Marks: $50 \times 1 = 50$

18th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – September, 2017

PAPER - 1: GENERAL ASPECTS OF ENERGY MANAGEMENT & ENERGY AUDIT

Date: 23.09.2017 Timings: 09:30-12:30 HRS Duration: 3 HRS Max. Marks: 150

General instructions:

- Please check that this question paper contains 10 printed pages
- Please check that this question paper contains 64 questions
- o The question paper is divided into three sections
- All questions in all three sections are compulsory
- o All parts of a question should be answered at one place

Section - I: OBJECTIVE TYPE

- (i) Answer all **50** questions
- (ii) Each question carries one mark
- (iii) Please hatch the appropriate oval in the OMR answer sheet with Black Pen, as per instructions
- 1 kg of wood contains 15% moisture and 5% hydrogen by weight. How much water is evaporated during complete combustion of 1kg of wood? a) 0.6 kg d) none of the above b) 200 g c) 0.15 kg 2. 2000 kJ of heat is supplied to 500 kg of ice at 0°C. If the latent heat of fusion of ice is 335 kJ/kg then the amount of ice in kg melted will be a) 1.49 b) 83.75 c) 5.97 d) None of the above A building intended to be used for commercial purpose will be required to follow Energy conservation building code under Energy Conservation Act, 2001 provided its a) connected load is 120 kW and above b) contract demand is 100 kVA and above c) connected load is 100 kW and above or contract demand is 120 kVA and d) connected load is 500 kW and contract demand is 600 kVA A process electric heater is taking an hour to reach the desired temperature while 4. operating at 440 V. It will take ----- hours to reach the same temperature, if the supply voltage is reduced to 220 V.

	a) 2	b) 3	c) 4	d) 5			
5.	A sling psychrometer is used to measure:						
	a) only dry b c) both a &	ulb temperature b_	b) only we d) relative l	t bulb temperature humidity			
6.	A three phase induction motor is drawing 16 Ampere at 440 Volts. If the operating power factor of the motor is 0.90 and the motor efficiency is 92%, then the mechanical shaft power output of the motor is						
	a) 12.04 kW c) 10.97 kW		b) 10.09 k' d) None of				
7.	An electric he is:	eater consumes 1000 J	oules of energy in	5 seconds. Its power rating			
	a) 200 W	b) 1000 W	c) 5000W	d) none of the above			
8.				us hot water generation in er min can be heated from			
	30° C to 85° C	C ignoring losses?.					
	a) 1.3	b) 78.18	c) 275	d) none of the above			
9.	An indication	of sensible heat conto	ent in air-water vap	oour mixture is			
	a) wet bulb tec) density of a	•	b) dew pointd) dry bulb t	*			
10.	An oil fired boiler is retrofitted to fire coconut shell chips. Boiler therma efficiency drops from 82% to 70%. What will be the percentage change in energy consumption to generate the same output						
	a) 12% increa c) 17.1% decr		b) 14.6% inc d) 17.1% inc				
11.	As per Energy Conservation Act, 2001, a BEE Certified Energy Manger is required to be appointed/designated by the						
	a) state designc) designated	nated agencies I consumers	b) all industri d) electrical d	al consumers listribution licensees			
12.	_	f 60 g/hr. If it is replac	· ·	W incandescent lamp are lamp then the equivalent			
	a) nil	b) 5 g/hr	c) 12 g/hr	d) 300 g/hr			

13.	Bio-gas generated through anaerobic process mainly consists of				
	a) only methane c) only ethane	b) methane and carbon dioxide d) none of these			
14.	Energy sources which are inexhaustible a) commercial energy c) renewable energy	are known as b) primary energy d) secondary energy			
15.	In a boiler, fuel substitution of coal with	n rice husk results in			
	a) energy conservationb) energy efficiencyc) both energy conservation and energyd) carbon neutrality	v efficiency			
16.	In a manufacturing plant, following data Production - 1200 pieces; specific energy variable energy consumption - 950 kWl the plant for the month is				
	a) 6,000 kWh b)10,000 kWh	c) 12,000 kWh d) 60,000 kWh			
17.	In project financing, sensitivity analysi	s is applied because			
	a) almost all the cash flow methods involonged by of the need to assess how sensitive the compact of th	ne project to changes in input parameters			
18.	is a statistical technique which determines and quantifies the relationship between variables and enables standard equations to be established for energy consumption.				
	a) linear regression analysisc) moving annual total	b) time-dependent energy analysisd) CUSUM			
19.	The benchmarking parameter for a vapo	our compression refrigeration system is			
	a) kW / kg of refrigerant used c) BTU / Ton of Refrigeration	b) kcal / m³ of chilled water d) kW / Ton of Refrigeration			
20.	The component of electric power which known as	yields useful mechanical power output is			
	a) apparent power c) reactive power	b) active power d) none of the above			

