Marks: $50 \times 1 = 50$

19th NATIONAL CERTIFICATION EXAMINATION FOR

ENERGY MANAGERS & ENERGY AUDITORS - SEPTEMBER, 2018

PAPER - 1: GENERAL ASPECTS OF ENERGY MANAGEMENT & ENERGY AUDIT

Section - I: OBJECTIVE TYPE

- (i) Answer all **50** questions
- (ii) Each question carries one mark
- (iii) Please hatch the appropriate oval in the OMR answer sheet HB pencil only, as per instructions

<u> </u>	ı			
1.	Which a	among the following is not a renewab Bagasse	ole source b)	of energy? Rice husk
	c)	Nuclear	d)	Wind
2.	a) b) c)	shale Oil? Sedimentary rock containing soli Heavy black viscous oil combination A form of naturally compressed pea combustible brownish-black sedime	n of clay, s t	sand, water and bitumen
3.		of the following has the lowest energy LPG Bagasse	content i b) d)	in terms of MJ/kg Diesel Furnace oil
4.	b) c)	and consume major share Domestic sector and Transport sect Transport sector and Fertilizer Indu Power Generation and Fertilizer I Domestic Sector and Fertilizer Indu	or astry I ndustrie:	-
5.		tor consuming major share of energy Agriculture Sector Industrial Sector	in India b) d)	Transport Sector Domestic Sector
6.		of the following designated consumer Aluminium Cement	has the l b) d)	Iron and Steel
7.	Which (a) b) c) d)	Replacement of inefficient electrical) Electrici gy utiliza	ty Tariff ation
8.	a) Pulp TOE. b) Cem	of the following does not meet the Do o and Paper Industries with minim ent Industries with minimum annua or- Alkali Industries with minim	ium annu il energy o	consumption of 30,000 TOE.

	d) Textile Industries with minimum annual energy consumption of 3000 TOE.				
9.	The kW or HP of a motor given on the name plate indicates a) The shaft output of the motor at part load b) The shaft output of the motor at full load c) The input power to the motor at the best efficiency point d) The input power to the motor at any load				
10.	Which of the following has the highest Specific Heat? a) Steel b) Aluminium c) Copper d) Water				
11.	Heat transfer in an air cooled condenser occurs predominantly by a) conduction b) convection c) radiation d) none of the above				
12.	Definition of Energy Audit as per EC Act does not include: a) Creation of an Energy Management System (EnMS) b) evaluation of Techno-economics c) Verification, monitoring and analysis of energy use d) Action plan required for energy saving				
13.	The ISO standard for Energy Management System is a) ISO 14001 b) ISO 50001 c) ISO 9001 d) ISO 18001				
14.	To arrive at the relative humidity at a point we need to knowof air a) dry bulb temperature b) wet bulb temperature c) enthalpy d) both a & b				
15.	As per Energy Conservation Act, 2001 appointment of BEE Certified Energy Manger is mandatory for a) all State designated agencies b) all large Industrial consumers c) all designated consumers d) all commercial buildings				
16.	A waste heat recovery system requires Rs. 50 lakhs investment and Rs. 2 lakhs per year to operate and maintain. If the annual savings is Rs. 22 lakhs, the payback period will be a) 2.28 years b) 2.5 years c) 3 years d) 10 years				
17.	What is the heat content of the 200 liters of water at 500°C in terms of the basic unit of energy in Kilo Joules a) 30000 b) 23880 c) 10000 d) 41870 Note: 1 Mark is awarded to all candidate who have attempted this question.				
18.	Which of the following GHGs has the longest atmospheric life time a) CH4 b) SF6 c) CFC d) PFC				
19.	Which of the following is used for non-contact measurement of temperature a) Thermocouples b) Infrared Thermometer c) Leaf type contact probe d) All of the above				
20.	The force field analysis in energy action planning considers a) Positive forces only b) negative forces only c) Both negative and positive forces d) no forces				

