Regn No:	·
----------	---

Name : ______(To be written by the candidate)

18th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – September, 2017

PAPER – 2: Energy Efficiency in Thermal Utilities

Date: 23.09.2017 Timings: 14:00-17:00 HRS Duration: 3 HRS Max. Marks: 150

General instructions:

- Please check that this question paper contains 8 printed pages
- Please check that this question paper contains 64 questions
- The question paper is divided into three sections
- All questions in all three sections are compulsory
- All parts of a question should be answered at one place

Section – I: OBJECTIVE TYPE

Marks: 50 x 1 = 50

- a) Answer all **50** questions
- b) Each question carries **one** mark
- c) Please hatch the appropriate oval in the OMR answer sheet with Black Pen or HB pencil

1.	 is required for the simple estimation of flame temperature of the fuel. a) Ultimate analysis b) Proximate analysis c) Size of the coal d) All of the above
2.	 is required to accommodate expansion of steam lines. a) PRV b) Expansion loop c) Steam trap d) Air vent
3.	 is used as heat carrier in thermic fluid heaters a) Steam b) Mineral Oil c) Water d) All of the above

4.	"Heat Loss = Heat gain " is the principle ofa) Boiler		
	b) Heat Exchanger		
	c) Steam trapsd) All of the above		
	, 	1.50/	
5.	A boiler trial indicated $2\% O_2$ at boile quantity between these two measurem		O_2 at stack. The in-leak air
	a) 25% b) 40%	c) 50%	d) none of the above
6.	A pinch analysis can result in		
	a) reduction in cooling water c) increase in cooling water	b) reduction d) both a &	
7.	Automatic blowdown controls for bo	ilers work by s	ensing
	a) TDS <u>b) conductivity</u>	c) pH	d) conductivity and pH
8.	Auxiliary power consumption for coa	al preparation w	vill be highest in a;
	a) stoker fired boiler	b) AFBC bo	iler
	c) CFBC boiler	,	ed coal fired boiler
9.	Ceramic fibre gives the maximum en	ergy savings w	hen used in
	a) continuous furnace	b) batch fu	rnace
	c) arc furnace	d) induction	furnace
10.	Degasser in water treatment is used to remove		
	a) Dissolved oxygen and other gas	b) carbonic	acid
	b) Sulphuric acid	d) dissolved	CO_2
11.	Dissolved CO2 in boiler feed water ofin boiler tubes	when left untro	eated would result in occurrence
	a)creep b) water side corrosio	n c)scale	d)water hammer
12.	Electro static precipitator in FBC boil	ler is used for _	
	a) Bottom ash removal		
	b) Fly ash removal		
	c) SO ₂ removal		
	d) CO ₂ removal		
13.	Flash steam quantity per kg of conder	nsate depends u	ipon

	a) condensate pressure onlyb) condensate pressure and flowc) condensate pressure and flash steam pressured) none of the above		
14.	Fluidized bed combustion takes place in the temperature range of		
	a) above 1000° C b) below 500° C c) $600-700^{\circ}$ C d) $800-900^{\circ}$ C		
15.	 Heat loss through openings in furnaces is directly proportional to a) fourth power of furnace temperature b) square of absolute furnace temperature c) absolute furnace temperature d) fourth power of absolute furnace temperature 		
16.	Heat rate is likely to be the least for		
	a) back pressure turbine b) condensing turbine		
	c)extraction condensing turbine d) double extraction turbine		
17.	In a boiler Theoretical Air to fuel ratio is 15:1. If 10% excess air is supplied, Flue gas to Fuel ratio will be		
	a) 16:1		
	b) 17.5:1		
	c) 16.5:1		
	d) 17:1		
18.	In a boiler, air preheater is installed		
	a) Before the economizer c) after economizer		
	b) Before superheater d) after ESP		
19.	In a counter-flow heat exchanger, cold fluid enters at 30°C and leaves at 50°C, whereas the hot fluid enters at 150°C and leaves at 130°C. The LMTD is		
	a) 100°C b) 280°C c) 0°C d) 20°C		
20.	In a glass industry waste heat is used for power generation. This type of cogeneration is called		
	a) topping cycleb) bottoming cyclec) combined cycled) none of the above		
21.	In a Heat exchanger with a high LMTD results in		