21.	The contractor provides the financing and is paid an agreed fraction of actual savings achieved. This payment is used to pay down the debt costs of equipment and/or services. This is known as					
	a) traditional contc) performance Co			ical guarantee/service s performance contract		
22.	-			nergy efficient chiller in a s 2.50 lakh .The return on		
	a) 18%	b) 20%	c) 15 %	d) none of the above		
23.	The electrical pov	ver unit Giga Wat	t (GW) may be writt	ten as		
	a) 1,000,000 MW	b) 1,000 MW	c) 1,000 kW	d) 1,000,000 W		
24.	The Energy Conso		requires that all des periodically by	signated consumers		
	a) certified energy managerc) accredited energy auditor			b) certified energy auditord) state Designated Agencies		
25.	The energy conve	ot depend on				
	a) color anaray in	1 . 4 !	h) inventor			
	a) solar energy ins		b) inverter			
	c) area of the sola	r cell	d) maximum po	•		
26.	c) area of the sola	r cell		•		
26. 27.	c) area of the sola The internal rate a) positive	of return is the di b) zero	d) maximum po	h the NPV is d) less than 1		
	c) area of the sola The internal rate a) positive	of return is the di b) zero	d) maximum posscount rate for whice c) negative	h the NPV is d) less than 1		
27.	c) area of the sola The internal rate a) positive The number of mo a) 2 The power general	of return is the di b) zero oles of water cont b) 3 tion potential in n	d) maximum por scount rate for whic c) negative tained in 36 kg of w	h the NPV is d) less than 1 ater is d) 5 ant for a water flow of		
27.	c) area of the sola The internal rate a) positive The number of mo a) 2 The power general	of return is the di b) zero oles of water cont b) 3 tion potential in n	d) maximum por scount rate for which c) negative tained in 36 kg of which c) 4 mini hydro power pland with a system effects	h the NPV is d) less than 1 ater is d) 5 ant for a water flow of		
27.	c) area of the sola The internal rate a) positive The number of many as a contract of the power general and a contract of the contract of the power general and a contract of the contract of th	of return is the dib) zero coles of water conto	d) maximum por scount rate for whice c) negative tained in 36 kg of which could be c	h the NPV is d) less than 1 ater is d) 5 ant for a water flow of ficiency of 55% is		
27.	c) area of the sola The internal rate a) positive The number of many as a contract of the power general and a contract of the contract of the power general and a contract of the contract of th	of return is the dib) zero coles of water contob 3 ation potential in mad of 14 meters at b) 76.4 kW pturing CO ₂ from	d) maximum por scount rate for whice c) negative tained in 36 kg of which could be c	th the NPV is d) less than 1 ater is d) 5 ant for a water flow of ficiency of 55% is d) none of the above storing them is called		
27.	c) area of the sola The internal rate a) positive The number of many as a control of the power general and a control of the process of case and carbon sequences of carbon capture	of return is the dib) zero coles of water contob 3 ation potential in mad of 14 meters at b) 76.4 kW pturing CO ₂ from	d) maximum por scount rate for which congative trained in 36 kg of which considers and some constant of the co	th the NPV is d) less than 1 ater is d) 5 ant for a water flow of ficiency of 55% is d) none of the above storing them is called		

31.	The quantity of heat required to raise the temperature of a given substance by 1°C is known as:					
	a) sensible heat	b) specific heat	c) heat capacity	d) latent heat		
32.	The rate of energy t measured in	ransfer from a hig	gher temperature to a	lower temperature is		
	a) kcal	b) Watt	c) Watts per secon	d d) none of the above.		
33.	The retroffitting of a		rive in a plant costs Ince cost is Rs. 5,000	Rs 2 lakh. The annual /year. The return on		
	a) 25%	b) 22.5%	c) 24%	d) 27.5%		
34.	The term missing in is	the following eq	uation (kVA) $^2 = (k$	2 VA cos phi) 2 + (?) 2		
	a) cos phi	b) sin phi	c) kVA sin phi	d) kVArh		
35.	To maximize the coneeds to be done?	ombustion efficie	ency, which of the fo	ollowing in the flue gas		
	a) maximize O ₂	b) maximize (CO ₂ c) minimize (CO ₂ d) maximize CO		
36.	Which among the focumbustion due to I	_	nighest flue gas loss ouel?	on		
	a) natural gas	b) furnace oil	c) coal	d) light diesel oil		
37.	Which of the follow	ring criteria is a re	esponsibility of Des	ignated Consumer?		
	 a. designate or appoint an accredited Energy Auditor b. adhere to stipulated energy consumption norms and standards as 					
			mption information eified energy auditor pe	<u> </u>		
38.	Which of the follow	ing GHGs has th	e longest atmospheri	c life time?		
	a) CO ₂ b) CFC	c) Sulfur Hex	xafluoride (SF ₆) d) p	erfluorocarbon (PFC)		
39.	Which of the follow	ring has the higher b) mercury	est specific heat? c) water	d) alcohol		
40.	Which of the follow	ving is an energy	security measure?			
	a) fully exploiting	domestic energy	resources			
		ergy supply source				
	c) substitution ofd) all of the above	-	or domestic fuels to	the extent possible		

