Marks: $10 \times 1 = 10$

Regn No: _____

Name

. (To be written by the candidate)

18th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS - September, 2017

PAPER – 4: Energy Performance Assessment for Equipment and Utility Systems Date:24.09.2017Timings: 14:00-16:00 HRS Duration: 2 HRS Max. Marks: 100

General instructions:

- Please check that this question paper contains 7 printed pages
- Please check that this question paper contains 16 questions
- The question paper is divided into three sections
- All questions in all three sections are compulsory
- All parts of a question should be answered at one place

Section - I: **BRIEF QUESTIONS**

- (i) Answer all **Ten** questions
- (ii) Each question carries **One** mark

S-1	A rise in conductivity of boiler feed water indicates a rise in level of feed water.
Ans	TDS
S-2	In a parallel flow heat exchanger the hot fluid inlet temperature is 150 $^\circ C$. The cold fluid inlet and outlet temperatures are 45 $^\circ C$ and 60 $^\circ C.$ Calculate the effectiveness.
Ans	Effectiveness, $S = (t_0 - t_i) / (T_i - t_i) = 15/105 = 0.14$
S-3	Integrated Part Load Value (IPLV) in a vapour compression refrigeration refers to average ofwith partial loads
Ans	kW/TR
S-4	A pure resistive load in an alternating current (AC) circuit draws only reactive power – True or False
Ans	False (active power)

S-5	In a reciprocating air compressor, if the speed is reduced to 80%, the power will reduce by about 50% -True or False	
Ans	False	
S-6	If slip of an induction motor increases, the shaft speed also increases – True or False	
Ans	False	
S-7	The advantage of evaporative cooling is that it is possible to obtain water temperatures below the wet bulb economically. True or false	
Ans	False	
S-8	In a step down transformer for a given load the current in the primary will be more than the current in the secondary. True or false	
Ans	False	
S-9	For two pumps to be operated in parallel theirheads should be the same	
Ans	Shut off (or 'closed discharge valve' heads)	
S-10	A fluid coupling changes the speed of the driven equipment without changing the speed of the motor. True or false	
Ans	True	

..... End of Section - I

Section - II: SHORT NUMERICAL QUESTIONS

Marks: $2 \times 5 = 10$

- (i) Answer all <u>**Two</u>**questions(ii) Each question carries <u>**Five**</u> marks</u>

L-1	In a Process Industry the L.P and H.P boilers have the same efficiency of					
	83%. The operating parameters and data are given below:					
	Boiler	L.P. (Low Pressure)	H.P. (High Pressure)			
	Efficiency on G.C.V.	83%	83%			
	Fuel	Furnace Oil	Furnace Oil			
	G.C.V.	10,000 Kcal/Kg.	10,000 Kcal/Kg.			
	Steam enthalpy	666 Kcal/Kg.	737 Kcal/Kg.			
	Feed water temperature	95°C	105°C			

	The cost of steam fromL.Pboiler is Rs. 3000 per tonne. Find out the cost of steam from H.P boiler.
Ans	% Boiler Efficiency = <u>(TPH of Stm) x 1000 x (Enth of Stm – Enth of FW</u>) x 100 (Mass of Fuel x GCV Fuel)
	Evaporation ratio of LP Boiler; ER LP = <u>0.83 X 10000</u> = 14.53 (666 - 95)
	Evaporation ratio of HP Boiler; ER HP = 0.83×10000 = 13.13 (737 - 105)
	ER HP is less than ER LP ; Thus, the specific fuel consumption (kg fuel / kg steam) is more in the case of the HP boiler than in the case of the LP boiler. Therefore, the cost of steam from HP boiler is higher than the cost of steam from LP boiler.
	HP Steam Cost = 14.54×3000 = Rs.3322 per tonne 13.132 marks
	OR 1 T of FO – 14.54 T of LP steam Cost of LP steam – Rs.3000/T ∴ cost of 1 T of FO= Rs.3000 x 14.54 = Rs.43620/-
	\therefore cost of 1T of HP steam = Rs.43620/13.13 = Rs.3322/T
	1 mark
L-2	A shell-and-tube heat exchanger with 2-shell passes and 8-tube passes is used to heat ethyl alcohol (c_p = 2670 J/kg·°C) in the tubes from 25°C to 70°C at a rate of 2.1 kg/s.
	The heating is to be done by water (c_p = 4190 J/kg·°C) that enters the shell side at 95°C and leaves at 45°C.
	The LMTD correction factor for this heat exchanger is 0.82
	If the overall heat transfer coefficient is 950 W/m ^{2,o} C, determine the flow rate of water in kg/s and surface area of the heat exchanger in m ² .
Ans	Heat duty
	Cold fluid (ethyl alcohol)
	Q _{cold} = 2.1 x 2670 x (70-25) J/s
	= 252315 Watts