	a) higher heat transfer areab) lower heat transfer areac) higher u-factord) none of the above		
22.	In a heat exchanger, for the same heat duty, higher the heat transfer coefficient;		
	 a) higher will be the heat transfer area needed b) higher will be the LMTD c) lower will be the heat transfer area needed d) lower will be the LMTD 		
23.	In FBC boilers fluidization depends largely on		
	i) Particle size ii) Air velocityiii) Bed Material iv) Size of Boiler		
	a) i & iii b) ii & iii c) i & ii d) i,ii,iii,iv		
24.	In industrial applications the commonly used trap for main steam lines is		
	a) thermostatic trap b) inverted bucket trap d) open bucket trap		
25.	Increased Sulphur percentage in furnace oil		
	a)sets lower flue gas temperature limitb) improves viscosityc) does not add to heat valued) forms soot		
26.	Insulating material made by blending and melting of alumina and silica is known as		
	a) ceramic fibre b) high alumina brick c) fire brick d) insulating brick		
27.	Latent heat of steam at the critical point is		
	a) infinite b) 540 kcal c) zero d) none of the above		
28.	 Overall heat transfer co-efficient in Heat exchangers depends on a) Conductivity of the wall separating the two fluids b) Convective coefficients of hot and cold fluids c) Fouling coefficients d) All of the above 		
29.	Select the odd one among the following		
	a) condenser b) distillation column c) evaporator d) cooling tower		
30.	Steam mains should be run with a falling slope of in the direction of steam flow for effective line condensate drainage		
	a) 50 mm in 30 meters b) 125 mm in 30 meters		
	c) 250 mm in 30 meters d) 350 mm in 30 meters		
31.	Tangential firing is used in which type of boiler:		

	a) CFBC b) Chain Grate c) Spreader Stoker d) Pulverised Fuel		
32.	The amount of oxygen required to burn 0.5 kg of Sulphur is a) 1 b) 16 c) 32		
	d) 0.5		
33.	The concentration of solids in a boiler is controlled by		
	a) steam venting b) blow down c) air venting d) deaeration		
34.	The key property of bio mass fuel which influences storage, handling and transportation		
	a) Calorific Value b) Percentage of Ash		
	c) Bulk Density d) None of the above		
35.	 The main contributor for temporary hardness in Boiler water is a) Calcium chloride b) Magnesium Sulphate c) Calcium Bicarbonate d) Calcium nitrate 		
36.	The turbine heat rate is expressed as		
	a) kWh/kcal b) kg/kcal c)kcal/kWh_ d) none of the above		
37.	When 100 kg of fuel with 60% carbon is burnt with theoretical air, the mass of CO_2 released will be		
	a) 319 kg b) 4400 kg c) 4500 kg d) 220 kg		
38.	When solutions of differing concentrations are separated by a semi-permeable membrane, water from less concentrated solution passes through the membrane to dilute the liquid of high concentration. This is called		
	a) reverse osmosis b) ion exchange c) softening d) osmosis		
39.	When the boiler bed temperature exceeds beyond 950°C, the result is:		
	a) Low steam temperature b) clinker formation		
	c) Melting of lime stones d) Ash carry over		
40.	Which among the following is most viscous fuel?		
	a) furnace oil b) HSD c) kerosene d) Light Diesel oil		
41.	Which of the following contributes to spluttering of flame at burner tip during		

	combustion of fuel oil?		
	 a) ash content b) water content c) sulphur content d) humidity of air 		
42.	Which of the following heat recovery equipment works on a vapour compression cycle?		
	a) thermo-compressor b) heat wheel c) heat pump d) heat pipe		
43.	 Which of the following increases, when steam is passed through PRV? a) Specific volume b) Enthalpy of steam c) Sensible heat d) Saturation temperature 		
44.	Which of the following is an example of a basic refractory		
	a) Alumino-silicate b) chrome		
	b) Magnesite d)pure alumina		
45.	Which of the following is not measured in the ultimate analysis of a fuel ?		
	a) oxygen b) fixed carbon c) sulphur d) nitrogen		
46.	Which of the following is not true with respect to improper sizing of coal		
	a) results in poor combustionb) lowers excess air resulting in lesser stack loss		
	c) increases un-burnt in ashd) lowers thermal efficiency		
47.	Which of the following is true of plate heat exchangersa) close approachb) expandable areac) Counter currentd) All of the above		
48.	 Which of the following releases large amount of heat per kg during combustion? a) Hydrogen b) Carbon c) Sulphur d) Nitrogen 		
49.	Which of the following waste heat recovery systems is of thermal storage type?		
	a) ceramic recuperator c) regenerative burner b) metallic recuperator d) waste heat boiler		
50.	Which property of the refractory determines the deformation under stress?		
	a) Creepb) Refractoriness Under Load (RUL)		

