following Advantage of Micro turbine in Steam System
	• Trigeneration with example
	b) Why is individual trapping preferred over group trapping? (5 Marks)
Ans	a)
	• (Refer BEE Guide book 2, Chapter 7, Page No-209)
	• (Refer BEE Guide book 2, Chapter 7, Page No-208)
	b) (Refer BEE Guide book 2, Chapter 7, Page No-208)
L2	Explain the following (each carries 5 Marks)Advantages of using ceramic fibre in furnaces
	Advantages of using fluidized bed boilers
	• (Refer BEE Guide book 2, Chapter 5, Page No:164-165)
Ans	• (Refer BEE Guide book 2, Chapter 6, Page no: 182-183)
	An air preheater in a 90 TPH induced draft boiler was showing the following readings:
L3	i. Flue gas inlet temperature: $319.5 \ ^{0}C$
	ii. Flue gas Outlet temperature: 160 0 C
	iii. Air inlet temperature: 70 0 C
	iv. Air outlet temperature: $210 \ ^{0}C$

	The steam to fuel ratio is 12 and air to fu from atmosphere to flue gas side. Ambie specific heat capacity of air and flue gas heat picked up by fresh air remains the sa	el ratio is 14. It was found that there was air ingress ent air temperature was 30 0 C. Assuming that the to be the same at 0.24 kcal/kg K and the amount of me.
	Calculate the following:	(each carries 5 Marks)
	a) The amount of air ingress in	to the flue gas path.
	b) The flue gas temperature a	after air preheater in case of no air leak to flue gas
	circuit.	and an promotion in case of no an roan to have gap
	a. Steam flow: 90TPH	
Ans	Steam to fuel ratio: 12 → fuel consum	ed is 7.5 TPH
	Air to fuel ratio: 14 → air used in boiler	is 105 TPH
	Flue gas = Air + Fuel → Flue gas = 105+	-7.5 = 112.5 IPH
	Air ingress is at 30 deg C.	
	Making an energy balance around APH	:
	we get 112.5 * 319.5 + 105 * 70 + x * 3	0 = 105 * 210 + (112.5+x) *160
	Solving for x, we get air ingress to be 2	5 TPH
	Flue Gas Temperature	
	b. → 112.5 * 319.5 + 105 * 70 = 105*2	10+112.5* T
	Solving for T, we get the corrected flue	gas temperature to be 189 °C
L4	As a part of energy conservation measur furnace. The APH is designed to pre-heat enters the APH at 375 ^o C. Calculate the fi-	e, APH (Air Pre-heater) is installed in a forced draft 240 m ³ /min of combustion air to 250 0 C. Flue gas ue gas quantity leaving the stack and also determine the installation of APH with the following data
	Density of air	1.15 kg/m^3
	Specific heat of air	$0.24 \text{ kCal/kg}^{\circ}$
	Specific heat of flue gas	0.2 kCal/kg $^{\circ}\text{C}$
	Amount of fuel fired	920 kg/hr
		. 19
	Air to luel ratio	. 18
	Ambient temperature	. 30 %
	Solution:	. 30 %
Ans	Amount of Air flow	- 240 * 60 * 1 15
		= 16560 kg/hr
	Amount of fuel	= 16560 / 18
		= 920 kg/hr
	Amount of flue gas	= 16560 + 920
		= 17480 kg/hr
	Heat gain by combustion air	= 16560 * 0.24 * (250 - 30)
	Tomographics differences in flue and	= 8/4368 Kcal/hr 874268 / (17480 * 0.2)
	i emperature difference in flue gas	= 0/4308 / (1/480 * 0.2) = 250 °C
	Flue gas leaves the stack at temp	$= 250^{\circ}$ C = $375 - 250 = 125^{\circ}$ C
	Efficiency of APH	= Heat absorbed by air / Heat input * 100
		= 874368 / (920* 9850) * 100

	= 9.6 %
	Overall efficiency after APH $= 80 + 9.6 \% = 89.6 \%$
L5	An oil fired Boiler is generating 100 TPH of steam at 85 % efficiency and operating 330 days in a year. The management has installed a water treatment plant with Rs. 2 Crore investment for reducing the Total Dissolved Solids (TDS) in boiler feed from 450 ppm to 150 ppm. The maximum permissible limit of TDS in the boiler is 3000 ppm and make up water is 10 %. The temperature of blowdown water is 175 °C and the boiler feed water temperature is 45 °C. The calorific value of fuel oil is 10,200 kCal/kg. Calculate the payback period if the cost of fuel is Rs. 45,000 per ton.
Ans	Blow down % = <u>Feed water TDS * % make up water * 100</u> (maximum permissible TDS in boiler water – Feed water TDS)
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
L6	Fuel Oil - cost savings $= 147*45000$ $= Rs. 66 lakh$ Investment on water treatment plant $= Rs. 2 Crore$ Payback period $= 2/0.66$ Payback period $= 3.0$ years (or) 36 monthsIn a leather industry, a leather drier requires 80 m³/min of air at 92 °C, which is heated by wood fired thermic fluid heater. The density of air is 1.2 kg/m^3 and specific heat of air is 0.24 kcal/kg °C. The inlet air temperature to the drier is 32 °C and the drier is operating for 8 hrs per day.The efficiency of the wood fired heater and its distribution piping system is 50 %. The gross
	The energy auditor recommended replacing the existing drying system with a 40 kW infrared electric heater drier. The kW loading of the proposed drier will be 70 % over an 8 hour plant operating period. The investment for the new drier is Rs. 10 Lakhs.
	If the cost of electricity is Rs. 7/kWh, calculate the following :
	a) Find out the annual energy cost savings of replacement of thermic fluid system with infra-red heater ? (7 Marks)
	b) Find out the payback period. (3 Marks)

	Cost of wood fired thermic fluid heater operation
Ans	Air flow rate (vol) = $80 \text{ m}^2/\text{min} \times 60 = 4800 \text{ m}^2/\text{hr}$
	Air flow rate (vol) = $80 \text{ ms/min} \times 60 = 4800 \text{ ms/m}$ Air flow rate (mass) = $4800 \times 1.2 = 5760 \text{ kg/hr}$
	Sensible heat of air = m x Cn x T = $5760 \times 0.24 \times (92-32) = 82944 \text{ kcal/hr}$
	Efficiency of wood fired heater =50%
	Wood consumption = 82944/(2000 x0.5) per hr= 83 kg per day
	Cost of wood per day = 83 xRs 5 x 8 hour = Rs 3320 per day
	Cost of Auxiliary electricity = 10 kW x 8 hrs x 7 = Rs.560
	Total cost of operation = 3880 Rs.
	Cost of Infra-red heater operation
	Electric bester rating - 40 km
	Electric fleater fatting= 40 kw
	Electricity consumption per day= 40 kw x 0.7 x8hr = 224 kwh per day
	= 224 x Rs 7= Rs 1568 per day
	Cost source potential 2000 1569 Do2212
	COSt Saving potential = 3000-1500 = RS2312
	Annual saving potential = 2312 x 300 days = Rs. 6.94 lakhs
	Investment= 10 lakhs
	Payback period= 10/6.94= 17 months or 1.4 years
	Or Cor
	Annual saving potential = 2312 x 365 days = Rs. 8.44 lakhs
	Investment= 10 lakhs
	Payback period= 10/8.44= 14 months or 1.2 years
	· · ·

..... End of Section – III