= 252.315 kW	
Hot fluid (water)	1 mark
$Q_{hot} = m_w x 4190 x (95 - 45)$	
= m _w x 209500 J/s	
= (209500 m _w) Watts	
= (209.5 m _w) kW	
	1 mark
$Q_{cold} = Q_{hot}$	
$252.315 \text{ kW} = (209.5 \text{ m}_{w}) \text{ kW}$	
m _w =1.204 kg/s	
LMTD = [(95-70) - (45-25)] / [ln (95-70) / (45-25)]	
= 22.42°C	
Corrected LMTD = 0.82×22.42	
= 18.38°C	
	2 marks
$Q = U^*A^*LMTD$	
A = 252315 / (950x 18.38)	
$= 14.5 m^2$	
	1 mark

..... End of Section - II

LONG NUMERICAL QUESTIONS Section - III: Marks: 4 x 20 = 80

- (i) Answer all <u>Four</u> questions(ii) Each question carries <u>Twenty</u>marks

N-1	A Process industry is operating a natural gas fired boiler of 10 tonnes/hr to cater
	to a steam load of 8 tonnes/hr at 10.5 kg/cm ² (g). The O_2 in the flue gas is 4%
	and the exit flue gas temperature is180°C. Due to increased cost of natural gas,
	the management has decided to revert to operating the furnace oil fired boiler,
	having an efficiency of 84% on G.C.V. for meeting the above load.
	In keeping with its sustainability policy the management proposes to offset the additional CO_2 emissions due to the use of furnace oil by sourcinga part of its total electrical energy consumption from green power (wind source).

	The following is the additi	onal data.				
	COMPOSITION OF FUELS (% BY WEIGHT)					
	Constituents	Natural gas	Furnace oil			
	Carbon	73	84			
	Hydrogen	23	11			
	Nitrogen	3	0.5			
	Sulphur	-	0.5			
	Supru	-	4			
	G.C.V. of natural gas	-13	3000 kcal/kg			
	• Enthalpy of steam at 10.5	5 kg/cm²(g)	-665 kcal/kg.			
	 Inlet feed water temperat 	ure	-90°C			
	Heat loss due to Radiation	on and moisture in a	ir -1.2%			
			$0.00 \text{ km}^{-1.2}$			
	Specific heat of flue gase	S	-0.29 kcal/kg C			
	Specific heat of super heat	ated water vapour	-0.45 kcal/kg°C			
	G.C.V. of furnace oil		- 10,000 kcal/kg			
	Ambient temperature -30 ^o C					
	Substitution by 1 kwh of green electrical energy in place of grid electricity.					
	reduces 0.80 kg. of CO ₂					
	Determine the monthly amount of green electrical energy from wind (for 7)					
	bours operation) required to be purchased to maintain the existing level of CO					
	— Theoretical air requi	red = 11	.6 C + [34.8 (H ₂ – O ₂ /8)] + 4.35 S			
Ans		=	11.6x0.73 + [34.8 (0.23 – 0.01/8)]			
7.110		=	16.43 kg. air / kg. gas			
	— Excess Air %	= %	$\Omega_2 / (21 - \% \Omega_2) \times 100$			
		_	$[(4)/(21-4)] \times 100$			
		_	23.5 %			
	— Actual Air Supplied ((AAS) = (1)	+ 0 235) x 16 43			
	= 20.29 kg air /	ka aas	1 0.2007 x 10.10			
	ig.cli ,	Ng.guo				
			3 marks			
	— Mass of dry flue gas	m _{dfg} = ma	ass of combustion gases due			
	to PresenceofC N S	+ mass of	-			
	N_2 in the fuel + mass	s of nitrogen				
	in air supplied + mas	s of excess				
	O ₂ in flue gas					

```
=(0.73 \times 44/12) + 0.03 + (20.29 \times 0.77)
                                                    + (20.29–16.43) x 0.23
       19.22 kg. dry flue gas / kg. gas
=
                                                                    .....2. marks
   — (M_{air}+M_{fuel}) ie (20.29+1) = 21.29 may also be considered.
   — L1
                                    =% heat loss due to dry flue gases
                                              \frac{M_{dfg}xC_{p}x (T_{q} - T_{a})x 100}{GCV of fuel_{(NG)}}
       =
                                             <u>19.22 X 0.29 X (180 – 30)</u>x 100
                                     =
                                             13000
= 6.43 %
                                                                     .....2 marks
   — L2 = % Loss due to water vapour from hydrogen
                                             <u>9 H [584 + C<sub>ps</sub> (T<sub>q</sub> – T<sub>a</sub>)]</u> x100
13000
                                      =
     [9x0.23x[584+0.45x(180-30)]x100
=
13000
                10.37 %
           =
                                                                    .....2 marks

    Heat loss due to Radiation and

       moisture in air=
                             1.2% (given)
   - Efficiency of natural gas boiler
                        = 100 - [6.43 + 10.37 + 1.2]
       on GCV
       = 82%
   — Steam Load
                              = 8 tonnes /hr.
   — Amount of Gas required= 8000 (665 – 90)
       0.82 X 13000
= 431.52 kg / hr
                                                                     .....2 marks
   — Amount of CO<sub>2</sub> emission with
       natural gas = (431.52 \times 0.73 \times 3.67)
       = 1156.1 Kg/hr.
       Amount of furnace oil required for
       the same steam load =\underline{8000} (665 – 90)
                                                   0.84 X 10000
```