	c) Porosity	
--	-------------	--

d) Pyrometric Cone Equivalent (PCE)

----- End of Section - I ------

SHORT DESCRIPTIVE QUESTIONS Section - II: Marks: 8 x 5 = 40

- (i) Answer all eight questions(ii) Each question carries five marks

S-1	Two identical biomass fired boilers of capacity 10 TPH are operated in a chemical industry. They each have a full load efficiency of 80%. The part load efficiencies at 70% and 40% load are 70% and 68% respectively. For meeting 14 TPH requirement of steam, would you prefer to run both the boilers at 7 TPH capacity or one at full load capacity and other at 40% capacity. Estimate the % savings in the preferred case.
Ans	Fuel energy required when both the boilers are run at 7 TPH load
	Governing equation to be used : (Fuel reqd) = [(Qty stm) * (Enth steam – Enth feedwater)] / [(GCV Fuel) * (Effy boiler)]
	(Fuel reqd) = [($Qty \ stm$) * (Δh) / (Effy boiler)]
	Where : $\Delta h = is$ same in both cases = [Enth steam – Enth feed-water) / (GCV Fuel)]
	<i>Fuel required</i> = $(2*7*\Delta h) / (0.70) = 20 \Delta h$
	1 mark
	<u>Fuel energy required when one boiler is running at full load and the other at part load of 40%</u>
	$\frac{4070}{Fuel required} = \left[(10^*\Delta h) / (0.8) \right] + \left[(4^*\Delta h) / (0.68) \right] = 18.38 \Delta h$
	• The case where one boiler is running at full load and the other at part load of 40% is preferred
	1 mark
	• % savings = $[(20 \Delta h) - (18.38 \Delta h)] * 100 / (20 \Delta h)$ = 8.1%
	1 mark
S-2	What happens to steam properties such as saturation temperature, enthalpy of saturated water, latent heat of steam, enthalpy of steam and specific volume of steam, if the steam pressure is increased?
	a) Saturation Temperature increases
Ans	b) Enthalpy of saturated water Increases.
	c) Latent heat of steam decreases
	d) Enthalpy of steam increases
	e) Specific Volume decreases
1	

S-3	To meet a process plant's heat and power requirements, high pressure steam at 65 MT/h passes through a back pressure steam turbine, for power generation and the exhaus steam is sent for thermal process requirements in the plant. With the following operating data, calculate the heat to power ratio in kW/kW, if the turbine and generator efficiencies are 90% and 92% respectively.		
	Steam Inlet conditions Steam outlet conditions		
	Pressure= 50 barPressure= 10 barTemperature= 530°CTemperature= 280°CEnthalpy of steam= 3515 kJ/KgEnthalpy= 3020 kJ/KgEnthalpy of water= 782 kJ/kg		
Ans	- Power generated = $65 * 1000 * (3515 - 3020) * 0.92 * 0.90 / 3600$ = 7400 kW		
	- Heat input to process = 65 * 1000 * (3020-782) / 3600 = 40408 kW 		
	- Heat to power ratio = $40408/7400$ = 5.46 kW/kW		
	1 mark		
S-4	Explain the working of Thermic fluid heating system and why it is preferred to steam heating in some cases?		
Ans	 Thermic Fluid Heaters: At high temperatures, steam requires a corresponding high operating pressure and establishing high temperatures with steam can be very cumbersome and expensive in some cases. In thermic fluid heaters, a special type of oil-synthetic / mineral -is used as heat carrier. This fluid can be heated up to 300°C at atmospheric pressure. In comparison steam would require a pressure of 85 bars to obtain this temperature. 		
	Advantages:		
	 High temperature operation at atmospheric pressure Optional temperature level set points No supply or treatment of hot water and hence no heat loss due to condensate flash steam No risk of corrosion Easy to operate Functioning of Thermic Fluid Heaters Heat is transferred to the fluid through radiation. The hot thermic fluid is circulated to various process equipments such as dryers, heaters, deodouriser etc. where it gives up the heat. The return oil at a temperature 10 to 20 °C less comes back to the thermic fluid heater to get heated up 		