b) high grade forms o c) low grade energy rather than heatin d) the molecules of lo	f energy are highly is better used for ng water for bath w grade energy are	applications like melting	
Which of the following	ng is not a greenho	use gas ?	
a) CFCs	b) SO2	c) PFC	d) SF6
a) monitoring and ab) verification of enc) submission of tec	nalysis of energy uergy use	recommendations	
Which of the following	ng is not applicable	e to liquid fuels?	
a) the viscosity of a lib) the viscosity of allc) higher the viscosit	quid fuel is a meas liquid fuels decrea y of liquid fuels, l	sure of its internal resistan uses with increase in its ter	nperature
Marking?	ng parameters is no		Bench
, <u>*</u>	product quality		ology
i) reactive current i of inductive deviceii) some portion of iii) the cosine of angiv) the cosine of ang	s necessary to buil ces eactive current is d le between kVA and le between kW and	d up the flux for the magn converted into work nd kVAr vector is called po	power factor
	b) high grade forms o c) low grade energy: rather than heatin d) the molecules of low molecules of carbo Which of the followin a) CFCs Which of the followin Conservation Act, 20 a) monitoring and a b) verification of energy c) submission of tect d) ensuring implementation review Which of the followin a) the viscosity of a lib the viscosity of all c) higher the viscosity of all c) higher the viscosity of all c) higher the following Marking? a) scale of operation c) raw materials and p Which of the following in the cosine of ang iv)	c) low grade energy is better used for rather than heating water for bath d) the molecules of low grade energy armolecules of carbon in coal Which of the following is not a greenho a) CFCs b) SO2 Which of the following is not a part of Conservation Act, 2001? a) monitoring and analysis of energy use c) submission of technical report with d) ensuring implementation of recorreview Which of the following is not applicable a) the viscosity of a liquid fuel is a mease b) the viscosity of all liquid fuels decreace; higher the viscosity of liquid fuels, d) viscous fuels need heat tracing Which of the following parameters is not Marking? a) scale of operation c) raw materials and product quality Which of the following statements are to i) reactive current is necessary to built of inductive devices ii) some portion of reactive current is eiii) the cosine of angle between kVA aiiv) the cosine of angle between kWA aiiv) the cosine of angle between kWA aiiv) the cosine of angle between kWA and and analysis of the following of angle between kWA and aiv) the cosine of angle between kWA and aiv)	b) high grade forms of energy are highly ordered and compact c) low grade energy is better used for applications like melting rather than heating water for bath d) the molecules of low grade energy are more randomly distribut molecules of carbon in coal Which of the following is not a greenhouse gas? a) CFCs b) SO2 c) PFC Which of the following is not a part of energy audit as per the En Conservation Act, 2001? a) monitoring and analysis of energy use b) verification of energy use c) submission of technical report with recommendations d) ensuring implementation of recommended measures follo review Which of the following is not applicable to liquid fuels? a) the viscosity of a liquid fuel is a measure of its internal resistan b) the viscosity of all liquid fuels decreases with increase in its ter c) higher the viscosity of liquid fuels, higher will be its heating d) viscous fuels need heat tracing Which of the following parameters is not considered for external I Marking? a) scale of operation b) energy pricing c) raw materials and product quality b) energy pricing c) raw materials and product quality which of the following statements are true? i) reactive current is necessary to build up the flux for the magn of inductive devices ii) some portion of reactive current is converted into work iii) the cosine of angle between kVA and kVAr vector is called po

47.	Which of the following statements is correct regarding 'float' for an activity?					
	a) Time between its earliest start tib) Time between its latest start timec) Time between latest start time atd) Time between earliest finish ti	e and latest finish time nd earliest finish time				
48.	Which of the following statements regarding evacuated tube collectors (ETC) are true?					
	 i) ETC is used for high temperature ii) because of use of vacuum betwoe amount of heat is retained in ET iii) heat loss due to conduction bactory performance of evacuated tube temperature 	een two concentric glass to CC k to atmosphere from ETC	C is high			
	a) i & iii b) ii & iii	c) i & iv	d) i & ii			
49.	Which of the following two statements Kaizen for energy conservation? i) Kaizen events are structured for ii) Kaizen events engage workers in involved in energy conservation iii) Implementation of kaizen events approval of top management iv) In a Kaizen event, it may happen may result in significant savings a) ii & iv b) i & iv	reduction of only energy was such a way so that they gefforts a takes place after review and that small change in one	vastes get and			
50	Which one is not an energy consump					
50.	-	•	:			
	a) kcal/kWh of electricity generatedc) kW/ton of refrigeration	b) kg/ °C. d) kWh/kg	of varn			
	C) K W/toll of felligeration	u) kwii/kg	or yarn			