	= 547.62 kg / hr		
	Ğ		2 marks
	— Amount of CO ₂ emission wit	h F.O	= (547.62 X 0.84 X 3.67)
	= 1688.2kg CO ₂ /hr	_	
			2. marks
	(Note: 1 Kg. Carbon Combustion	emits	3.67 Kg. CO ₂)
	— Increase in CO ₂ emission dι	ie	
	to switchingfrom natural gas		
		100.1)	-532.1 kg CO ₂ /br
			= 532.1 kg. 602/11.
	[Substituting 1 kWh grid (Therma reduces 0.80 Kg.of CO ₂)]	l) elec	trical energy by green electrical energy
	— Green energy to be purchas	ed to	
	offset higher CO ₂ emissions	per	
	month= [(532.1x 720)/ 0.8] =	=4,78,8	890 Kwh
			2.5 marks
11-2	ice plant, producing block ice, is 3 Tonnes of block ice by freezing consumption is due to loss of ice customer delivery. The following dar	7,950 7,950 16.5 , while ta has	kWh. The daily output of the ice plant is 15 m ³ of water at 30°C. The higher water removing the block ice from ice cans, for been given:
	Temperature of ice block	=	(-) 8 ⁰ C
	Latent heat of freezing of ice	=	80 kcal/kg.
	Specific heat of water	=	1 kcal/kg ^o C
	Specific heat of ice	=	0.5 kcal/kg ^o C
	Energy consumption in the		č
	ice plant chiller compressor	=	85% of the total energy consumption
	Efficiency of compressor motor	=	88%
	Estimate the,		
	a) Energy consumption per tonne	e of ice	e 'output'.
	 b) Total daily cooling load in kcal c) Refrigeration load on the chille d) E.E.R. of ice plant chiller compared to the compared of the compared of	s for fr er in TF presso	reezing water into ice blocks, R (Tonne refrigeration) and r.
	The Management intends to pre- separate water chiller, drawing0.	cool th 8 kW/	ne inlet water from 30°Cto 12°C using a TR.
	 e) Find out the reduction in energing f) % reduction in the condenser h cooled water. 	gy con neat lo	sumption per tonne of ice block output ad of the plant chiller due to the use of pre-