r			
	 The thermic fluid heater operat the upper limit is reached the b fire mode. In the case of solid for reaching the upper limit. When 	out by a thermic fluid circulation pump. es between two temperature ranges. Once purner is switched OFF or goes into the low uel fired system the ID fan switches OFF on the temperature reaches the lower limit due the burners come ON again and in case of again.	
	⁰ C), the leaving exhaust gas temperature. Hence, the hea component of fuel losses. This of suitable application.	operate at a high temperature (250 – 300 s temperatures are more than the fluid t loss through the flue gas is a major offers potential for heat recovery if there is a ms of Lakh kilo Calories per hour or Million	
	kilo Calories per hour.		
	Pg no 56 of Book 2 for explanation	2.5 marks	
S-5	In a car manufacture company, Propane is used as fuel in heaters for preheating paints. Calculate the Air to Fuel ratio for complete combustion of C_3H_8 (Propane), if 20% excess air is supplied to the heater.		
Ans	C ₃ H ₈ + 5 O ₂ > 3 CO ₂ + 4 H ₂ O		
	1 mole of propane requires 5 moles of Oxygen.		
	Molecular weight of Propane is 44 Kg per mole.		
	44 Kg of Propane requires 160 Kg of Oxygen1 mark		
	Theoretical air required for combustion	= 160 / 0.23 = 695.6 Kg/hr	
	Excess air supplied is 20 %.	1.5 marks	
	Actual air supplied for combustion is	= 695.6 * 1.20	
		= 834.72 Kg/hr of air	
	Air to Fuel ratio	= 834.72 / 44	
		= 18.97 or <mark>1</mark> 9	
		1.5 marks	
S-6	a) Explain why de-superheating is done af	ter pressure reduction in PRVs?	
	b) Why is correction factor required for est	imation of LMTD?	

Ans	 a) A reduction in steam pressure through a pressure reducing valve (PRV) is an isenthalpic process. Saturated steam when reduced to a lower pressure results in super heated steam. Since process requires only saturated steam, de-superheating is often required, to compensate for superheat gained in PRV application due to isenthalpic expansion. 2.5 marks b) In multi pass shell and tube heat exchangers, the flow pattern is a mixture of co-current and counter current flow, as the two streams flow through the exchanger in the same direction on same passes and in the opposite on others. For these reasons, the mean temperature differences is not equal to the logarithmic mean. However it is convenient to retain the LMTD by introducing a correction factor, F which is appropriately termed as the LMTD correction factor. 		
	2.5 marks		
S-7	The efficiency of a boiler on GCV basis is 83%. The fuel contains 1.0 % moisture and 12 % hydrogen. The GCV of fuel is 10,500 Kcal/kg. What is the boiler efficiency on the basis of net calorific value?		
Ans	%age of Hydrogen in fuel %age of moisture in fuel NCV = GCV – [9 x++		
	100 100		
	NCV = $10500 - [9 \times \frac{12}{100} + \frac{1.0}{100}] \times 584$		
	= 10500 - [9 x 0.12 + 0.01] x 584		
	= 10500 - 636.56		
	= 9863.44 = 9863 kcal / kg		
	Boiler efficiency on NCV = $\begin{array}{c} 83\\\\ 9863 \end{array}$ x 10500		
	= 88.36%		
S 8	A reheating furnace is operating with deteriorated wall insulation. The existing average outer surface temperature of the furnace (of area = 100 m^2) with surrounding ambient air temperature of 40° C, is recorded to be 120° C. After revamping the refractory, the furnace outer surface temperature reduces to 50° C. If the fuel oil (GCV = $11,000 \text{ kcal/kg}$) cost is Rs. 25,000 per tonne, and efficiency of the furnace is 32%, estimate annual savings for 330 working days per year.		