..... End of Section – I

Section – II: SHORT DESCRIPTIVE QUESTIONS

- (i) Answer all <u>Eight</u> questions(ii) Each question carries <u>Five</u> marks

Marks: $8 \times 5 = 40$

S-1	Give a short description about Availability Based Tariff (ABT).
Ans	Introduction of availability based tariff(ABT) and scheduled interchange charges for power was introduced in 2003 for interstate sale of power, have reduced voltage and frequency fluctuation
	• It is a performance-based tariff system for the supply of electricity by
	generators owned and controlled by the central government.
	• It is also a new system of scheduling and dispatch, which requires both
	generators and beneficiaries to commit to day - ahead schedule.
	 It is a system of rewards and penalties seeking to enforce day ahead pre-
	committed schedules, though variations are permitted if notified one and a half
	hours in advance.
	 The order emphasizes prompt payment of dues , non-payment of prescribed
	charges will be liable for appropriate action.
	charges will be hable for appropriate action. 5 marks
S- 2	A manufacturing industry plans to improve its energy performance under PAT through implementation of an energy conservation scheme. After implementation, calculate the Plant Energy Performance (PEP) with 2015-16 as the reference year. What is your inference? Given that: • The current year (2016-17) Annual Production — 34000 T, • Current year (2016-17) Annual Energy Consumption— 27,200 MWh, • Reference year (2015-16) production — 28,750 T, • Reference year (2015-16) Energy consumption— 23,834MWh.
Ans	Production factor (PF) = 34000 / 28750= 1.18
	Ref year equivalent energy (RYEE) = Ref Year Energy Use (RYEU) x PF = 23834 x 1.18= 28124.12MWh
	PEP = (RYEE – current year energy)/RYEE = (28124.12 – 27200)/28124.12 = (+) 0.0329 ie (+) 3.3 %
	Since the PEP is positive, it implies that the energy conservation measure had yield reduction in energy consumption. Action has to be taken to improve plant performance.
S- 3	List down any five Designated Consumers notified under the Energy Conservation Act.

Ans	(1) Aluminium, (2) Cement, (3) Chloralkali, (4) Fertiliser, (5) Steel, (6) Pulp & Paper, (7)Thermal Power Plants, (8) Textile, (9) Railways.						
	(any 5 of the above and each one carries one mark)						
S-4	In a 100 TPD Sponge Iron plant, the sponge iron is fed to the Induction melting furnace, producing molten steel at 86% yield. The Energy consumption details are as follows: Coal Consumption : 130 TPD						
	GCV of coal : 4500 kcal/kg Power Purchased from Grid : 82400 kWh / day Specific Energy consumption for Kiln producing Sponge Iron: 120 kWh / ton sponge iron						
	82400 kWh/day from Grid Factory Boundary						
	Iso TPD Coal 4500 kcals/kg Iron Ore Grid Electricity 120 kWh/t of Sponge iron Electricity for Induction Melting Furnace Iron Furnace Yield: 86% Molten Steel						
	 Calculate the following Specific Energy Consumption of Induction melting furnace in terms of kWh/ton of molten steel. Specific Energy Consumption of the entire plant, in terms of kcal/kg of molten steel (product). 						
	3. Total Energy Consumption of Plant in Tons of Oil Equivalent (TOE).						
Ans	a) Specific Energy Consumption of Induction Melting Furnace						
	Molten Steel Production from the Induction melting furnace per day						
	= 100 x 86/100 = 86 TPD Total Energy Consumption of the Plant = \$2400 kWh						
	Total Energy Consumption of the Plant = 82400 kWh Electrical Energy Consumption in Sponge Iron Making = 120 x 100 = 12000 kWh per day						

	Electrical Energy Consumption in Induction Melting Furnace = 82400-12000 = 70400 kWh/day
	Specific Energy Consumption of Induction Melting Furnace= 70400/86 = 818.6 kWh/ton of molten steel
	b)Total Energy Consumption of the Plant:
	= (82400x860) + (130x1000x4500) = (70864000+585000000) = 655864000 kcal/day 1 mark
	Specific Energy Consumption in terms of kcal/kg of Molten metal =655864000/86000 =7626.3 kcal/kg of molten metal
	c) Total Energy consumption of Plant in ToE
	$= 655864000/10^7 = 65.586 \text{ ToE}$
	1 mark
S-5	Explain Time of Day (TOD) Tariff and how it is beneficial for the power system and consumers?
Ans	➤ In Time of the Day Tariff (TOD) structure incentives for power drawl during off-
	peak hours and disincentives for power drawl during peak hours are built in. Many
	electrical utilities like to have flat demand curve to achieve high plant efficiency.
	> ToD tariff encourage user to draw more power during off-peak hours (say during
	11pm to 5 am, night time) and less power during peak hours. Energy meter will
	record peak, off-peak and normal period consumption, separately.
	> TOD tariff gives opportunity for the user to reduce their billing, as off peak hour
	tariff is quite low in comparison to peak hour tariff.
	> This also helps the power system to minimize in line congestion, in turn higher
	line losses and peak load incident and utilities power procurement charges by
	reduced demand.
	5 marks
	(each point consider 1.5 marks)
S-6	In a chemical factory where dyes are made, wet cake at 30 °C consisting of 60% moisture is put in a dryer to obtain an output having only 8% moisture, at atmospheric pressure. In each batch about 120 kgs of material is dried.