21.	Which o	of the following equation is used to calcu	ılate the fu	ture value of the cash flow?
	a)	NPV $(1-i)^n$	b)	NPV / (1 - i)n
	c)	NPV (1 + i) ⁿ	d)	NPV/ $(1 + i)^n$
22.	For inve	estment decision, ROI must always be _	prevai	ling interest rate.
		Lower than		Higher than
	c) .	Equal to	d)	No relation
23.		cattering on production versus energy co		
		or process control efficient process		efficient equipment ne of the above
	-	-		ne of the above
24.	_	ncy of energy audit for designated consu		
		once in a year once in three years	b) d)	once in two years Once in five years
25				
25.		or axis is aligned with the wind directior yaw	i in a wind b)	pitch control
	c)		d)	all of the above
26	,	er gas basically comprises of	,	
26.		CO, H ₂ and CH ₄	b)	Only CH ₄
		CO and CH ₄	d)	Only CO and H ₂
27.	a) b) c)	Difference between DBT and WBT of the Average DBT and WBT of the atmospheric air	e atmosph	
	d)	WBT of the atmospheric air		
28.	,	lar thermal power station Molten salt is	preferred	as it provides an efficient low
28.	In a sol	lar thermal power station Molten salt is dium to store energy	_	_
28.	In a sol cost me a)	lar thermal power station Molten salt is dium to store energy Electrical	b)	Thermal
28.	In a sol cost me a) c)	lar thermal power station Molten salt is dium to store energy Electrical Kinetic	b) d)	Thermal Potential
28.	In a sol cost me a) c)	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Voltage, Amps and Power factor given	b) d)	Thermal Potential
	In a sol cost me a) c) From V calculat	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Voltage, Amps and Power factor given te	b) d) in the nar	Thermal Potential me plate of a motor, one can
	In a sol cost me a) c)	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Voltage, Amps and Power factor given the	b) d)	Thermal Potential
29.	In a sol cost me a) c) From V calculat a)	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Voltage, Amps and Power factor given te Rated output power Rated input power	b) d) in the nar	Thermal Potential me plate of a motor, one can Shaft power
	In a sol cost me a) c) From V calculat a)	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Yoltage, Amps and Power factor given the Rated output power	b) d) in the nar	Thermal Potential me plate of a motor, one can Shaft power Both (b) & (c)
29.	In a sol cost me a) c) From V calculat a) c) RPM of a)	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Voltage, Amps and Power factor given te Rated output power Rated input power an electric motor is measured using	b) d) in the nar b) d)	Thermal Potential me plate of a motor, one can Shaft power
29.	In a sol cost me a) c) From V calculat a) c) RPM of a) c)	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Yoltage, Amps and Power factor given te Rated output power Rated input power an electric motor is measured using Ultrasonic meter Lux meter	b) d) in the name b) d) . b) d)	Thermal Potential me plate of a motor, one can Shaft power Both (b) & (c) Stroboscope Rotameter
29.	In a sol cost me a) c) From V calculat a) c) RPM of a) c): If asset a)	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Voltage, Amps and Power factor given te Rated output power Rated input power an electric motor is measured using Ultrasonic meter Lux meter depreciation is considered, then net oper lower	b) d) in the name b) d) . b) d)	Thermal Potential me plate of a motor, one can Shaft power Both (b) & (c) Stroboscope Rotameter h inflow would be higher
29.	In a sol cost me a) c) From V calculat a) c) RPM of a) c): If asset a)	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Voltage, Amps and Power factor given te Rated output power Rated input power an electric motor is measured using Ultrasonic meter Lux meter depreciation is considered, then net open	b) d) in the nar b) d) . b) d) crating case	Thermal Potential me plate of a motor, one can Shaft power Both (b) & (c) Stroboscope Rotameter h inflow would be
29.	In a sol cost me a) c) From V calculat a) c) RPM of a) c): If asset a)	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Voltage, Amps and Power factor given te Rated output power Rated input power an electric motor is measured using Ultrasonic meter Lux meter depreciation is considered, then net oper lower	b) d) in the nar b) d) . b) d) crating cas b)	Thermal Potential me plate of a motor, one can Shaft power Both (b) & (c) Stroboscope Rotameter h inflow would be higher
29.30.31.	In a sol cost me a) c) From V calculat a) c) RPM of a) c) If asset a) c)	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Voltage, Amps and Power factor given te Rated output power Rated input power an electric motor is measured using Ultrasonic meter Lux meter depreciation is considered, then net oper lower	b) d) in the nar b) d) . b) crating cas b) d)	Thermal Potential me plate of a motor, one can Shaft power Both (b) & (c) Stroboscope Rotameter h inflow would be higher none of the above
29.	In a sol cost me a) c) From V calculat a) c) RPM of a) c) If asset a) c) Which c	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Voltage, Amps and Power factor given te Rated output power Rated input power an electric motor is measured using Ultrasonic meter Lux meter depreciation is considered, then net ope lower no effect of the following comes under Capital cos Design cost	b) d) in the nar b) d) . b) d) erating cas b) d) t in a proje b)	Thermal Potential me plate of a motor, one can Shaft power Both (b) & (c) Stroboscope Rotameter h inflow would be higher none of the above
29.30.31.	In a sol cost me a) c) From V calculat a) c) RPM of a) c) If asset a) c) Which c	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Voltage, Amps and Power factor given te Rated output power Rated input power an electric motor is measured using Ultrasonic meter Lux meter depreciation is considered, then net ope lower no effect of the following comes under Capital cos	b) d) in the nar b) d) . b) d) erating cas b) d) t in a proje	Thermal Potential me plate of a motor, one can Shaft power Both (b) & (c) Stroboscope Rotameter th inflow would be higher none of the above
29.30.31.	In a sol cost me a) c) From V calculate a) c) RPM of a) c) If asset a) c) Which c a) c) Energy	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Toltage, Amps and Power factor given te Rated output power Rated input power an electric motor is measured using Ultrasonic meter Lux meter depreciation is considered, then net ope lower no effect of the following comes under Capital cos Design cost Commissioning cost consumption per GDP is termed as	b) d) in the nar b) d) . b) d) erating cas b) d) t in a proje b)	Thermal Potential me plate of a motor, one can Shaft power Both (b) & (c) Stroboscope Rotameter h inflow would be higher none of the above ect? Installation cost All of the above
29.30.31.32.	In a sol cost me a) c) From V calculate a) c) RPM of a) c) If asset a) c) Which c a) c) Energy a)	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Toltage, Amps and Power factor given te Rated output power Rated input power an electric motor is measured using Ultrasonic meter Lux meter depreciation is considered, then net ope lower no effect of the following comes under Capital cos Design cost Commissioning cost consumption per GDP is termed as Energy factor	b) d) in the nar b) d) crating cas b) d) t in a proje b) d)	Thermal Potential me plate of a motor, one can Shaft power Both (b) & (c) Stroboscope Rotameter h inflow would be higher none of the above ect? Installation cost All of the above Energy intensity
29.30.31.32.	In a sol cost me a) c) From V calculate a) c) RPM of a) c) If asset a) c) Which c a) c) Energy a) c)	lar thermal power station Molten salt is edium to store energy Electrical Kinetic Toltage, Amps and Power factor given te Rated output power Rated input power an electric motor is measured using Ultrasonic meter Lux meter depreciation is considered, then net ope lower no effect of the following comes under Capital cos Design cost Commissioning cost consumption per GDP is termed as	b) d) in the nar b) d) rating cas b) d) t in a proje b) d) b) d)	Thermal Potential me plate of a motor, one can Shaft power Both (b) & (c) Stroboscope Rotameter h inflow would be higher none of the above ect? Installation cost All of the above Energy intensity All of the above