Rate of heat loss from furnace surface (existing) S = [10+(Ts – Ta) / 20] x (Ts- Ta)
Heat loss = S x A
= $100m^2 x \left[10 + \left(\frac{120 - 40}{20}\right)\right]$ (120-40) kcals/hr /m ² = 112.0 x 10 ³ kcal/hr
1 mark
Rate of heat loss from furnace surface after revamping insulation refractory
= 100 [10 + $\frac{50-40}{20}$] (50-40) = 10.5 x 10 ³ kcal/hr
1 mark
Energy savings_kcal/hr = 112-10.5_= 101.5x10 ³ kcal/hr Annual energy savings_= (112-10.5) x 10 ³ x 330 x 24 = 8.039 x 10 ⁸ kcal/yr
Annual fuel oil savings = $\frac{8.039x10^8}{0.32x11000}$ = 2.29 x 10 ⁵ kg of fuel
1 mark
Annual Cost savings = $\frac{2.29 \times 10^5 \times 25000}{1000}$ = Rs.5.73 x 10 ⁶
1 mark

----- End of Section - II -----

Section - III: LONG DESCRIPTIVE QUESTIONS Marks: 6 x 10 = 60

- (i) Answer all SIX questions
- (ii) Each question carries <u>Ten</u> marks

_	Write short notes on following refractory properties and their significance.				
L-1	a) Porosity b) Bulk density c) Pyrometric cone equivalent d) Thermal conductivity				
Ans	Porosity				
	Low porosity is desirable as it would prevent easy penetration of refractory and also larger number of small pores are preferred over small number of large pores				
	Bulk density				
	Increase in bulk density increases its volume stability, heat capacity and resistance to slag				
	penetration				
	Pyrometric Cone Equivalent (PCE)				
	temperature at which refractory will deform under its own weight is its softening				
	temperature indicated by PCE.				
	Thermal conductivity				
	It is the heat loss per unit area per unit insulation thickness per unit temperature difference				
	W-m2/m°C or W-m/°C. Thermal conductivity of materials increases with temperature.				
	So thermal conductivity is always specified at the mean temperature (mean of hot and cold face				

	temperatures) of the insulation material								
	Refer Book 2, Page no 156 – 157								
L-2	LDO mediu Speci	(Light Diesel um. Steam e fic heat of LD	ning unit, a coun Oil) flowing at 6 nters the heat e O is 830 kg/m ³ & n at 8 kg/cm ² is g	0 m ³ /hr at 50°C exchanger throug a 0.7 kcal/kg°C re	using Ste h a pipe	am at 8 kg/cm of 6" diamete	² _g as a he	eating	
		Pressure, (kg/cm ² g)	Temperature, (°C)	Specific volume (m³/kg)	(kcal/kg)		Steam		
		8.0	170	0.22	170	490	660		
 a. Calculate the mass flow rate of Steam, if the maximum perror the pipeline is 30 m/sec. b. Temperature of the Fuel oil, after preheating in the heat excertains 							city in		
	Area of the pipe			=	= 6 inch				
				=	= 6 * 2.54				
				=	= 15.24 cm				
				=	= 3.14 * D ² / 4				
				=	= 3.14* (15.24) ² / 4				
				=	$= 182.3 \text{ cm}^2$				
				=	= 0.0182 m ²				
				=	= Area * Velocity				
		Velocity permissible			= 30 m/sec				
		Volumetric	flow rate of ste	am =	= 0.0182 * 30				
					= 0.546 m ³ /s * 3600				
				=	= 1965.6 m³/hr				