	TT1	. • .	c	•			1 . 1
a.	The	auantity	ot	moisture	removed	per	batch.

- b. What is the total quantity (sensible & latent) of heat required to evaporate the moisture, if the latent heat of water is 540 kcal/kg at atmospheric conditions, Ignore heat absorbed by the solids
- c. Find the quantity of steam required for the drying process (per batch), if steam at 4 kg/cm² is used for generating hot air in the dryer and the dryer efficiency is 70%. Latent heat of steam at 4 kg/cm² is 520 Kcal/kg.

Ans Given that

• Qty of material dried per batch - 120 kgs

• Moisture at inlet - 60%

a. The quantity of moisture removed per batch.

• Water quantity in a wet batch - $120 \times 0.6 = 72 \text{ kgs}$.

• Quantity of bone dry material - 120 - 72 = 48 kgs.

• Moisture at outlet - 8%

• Total weight of dry batch output - 48/0.92 = 52.2 kgs.

• Equivalent water in a dry batch - 52.2 - 48 = 4.2 kgs.

• Total water removed in drying - 72 – 4.2 = 67.8 kgs./batch1.5 marks

b. The total quantity of heat required to evaporate the moisture.

To evaporate the moisture at atmospheric pressure, the material has to be first heated up to $100\,^{\circ}\text{C}$.

The total heat required would be;

Sensible heat $- 72 \times 1 \times (100 - 30) = 5040 \text{ kcal/batch}$

Latent heat $- 67.8 \times 540 = 36612 \text{ kcal/batch}$

Total heat required -5040 + 36612 = 41652 kcal/batch

c. The quantity of steam required for the drying process

Dryer Efficiency - 70%

Heat input to dryer - 41652/0.7 = 59502.86 kcal/batch

Latent heat in 4 Kg/cm² steam - 520 kcal/kg

Steam quantity required - 59502.86 / 520 = 114.4 kgs / batch1.5 marks

S-7 Explain PAT scheme and why it is a market based mechanism?

Ans Perform, Achieve and Trade (PAT) Scheme is a market based mechanism to enhance cost effectiveness of improvements in energy efficiency in energy-intensive large industries and facilities, through certification of energy savings that could be traded. The genesis of the PAT mechanism flows out of the provision of the Energy Conservation Act, 2001 (amended in 2010).

The key goal of PAT scheme is to mandate specific energy efficiency improvements for the most energy intensive industries in sectors as listed below.

Sector

- 1. Aluminium
- 2. Cement
- 3. Chlor-Alkali
- 4. Fertilizer
- 5. Iron and Steel
- 6. Pulp and Paper
- 7. Textile
- 8. Thermal Power Plant

The energy intensity reduction target mandated for each unit is depended on its operating efficiency and the specific energy consumption reduction target is less for those who are more efficient and more for the less efficient units.

Further, the scheme incentivizes units to exceed their specified SEC improvement targets. To facilitate this, the scheme provides the option for industries who achieve superior savings to receive energy savings certificates for this excess savings, and to trade the additional certified energy savings certificates with other designated consumers who can utilize these certificates to comply with their specific energy consumption reduction targets. Energy Savings Certificates (ESCerts) so issued will be tradable at Power Exchanges. The scheme also allows units which gain ESCerts to bank them for the next cycle of PAT, following the cycle in which they have been issued. The number of ESCerts which would be issued would depend on the quantum of energy saved over and above the target energy savings in the assessment year.

After completion of baseline audits, targets varying from unit to unit ranging from about 3 to 7% are set and need to be accomplished during the 3 year cycle; after which new cycle with new targets will be proposed. Failing to achieve the specific energy consumption targets in the time frame would attract penalty for the non-compliance under Section 26 (1A) of the Energy Conservation Act, 2001 (amended in 2010). For ensuring the