	power factor of the motor is 0.9 and the mechanical shaft power of the motor is	efficiency of	the motor is 95%, then the
	a) 3.76 KW	b)	4.18 KW
	c) 6.51 KW	d)	7.21 KW
35.	For an activity in a project, Latest start time weeks. If the earliest finish time is 9 weeks a) 3 weeks c) 1 week		
2.	,		
36.	The amount of CO ₂ produced in complete con a) 50	nbustion of 1 b)	8 Kg of Carbon is
	c) 66	d)	792
37.	Which mode of heat transfer does not require	medium?	
57.	a) Natural convection	b)	Forced convection
	c) Radiation	d)	Conduction
38.	If the fixed energy consumption of a company of the energy (y) versus production (x) chart per month for a production level of 60,000 to: a) 16,000 KWh	is 0.3, then ns/month is	the energy consumed in kWh
	a) 16,000 KWh c) 22,000 KWh	b) d)	none of the above
20	Which technique takes care of time value of n		
39.	a) payback period	b)	IRR
	c) NPV	d)	Both (b) & (c)
40.	The heat rate of a power plant is expressed as	 S	
10.	a) kWh/kg of steam	b)	kCal/kWh
	c) kg of steam / kg of fuel	d)	kWh / kVA
41.	Which equipment does not come under mand		
	a) Room Air conditioners		est free refrigerator
	c) Induction motors	a) Disi	tribution transformer
42.	Furling speed of wind turbine indicates	L)	Cost in angul
	a) Cut out speedc) Rated speed	b) d)	Cut in speed None of the above
10	<u> </u>		
43.	One Silicon cell in a PV module typically prod a) 0.5 V	b)	1 V
	c) 2 V	d)	12 V
44.	The input to a fuel cell is.		
11.	a) Electricity	b)	Hydrogen
	c) Oxygen	d)	All of the above
45.	The production factor is defined as the ratio of	of	
	a) current year production to the ref	•	
	b) current year production to the refere	_	
	c) reference month production to the cu d) reference year production to the curr		
1.0			
46.	To reduce the distribution losses within a pla a) Closest to the load	_	arthest from the load
	c) In the substation	,	efore the billing meter
47.	Absolute pressure is measured as	<u> </u>	-
1/.	a) Gauge pressure – Atmospheric press	ure	