	Specific volume of steam	= 0.22 m³/kg			
	Mass flow rate of steam	= 1965.6 / 0.22			
		= 8934.5 kg/hr			
	a. Mass flow rate of steam	= 8.93 TPH			
		1 mark			
	Temperature of the Fuel oil				
	Heat transfer rate of Steam	= m * H			
		= 8934.5 * 490			
		= 4377905 kcal/hr			
	Heat transfer rate of Steam	= heat transfer rate of LDO			
	Heat transfer rate of LDO	= 4377905 kcal/hr			
	Heat transfer rate of LDO	= m * Cp * (T ₁ – T ₂)			
		= 60 * 830 * 0.7 * (T – 50)			
		= 4377905 (60 * 830 * 0.7)			
	Delta Temperature	= 125.59°C			
	Outlet Temperature of LDO	= 125.59 + 50			
		= 175.59 °C			
	b. Outlet temperature of LDO	= 175.6°C			
		2 marks			
L3	Write short notes on any two of the following				
	a. Wet preservation method for boilers				
	b. Reverse osmosis				
	c. Reciprocating engine co-generation system				
ANS	a) Wet preservation method for boilers: In the wet method the boiler is filled to the normal level with water at a pH of 10.5 to 11. Hydrazine to the extent of 200 ppm is to be dosed with the water. The unit is to be steamed in service to ensure uniform concentration of boiler water throughout the unit and to eliminate dissolved oxygen from water. Sodium sulphite (Na ₂ SO ₃), which acts as a de-oxygenerator, can also be used as an alternative to hydrazine and the sulphite concentration has to be maintained at 300-400 ppm.				
	Analysis of boiler water should be carried out frequently. If the hydrazine concentration in water happens to drop below 50 ppm, the water in the drum should be lowered to the normal				

	operating level and an appropriate quantity of chemicals show the concentration of hydrazine or sodium sulphite. The boiler chemicals to uniform concentration.	
	b) Reverse osmosis: When solutions of differing concentrate permeable membrane, water from less concentrated solution p dilute the liquid of high concentration, which is called ost concentration is pressurized, the process is reversed and the v concentration flows to the weaker solution. This is known as r	basses through the membrane to mosis. If the solution of high water from the solution of high
	c) Reciprocating engine co-generation system: Also (I. C.) engines, these cogeneration systems have high por comparison with other prime movers. There are two sources gas at high temperature and engine jacket cooling water system recovery can be quite efficient for smaller systems, these s smaller energy consuming facilities, particularly those having than thermal energy and where the quality of heat required steam or hot water.	known as internal combustion wer generation efficiencies in s of heat for recovery: exhaust em at low temperature. As heat ystems are more popular with g a greater need for electricity is not high, e.g. low pressure
L4	 A fluidized bed boiler generates 24TPH at 22 kg/cm²(g), our the back pressure turbine and exhausts from it at 5kg/cm²(requirement in the plant. The balance steam from the boiler supply 10 kg/cm²(g) steam at saturated condition (dry satu DM water at 105°C is used for de-superheating in PRDS. Given data: a) Mechanical Efficiency of steam turbine b) Losses in gear transmission c) Efficiency of alternator d) The total heat of steam at turbine inlet condition at 2 	g) to meet the process steam is passed through a PRDS to rated) to the another process. = 94 % = 5% = 95 % 22 kg/cm ² (g) = 708 kcal/kg 5 kg/cm ² (g) = 658 kcal/kg
	 f) The total heat of the steam at PRDS exit at 10kg/cm²(g) Calculate 1. Power generation from back pressure turbine 	= 670 kcal/kg
A	 2. Steam flow rate going to process at the exit of PRDS <u>1: Power generation from back pressure turbine:</u> 	
Ans	Enthalpy drop across the turbine per kg of inlet stean	n = (h1-h2)
		= (708-658)= 50 kcal/kg
	Total steam flow rate through turbine Total enthalpy drop across the turbine	1 mark = 18,000 kg/hr =18,000*50 = 900000 kcal/hr
	Mechanical Efficiency of steam turbine Efficiency of alternator % losses in gear transmission Over all efficiency of the turbo alternator	1 mark = 94% = 95 % = 5% = 0.94 x 0.95 x 0.95
		= 0.848 = 84.8%