	compliance with the set targets, system of verification and check-verification will be carried out by empanelment criteria of accredited energy auditors.							
	Refer Book 1: Pg no 40-41							
S- 8	In a heat treatment shop, steel components are heat treatment cycle is as follows;	In a heat treatment shop, steel components are heat-treated in batches of 80 Tons. The heat treatment cycle is as follows;						
	• Increase temperature from 30 °C to 850 °C in 3 hours.							
	Maintain 850 ^o C for 1 hour (soaking time)	e).						
	• Cool the material to 60 °C in 4 hours.							
	a) Calculate the efficiency of the furnace, if the and fuel oil consumption per batch is 1400 li	_	c heat of steel is 0.12 kcal/kg ^o C					
	GCV of fuel oil - 10200 kcal/kg, Cost of fuel oil - Rs. 46,000/kL, Sp. gr. of fuel oil - 0.92.	,						
	b) Due to high cost of oil, the plant management decides to convert to a lower operating cost LPG fired furnace lined on the inside with ceramic fibre insulation and with an operating efficiency of 75%, for same requirement. The investment towards installation of the new furnace is Rs. 50 lakhs. Calculate the Return on Investment, if the plant operate two batches per day and 270 days in a year. Cost of LPG - Rs. 75/kg, GCV of LPG - 12500 kcal/kg.							
Ans	Quantity of steel treated per batch	_	80 Tons					
	a. Efficiency of Furnace:							
	Useful heat supplied to steel	_	80000 x 0.12 x (850 – 30)					
			= 7872000 kcal/batch					
	Total heat supplied by fuel	_						
			= 13137600 kcal/batch					
	Efficiency of Furnace	-	7872000/12067824 = 59.9% 1 mark					
	b. Return on Investment (RoI):		IIIai K					

Efficiency of new LPG furnace	-	75%
Heat supplied in new LPG furnace	-	7872000/0.75
		= 10496000 kcal/batch
Equivalent LPG consumption	-	10496000/12500
		= 839.68 kg/batch
Cost of operating LPG Furnace	-	
		=Rs. 62976/batch
Cost saving per batch	-	64400 – 62976 =Rs. 1424/-
Annual cost saving	-	1424 x 2 x 270
		= Rs. 768960/-
		1 mark
Investment for new furnace	-	Rs. 50 Lakhs
Return on Investment (RoI)	-	(7.69/50)*100 = 15.38%

..... End of Section – II

Marks: $6 \times 10 = 60$

Section – III: LONG DESCRIPTIVE QUESTIONS

- (i) Answer all **Six** questions
- (ii) Each question carries **Ten** marks

L - 1 The energy consumption and production patterns in a chemical plant over a 9 month period is provided in the table below;

Month	1	2	3	4	5	6	7	8	9
Production in Tonnes / month	493	297	381	479	585	440	234	239	239
Energy Consumption MWh /month	78.2	75.7	76.3	76.1	78.1	70.7	73.7	64.4	72.1

Estimate the cumulative energy savings at end of the 7th month and give your inference on the result? (Consider 9 month data for evaluation of equation for predicted energy consumption)

Ans It is required to use the equations Y = mX + C and $nC + m\Sigma X = \Sigma Y$

 $nC + m\Sigma X = \Sigma Y$ $c\Sigma X + m\Sigma X^2 = \Sigma XY$

Month	X = Production in Tonnes / month	Y =Energy Consumption MWh /month	X ²	XY
1	493	78.2	243049	38574.12
2	297	75.7	88209	22479.51
3	381	76.3	145161	29076.88
	479	76.1	229441	36436.09
5	585	78.1	342225	45671.42
6	440	70.7	193600	31110.53
7	234	73.7	54756	17240.63
8	239	64.4	57121	15402.96
9	239	72.1	57121	17228.98
	3387	665.3	1410683	253221

and

Therefore,	the norma	I equations	become;

9c + 3387m = 665.3

3387C + 1410683m = 253221.1ii

.....2 marks

c = (665.3-3387m)/9

Substituting in Eq. ii,

m = 0.021

c = 66.1The best-fit straight line equation is: y = 0.021x + 66.1.....3 marks **Production in** $E_{cal}Y =$ Tonnes / Difference 0.021x +Month month x **E**actual 66.1 **CUSUM** 493 78.2 76.36204 1.9 1.9 1 2 297 75.7 72.26433 5.3 3.4 76.3 74.02049 7.6 3 381 2.3 76.1 4 76.06935 7.6 479 0.0 5 78.1 7.4 585 78.28546 -0.2 6 70.7 75.25398 -4.5 2.8 440 7 73.7 2.7 5.6 234 70.9472 Since the CUSUM value at the end of 7th month is positive, the plant has achieved net energy savings.1 mark Saturated steam at 1 atm is discharged from a turbine at 1000 kg/h. Superheated steam at 300 °C L-2and 1 atm is needed as a feed to a heat exchanger. To produce it, the turbine discharge stream is mixed with superheated steam at 400 °C, 1 atm and specific volume of 3.11 m³/kg Calculate the amount of superheated steam at 300 °C produced and the volumetric flow rate of the 400 °C steam. Turbine Discharge steam Mixed Superheated steam to HEx H-2676 kJ/kg H-3074 kJ /kg M Q -1000 kg/h Q -m2kg/h ı P -1 atm, T -110°C P -1 atm, T -300°C Χ Super heated steam N H-3278 kJ /kg G Q -m₁kg/h P -1 atm, T -400°C Ans **Solution** 1. Mass balance of water $1000 + m_1 = m_2$ (1)1 mark 2. Energy balance $(1000 \text{ kg/h})(2676 \text{ kJ/kg}) + m_1(3278 \text{ kJ/kg})$ $= m_2(3074 \text{ kJ/kg})$ (2)1 mark Eqs. (1) and (2) are solved simultaneously $2676000 + 3278m_1 = (1000 + m_1)3074$