Marks: $8 \times 5 = 40$

	b) Gauge pressure + Atmos c) Gauge pressure / Atmosp d) none of the above	
48.	The dryness (x) fraction of superhe	eated steam is taken as
10.	a) x= 0	b) $x = 0.9$
	c) x= 0.87	d) x= 1
49.	When the evaporation of water f	from a wet substance is zero, the relative humidity of
	the air is likely to be	
	a) 0%	b) 100 %
	c) 50%	d) unpredictable
50.	Which of the following type of colle	ector is used for low temperature systems?
	a) Flat plate collector	b)Line focusing parabolic collector
	c) Parabolic trough collector	d) None of the above

 End	of	Section	- 1	I	
 	•		•		

Section – II: SHORT DESCRIPTIVE QUESTIONS

- (i) Answer all <u>Eight</u> questions(ii) Each question carries <u>Five</u> marks

S-1	List five equipment and appliances covered under Standards and Labelling program.					
Ans	Refer BEE Guide Book 1- Page No 37					
S- 2	State true or false (each carries 1 mark)					
	 a) When it is raining, there is a substantial difference between the dry and wet bulb temperatures. b) The specific gravity of light diesel oil is given in kg/m³ c) The major constituent of LNG is propane d) Evaporative cooling of space requires use of refrigerant R134a e) HSD needs preheating to increase viscosity 					
Ans	a) False c) False e) False					
S-3	For installing a recuperator in a furnace, the plant has assessed the following time estimates Optimistic Time : 2.5 weeks Most Likely Time : 3 weeks Pessimistic Time : 3.5 weeks Find out the "Expected Time", "Standard Deviation" and "Variance" to complete the activity (2 +1.5+1.5 Marks)					

Ans	Expected time = (Optimistic Time + 4 X Most Likely Time + Pessimistic Time) / 6 = (2.5 + 4 x 3 + 3.5)/ 6 = 3						
	= 3 Standard Deviation = (3.5-2.5)/6 = 1/6 = 0.167 Variance = {(PT-OT/6)} ² = 1 / 36 = 0.0278						
S-4	_	A thermal power plant uses 0.72 kg of coal to generate one KWh of electricity. If the coal contains 38% carbon by weight, calculate the amount of CO ₂ emission/KWh under complete combustion.					
Ans	Amount of carbon	present in coal =	0.72 * 38/100 0.2736 kg				
	1 kg of carbon ger	eneration while gen	of carbon dioxide	(CO2) under compl of electricity	ete combustion		
S-5	roof top area of a	= =	mension of 9 m x	50 Watts panel of s 10m. If solar insol			
Ans	Efficiency	= 1.5 x 1.5 = 2.25 m ² = (350 /(2.25 x 10) = 15.6 %	00)) x 100				
S - 6	many kg of steam	at 4 bar does thi	is unit require pe	hich is heated in a or hour? The densit nt temperature is 3	ty of air is 1.2 l		
	Pressure bar	Temperature °C		Enthalpy kcal/kg		7	
			Water	Evaporation	Steam		
	4	143	143	510	653		
Ans	Solution: Air flow rate Air flow rate = 75.4 m³/min * 60 = 4524 m³/hr = 4524 * 1.2 = 5428.8 kg/hr						
	Sensible heat of air = m * Cp * \Delta T = 5428.8 * 0.24 * (93-32) = 79477.6 kcal/hr						
	Latent heat o Steam requir Steam requir	red = 79	0 Kcal/kg 477.6 / 510 6 kg/hr				