					2 marks
	Energy output of turbing			= 900000 x 0	
	Energy output of turbine				.040
				= 763200	1 1
					1 mark
	Power output of the alternator			= 763200 / 860	= 887.4 kW
					1 mark
	2: Steam Flow rate going to proc	cess at the ex	cit of PR	DS:	
	Flow rate of DM water	= m			
	Heat content of steam at exit of	PRDS = Heat	t supplie	d by water and ste	am to PRDS
		x 670 = (600)		-	
				r = 403.54 kg/hr	
		m = 403.	34 Kg/ 11		2 manles
		000	0 . 400		
	Steam flow at outlet of PRDS	= 600		54 = 6403.54 kg /	
					l mark
L-5	In a chlor-alkali plant, 100 TPD cau	istic solution at	t 30% cor	centration is dried to	o 55%
- •	concentration in a single effect eva				
	removal is 1.0 kg/kg. It is proposed	to be replaced	d by a trip	le effect evaporator	at an
	investment cost of Rs. 5 crore, for	•	•	•	
				-	
	kg/kg. Steam for the evaporator is	generated from	h an oll fir	ed boller at an evap	oration ratio
	of 14.3.				
	Calculate annual fuel savings in TF	D.			
Ans	% salt concentration at inlet	= 30%	6		
	% salt concentration at outlet	= 55%			
	Input quantity of caustic solution to				
					1 1
	Amount of bone dry salt at drier inlet				
	Amount of water at drier inlet			= 70 TPD	
	Flow rate of salt solution at drier ou	tlet = 30 /	0.55	= 54.5 TPD	1 mark
	Amount of water at drier outlet	= 54.5	5 - 30	= 24.5 TPD	1 mark
	Amount of water removed			= 45.5 TPD	
		-	-4.5		
	Ratio of steam / moisture for single				1 mark
	Amount of steam required for singl	e effect = 45.5	TPD		
	Ratio of steam / moisture for triple	effect $= 0.54$	Ļ		
	Amount of steam required for triple	e effect = 45.5	5 X 0.54	= 24.57 TPD	1 mark
	Amount of steam saved by triple eff			= 20.93 TPD	
	• •			= 20.93 IPD	1 IIIaIK
	Evaporation ratio	= 14.3	-		
	Amount of fuel savings			1.464 TPD	
L-6	In an engineering industry, an electric				
	the components. The annealing cycle and corresponding energy consumption as follows.				
	S.No Heat treatment	Temperature	Time hrs	Power drawn in	
	cycle	^{~0} C		kW	
	1 Heat -Up	30 - 850	4	500	
	2 Holding at	850	4	100]
	3 Cooling	850 - 60	4	20	1
		u			_
	The electrical energy drawn in each sub-cycle is uniform and plant operates 50 batches per month.				
	The cost of electricity is Rs.8/kWh.				
	The management has decided to replace the electric furnace with FO oil fired furnace with efficiency				
L	The management has decided to replace the electric furnace with 1.0 on fired furnace with effectively				

Paper 2 – Set B with Solutions

	of 48%. The cost of F.O is Rs.30/kg. Calculate cost savings and payback period of converting from electric to oil fired furnace. Investment for FO fired furnace is Rs.25 lakhs. The GCV of F.O is 10,000 kcal/kg				
Ans	Energy consumption per treatment batch :				
	– Heat up time	= 500 x 4	= 2000kWh;1 mark		
	 Holding time 	= 100 x 4			
	~	= 100 x 4 = 20 x 4			
	- Cooling time	$= 20 \times 4$			
	- Total energy consumption per batch		$= 2480 \text{ kWh} \dots 1 \text{ mark}$		
	 Monthly energy consumption by 				
	electric annealing furnace including losses		= 2480 x 50		
			= 1,24,000 kWh / month		
			1 mark		
	– Actual consumption by the components				
	at electrical furnace efficiency of 82%		= (124000 x 0.82)		
			= 1,01,680 kWh / month		
			1 mark		
	– Eqvt FO required to be supplied to the oil				
	fired furnace at an efficiency of 50%		$= 101680 \times 860 / (10000 \times 0.48)$		
			= 18217.67 kg / mth		
			1.5 marks		
	 Annual Cost of savings 		= [(124000 x 8) - (18217.67 x 30)] x 12		
	6		= Rs.53,45,639 / yr		
			1.5 marks		
	– Payback period		= 2500000 / 5345639 = 5.61 months		
	r uj ouok portoù		1 mark		
]		of Section –			

^{.....} End of Section – III