$m_1 = 1950.98 \text{ kg/h}$ $m_2 = 1000 + 1950.98 = 2950.98 \text{ kg/h}$ (superheated steam produced)
4 marks
L - 3 Explain the following a) Dry Bulb Temperature and Wet bulb Temperature
b) Maximum Demand and Power Factor
c) Gross Calorific Value & Net Calorific Value
d) 5S & Return of Investment (ROI)
e) CUSUM
Ans a) Dry Bulb Temperature and Wet bulb Temperature
Dry bulb Temperature is an indication of the sensible heat content of air-water vapour mixtures
 Wet bulb Temperature is a measure of total heat content or enthalpy. It is the temperature approached by the dry bulb and the dew point as saturation occurs.
b) Maximum Demand and Power Factor
 Maximum demand is maximum KVA or KW over one billing cycle Power Factor Cos θ = kW/ KVA or kW = kVA cos θ
c) Gross Calorific Value & Net calorific Value:
Gross calorific value assumes all vapour produced during the combustion process is fully condensed.
 Net calorific value assumes the water leaves with the combustion products without being fully condensed.
The difference being the latent heat of condensation of the water vapour produced during the combustion process.
2 marks

1	
u	

Housekeeping. Separate needed items from unneeded items. Keep only what is immediately necessary item on the shop floor.

Workplace Organization. Organize the workplace so that needed items can be easily and quickly accessed. A place for everything and everything in its place.

Cleanup. Sweeping, washing, and cleaning everything around working area immediately.

Cleanliness. Keep everything clean in a constant state of readiness.

Discipline. Everyone understands, obeys, and practices the rules when in the plant.

......2 marks

d) Return on Investment:

ROI expresses the annual return from project as % of capital cost.

This is a broad indicator of the annual return expected from initial capital investment, expressed as a percentage.

.....2 marks

e) Cumulative Sum (CUSUM) Technique:

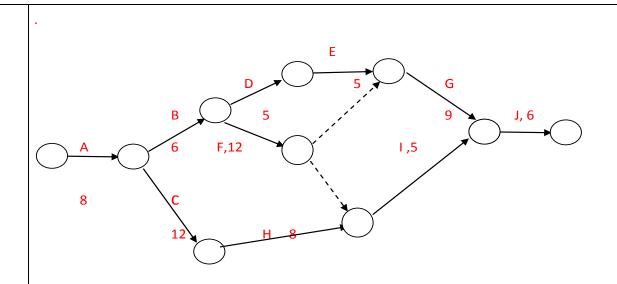
- Difference between expected or standard consumption with actual consumption data points over baseline period of time.
- Follows a fixed trend unless something (energy saving measure, deterioration in performance..) happens
- Helps calculation of savings/losses till date after changes.

									.2	marks

L-4 Answer the following

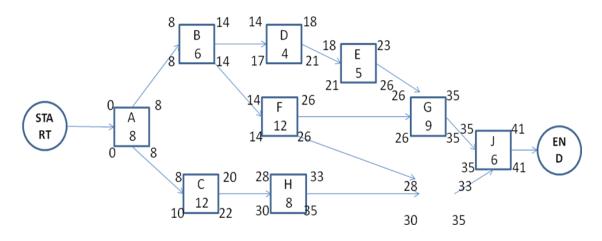
S. N	o Statement	Chose the correct answer OR Fill-in-the-blanks
1	Fyrite measures CO ₂ , O ₂ and SO ₂	True/False
2	Ultrasonic Flow Meter uses the principle of&	Fill in the blanks
3	Non Contact Infrared Thermometer can measure temperature of objects placed in hazardous places	True/False
4	To measure the RPM of a visible shaft-end, type of RPM meter is used and for a Flywheel type of	Fill in the blanks