S - 7	An ESCO company is required to invest in a waste heat recovery project, which is expected to yield an annual saving of Rs.10,00,000 and the life of the equipment is 7 years. If the ESCO expects 30% IRR on this project, calculate the investment required to be made.						
Ans	The PV of the Annual Savings of Rs.1,000,000 per year: $0 = -\frac{\text{Investment}}{(1+0.3)^0} + \frac{1000000}{(1+0.3)^1} + \frac{1000000}{(1+0.3)^2} + \frac{1000000}{(1+0.3)^3} + \frac{1000000}{(1+0.3)^4} + \frac{1000000}{(1+0.3)^5} + \frac{1000000}{(1+0.3)^6} + \frac{1000000}{(1+0.3)^7}$						
	or Investment = Rs.1,000,000/year (P/AIN Factor) = Rs.1,000,000/year (2.8021) = Rs. 2,802,100						
	Thus, we can pay Rs.2,802,100 for the Waste Heat Exchanger and still have a positive NPV.						
S-8	In a textile plant monthly energy consumption is 7,00,000 kWh of electricity, 40 kL of furnace oil (specific gravity=0.92) for thermic fluid heater, 360 tonne of coal for steam boiler and 10 kL of HSD (specific gravity= 0.885) for material handling equipment. Compute the energy consumption in terms of Metric Tonne of Oil Equivalent (MTOE) for the plant. Given Data: (1 kWh = 860 kcal, GCV of coal= 3450 kCal/kg, GCV of furnace oil= 10,000 kcal/kg, GCV of HSD= 10,500 kcal/kg, GCV of rice husk= 3100 kcal/kg, 1 kg oil equivalent = 10,000 kcal)						
Ans	Aggregate Energy Use= (40000 x0.92x 10000) + (360000 x 3450) + (7, 00,000 x 860) + (10,000x 0.885 x 10,500).						
	MTOE = $(36.8 \times 10^7) + (124.2 \times 10^7) + (60.2 \times 10^7) + (9.2925 \times 10^7)$ 10^7						
	= 230.5 Metric Tonnes of Oil Equivalent per month						
	Energy consumption of the textile plant = 230.5 x 12 = 2766 MTOE						

..... End of Section – II

Marks: $6 \times 10 = 60$

Section - III: LONG DESCRIPTIVE QUESTIONS

- (i) Answer all **Six** questions
- (ii) Each question carries <u>Ten</u> marks

L-1	Describe the stages of Gasification of Biomass process with a pictorial diagram and	ŀ
	reaction equations?	

Ans | Refer BEE Guide Book 1- Page No 275-276

- L 2 a. Explain briefly three types of Performance Contracting? (6 Marks)
 - b. What are the drawbacks of ESCO? (4 Marks)

Ans | Refer BEE Guide Book 1- Page No.178

- L-3 a) Write down the steps for computing energy savings using CUSUM over a period. (4 Marks),
 - b) Develop a table using a CUSUM technique to calculate energy savings for 8 months period for a production level of 2000 MT per month. Refer to field data given in the table below. (6 marks)

Month	Actual SEC kWh/MT	Predicted SEC kWh/MT
May	1225	1250
June	1227	1250
July	1240	1250
Aug	1245	1250
Sep	1238	1250
Oct	1257	1250
Nov	1248	1250
Dec	1264	1250

Ans | a) Steps for CUSUM analysis:

Refer BEE Guide Book 1 Page No. 229

b) Estimate the savings accumulated from use of the heat recovery system.

Month	Actual SEC kWh/MT	Predicted SEC kWh/MT	Difference (Actual SEC - Predicted SEC) kWh/MT	CUSUM Savings kWh/MT
May	1225	1250	-25	-25
June	1227	1250	-23	-48

July	1240	1250	-10	-58
Aug	1245	1250	-5	-63
Sep	1238	1250	-12	-75
Oct	1257	1250	+7	-68
Nov	1248	1250	-2	-70
Dec	1264	1250	+14	-56

Positive savings i.e. savings in energy consumption over a period of eight months are $56 \times 2000 = 112,000 \text{ kWh}$

500 Kg

116.7 Kg

383.3 Kg

L-4 In a Chlor-Alkali plant, an evaporator was designed to concentrate 500 kg of liquor containing solids of 7% w/w (weight by weight) to 45% solids w/w in the output. Presently the output from evaporator has 30% solids w/w. The energy manager suggested overhauling the evaporator to achieve the design rate of solids w/w in the output. Calculate the percentage improvement in water removal in the evaporator after overhauling of the evaporator.