		RPM meter is used.				
	5	In a switch yard, thermal imager identify the loose joints and term	True/False			
	6	Every Designated Consumer sha audit conducted by En months of notification is Government	Fill in the blanks			
	7	380 kcal/ hr is equivalent tokPa	Watts and 4.5 bar is	Fill in the blanks		
	8	1.5 metric ton of oil equivalent is	s toMW	Fill in the blanks		
	9	1 kg of Coal, consisting of 35% of Log kg of CO ₂	of Carbon produces	Fill in the blanks		
	10	In a gasification system the reduced combustion zone	True/False			
Ans	Sr No	Statement	Solution			
	1	Fyrite measures CO ₂ , O ₂ and SO ₂	Fill-in-the-blanks True/False	False		
	2	Ultrasonic Flow Meter uses the principle of&				
	3					
	4	Tachometer; Stroboscope				
	5	RPM meter is used. In a switch yard, thermal imager instrument is used to identify the loose joints and terminations True/False True				
	6	Every Designated Consumer shall have its first energy audit conducted by Energy Auditor within months	Fill in the blanks	Accredited; 18 months		


	of notification issued by the Central Government		
7	380 kcal/ hr is equivalent toWatts and 4.5 bar is equivalent tokPa	Fill in the blanks	441.96 Watts; (380x4.187x1000/3600) 450 kPa (4.5 x100)
8	1.5 metric ton of oil equivalent is toMW	Fill in the blanks	17.44 MW (1.5x1000x10000/(860x1000)
9	1 kg of Coal, consisting of 35% of Carbon produces kg of CO ₂	Fill in the blanks	1.28 [(44/12)x(0.35]
10	In a gasification system the reduction zone is below the combustion zone	True/False	True

L- 5 A project activity has several components as indicated below;

S.	Activity	Preceded by	Duration (in
No.	-	-	Weeks)
1	Α	-	8
2	В	Α	6
3	С	Α	12
4	D	В	4
5	Е	D	5
6	F	В	12
7	G	E& F	9
8	Н	С	8
9		F&H	5
10	J	I & G	6


- a. Prepare a PERT chart, estimate the duration of the project and identify the critical path.
- b. What are the Earliest Start, Latest Start and Total Float of activity 'H'?
- c. What would be the project duration if activity 'H' got delayed by 3 weeks?

Ans PERT Diagram based on Activity on Arrow

OR

PERT Diagram based on Activity on Node

.....6 marks

a. Critical Path: A-B-F-G-J

.....1 mark

b. Estimated Project Duration: 41 weeks

.....1 mark

c. For activity H, Early Start is 20, Latest Start is 22 and Total Float is 2 weeks.

d. Project duration will be 42 weeks i.e a delay of 1 week, if activity 'H' got delayed by 3 weeks.

		1 mark
L - 6	A company below;	has to choose between two projects whose cash flows are as indicated
	Projed	ct 1:
	i.	Investment – Rs. 15 Lakhs
	ii.	Annual cost savings – Rs. 4 lakhs.
	iii.	Bi-annual maintenance cost – Rs. 50,000/-
	iv.	Reconditioning and overhaul during 5 th year: 6 lakhs
	V.	Life of the project – 8 years
	vi.	Salvage value – Rs. 2 lakhs
	Projed	et 2:
	vii.	Investment – Rs. 14 Lakhs
	viii.	Annual cost savings – Rs. 3.5 lakhs.
	ix.	Annual Maintenance cost – Rs. 20,000/-
	x.	Reconditioning and overhaul during 4th year: 5 lakhs
	xi.	Life of the project – 8 years
	xii.	Salvage Value- 5 lakhs
	Which	n project should the company choose? The annual discount rate is 12%.

А	n	S

Year	Project 1			Project 2		
	Outgo	Saving	NPV	Outgo	Saving	NPV
0	15.0	0	=-15.0	14.0	0	= -14
1	0	4.0	$= (4 / (1+.12)^{1}$	0.2	3.5	$= (3.3 / (1+.12)^1)$
			= 3.571			= 2.95
2	0.5	4.0	$= (3.5 / (1+.12)^2)$	0.2	3.5	$= (3.3 / (1+.12)^2)$
			= 2.79			= 2.63
3	0	4.0	$= (4 / (1+.12)^3)$	0.2	3.5	$= (3.3 / (1+.12)^3)$
			= 2.84			= 2.35
4	0.5	4.0	$= (3.5 / (1+.12)^4)$	5	3.5	$= (-1.5 / (1+.12)^4)$
			= 2.22			= -0.95
5	6	4.0	$= (-2 / (1+.12)^5)$	0.2	3.5	$= (3.3 / (1+.12)^5)$
			= -1.13			= 1.87
6	0.5	4.0	$= (3.5 / (1+.12)^6)$	0.2	3.5	$= (3.3 / (1+.12)^6)$
			= 1.77			= 1.67
7	0	4.0	$= (4 / (1+.12)^{\prime}$	0.2	3.5	$= (3.3 / (1+.12)^{\prime})$
			= 1.81			= 1.49
8	0.5	6 <i>(4</i> +2 <i>)</i>	• • • • • • • • • • • • • • • • • • • •	0.2	8.5	$= (8.3 / (1+.12)^8)$
			= 2.22		(3.5+5)	= 3.35
NPV			= + 1.091	@12%		= + 1.36

NPV Project 2 is higher than Project 1. Hence project 2 is preferred.

.....10 marks

..... End of Section – III