7 11 13	(
	Concentration of solids in feed	=	7 wt%
	Amount of solids in feed (input)	=	500 * 7 / 100
		=	35 Kg
	Present scenario:		

Concentration of solids in product (output) = 30 wt% = 0.3 Mass balance across the evaporator:

Amount of product (output) from the evaporator = 35 / 0.3

Water vapour removed from the evaporator is = 500 - 116.7

<u>Design scenario:</u>

Ans

Concentration of solids in product (output) = 45 wt% = 0.45

<u>Mass balance across the evaporator:</u>

Amount of feed (input) to the evaporator

Amount of product (output) from the evaporator = 35 / 0.45 = 77.8 Kg

Water vapour removed from the evaporator is = 500 - 77.8= 422.2 Kg

Incremental water removal achieved is = 422.2 – 383.3

= 38.9 Kg

% increase in water removal = 38.9 / 383.3 * 100

% improvement in water removal after overhaul = 10.14 %


L -5 A process plant is planning to implement a waste heat recovery project. The various activities from procurement to commissioning are given in the table below along with their duration and dependency.

Activity	Predecessor	Time in Weeks
A.	-	3
B.	-	5
C.	A	4
D.	A	6
E.	С	5
F.	С	3
G.	B & D	2
H.	D&E	1
l.	F,G,H	2

- a) Construct a PERT/CPM network diagram for the above project.
- (5 Marks)
- b) Compute the earliest start, earliest finish, latest start, latest finish and slack for all the activities (3 Marks)
- c) Compute the project duration.
- d) Identify the critical activities and the critical path(s).

(1 Mark) (1 Mark)

Ans | a) PERT/CPM network diagram for a project

b) Early start (ES), Early Finish (EF), Latest start (LS), Latest finish (LF) and slack for all the activities.

Activity	Duration	ES	EF	LS	LF	Slack (LS-ES) or (LF-EF)
Α	3	0	3	0	3	0
В	5	0	5	6	11	6
С	4	3	7	3	7	0
D	6	3	9	5	11	2
E	5	7	12	7	12	0

F	3	7	10	10	13	3
G	2	9	11	11	13	2
Н	1	12	13	12	13	0
I	2	13	15	13	15	0

X1 and X2 are dummy activities

c) Critical Path : A- C- E- H- I

d) Total time on critical path (project duration): 15 weeks

I - 6 A medium size chemical plant receives electricity from grid and also generates electricity from coal based Captive Power Plant (CPP). Coal is also used for process requirements. The fine coal from CPP is sold to neighboring plant. The annual energy details are given below:

Electricity purchased from grid	5 MU
Electricity exported to grid	11 MU
Power generation from CPP	36 MU
Power Supplied from CPP to Process	25 MU
plant	
Fine coal sold to neighboring unit	1000 ton
Coal used for process plant	5000 ton
GCV of coal	4500 kcal/kg
Heat rate of CPP	3500 kcal/kWh
Annual Operating Hours	7200

Calculate

a. Energy usage in TOE (Tons of oil equivalent)

(5 Marks)

b. Coal used in CPP

(3 Marks)

c. Calculate the CPP operating power in MW.

(2 Marks)

Ans Energy usage in TOE (Tons of oil equivalent)

- Grid electricity Imported = (5 x 10⁶ kWh)x (860 kcal/kWh) $= (+) 43 \times 10^8 \text{ kcals/year}$
- Power generated from CPP = (36 x 10⁶ kWh)x (3500 kcal/kWh) = (+) 1260 x 10⁸ kcals/year
- Coal imported for process = $(5000 \times 10^3 \text{ kg}) \times (4500 \text{ kcal/kg})$

= (+) 225 x 10⁸ kcals/year

- Power exported to grid = $(11 \times 10^6 \text{ kWh}) \times (3500 \text{ kcal/kWh})$
- $= (-) 385 \times 10^8 \text{ kcals/year}$
- Coal fines exported to neighbour = (1000 x 10³ kg)x (4500 kcal/kg) = (-) 45 x 10⁸ kcals/year
- Net annual energy consumption = (43+1260+225)-(385+45)
- = (+) 1098 x 108 kcals/year

- a. Energy usage in TOE $(1 \text{ MTOE} = 10^7 \text{ kcals})$
- $= (1098 \times 10^8 \text{ kcals/year}) / (10^7)$

= 10980 MTOE

b. Coal used in CPP

 $= ((36 \times 10^6 \text{ kWh}) \times (3500 \text{ kcal/kWh})) / (4500 \text{ kcal/kg})$

= 28 x 10⁶ kgs Coal/ Year

 $= (28 \times 10^6)/10^3 = 28000 \text{ Tons Coal/ Year}$

c. Calculate the CPP operating MW = (36 x 106 kWh/year)/ (7200 hrs/year)

= 5000 kW

= 5 MW

..... End of Section – III