Assume overall auxiliary energy consumption of the plant remains same and only consider water chiller compressor energy consumption for estimating the savings. Monthly energy consumption 37950 Kwh Ans = a) Daily energy consumption = $37950/30 = 1265 \, \text{kWh}$. Energy consumption per tonne of ice delivered = 1265/15= 84.33 kWh/tone3 marks b) Quantity of water input for the production 16.5 $m^3 =$ 16500 kg. $(sp.wt of water = 1000 Kg./m^3)$ Total cooling load per day Q $Q_1 + Q_2 + Q_3$ = = Heat removed from lowering temperature from inlet 30° C to 0° C in kcals Q₁ Q_2 = Latent heat removed in freezing water to ice at 0°C in kcals Q_3 = Heat removed for sub-cooling of ice from 0°C to -8°C in kcals $Q = (16,500 \times 1 \times (30-0)) + (16,500 \times 80) + \{16,500 \times 0.5 \times [0 - (-8)]\}$ = 4,95,000 + 13,20,000 + 66,000Total Daily Cooling Load = 18,81,000 kCals3 marks c) 18,81,000 Refrigeration load on the Chiller = ----- =25.92 TR 24 X 30243 marks d)E.E.R. ice plant chiller Ice plant chiller consumption per day = 0.85 X 1265 1075.25 kWh 1265 - 1075.25 Ice plant auxiliary consumption per day = 189.75 kWh 1075.25 / 24 Power consumption of the chiller = 44.80 KW 44.80 / 25.92 = ... Input KW/TR Ice Plant chiller 1.728 88% Motor Efficiency = 0.88 X 1.728 = ... Input power to the ice plant compressor

		1.52 KW / IR
∴ E.E.R. ice plant chiller		(3024)kcal/hr/(1.52X860) kcal/hr
		2.313
		4 mark
e) Reduction in energy consumption per to	nne	of ice block output
Condenser heat rejection load in the existing case Q1	=	Q _E + Q _C
		(25.92 X 3024) + (25.92) 1.52 X 860)
		1,12,264 kcals/hr
Refrigeration load for pre-cooling from $30^{\circ}C$ to $12^{\circ}C$ in a separate water chiller		16500 X 1 X (30 – 12)/ (24) 3024)
		4.09 TR
Energy consumption in water chiller	=	0.8 X 4.09 X 24 = 78.53 kWh
Reduced ice plant chiller load	=	25.92 – 4.09 = 21.83 TR
Energy consumption for the plant chiller	=	21.83 X 1.728 X 24 = 905.33 kWh
Total energy consumption per day by resorting to pre-cooling of inlet water in a separate water chiller is	=	Energy consumption in ice plant chiller+ Auxiliaries in ice plant (no change) + Energy consumption in water chiller for pre-cooling
	=	905.33 + 189.75 + 78.53
		1173.61 kWh/day
∴ Reduction in energy consumption kWh/tone for ice delivered	=	(1265 – 1173.61) /15
		6.092
	•	4 mark
f)		
Heat rejection load in the ice plant condenser	=	(21.83 X 3024) + (21.83) 1.52 X 860)
		94550 kcal/hr
∴% reduction in ice plant condenser heat load	=	(1,12,264–94,550)x100 /(1,12,264)
		15.8 %

N 3	In a Petrochemical Industry a gas turbine cogeneration system comprising of 20 MW gas turbine generator along with a waste heat boiler (WHB) of 70 Tonne per hour capacity at 10 kg/cm ² (g) are operated to meet the power and steam requirements. The existing operating data is given below:				
	Power supplied by the Cogenerator = 16000 kW Power drawn from the grid = 1500 kW				
	Grid power cost = $Rs 5 / kWh$				
	Steam at 10 kgf/cm ² g supplied by WHB = 48 Tonne/hr (without supplementary fuel firing)				
	Efficiency of gas turbine on G.C.V. = 28% Efficiency of generaror= 95%				
	G.C.V. of fuel (Natural Gas) = 13000 Kcal/Kg				
	Density of natural gas $= 0.7 \text{ Kg}/\text{m}^3$				
	Cost of natural gas = $Rs.25/m^3$				
	Temperature of gas turbine exhaust gas entering WHB = 515° C				
	Specific heat of exhaust gas $=0.3 \text{ kcal/kg}^{\circ}\text{C}$				
	Ambient temperature $= 30^{\circ}$ C				
	Air to natural gas ratio for gas turbine combustion $= 60.1$				
	Enthalpy of steam at 10 kgf/sg.cm.g = 665 Kcal/Kg				
	Enthalpy of feed water = 105 Kcal/Kg				
	 a) Find out the heat rate of the gas turbine generator and b) Estimate the efficiency of the waste heat boiler. 				
	The plant personnel claim and believe that by resorting to supplementary fuel firing to increase steam generation in the WHB. is likely to improve its efficiency by 1.5% points.				
	c) Determine if it is economical to generate additional steam requirement of 10 Tonne per hour by supplementary fuel firing in WHB. as against in a separate natural gas fired smoke tube boiler of 82% efficiency on G.C.V.				
	The plant operations are steady and continuous with 8760 yearly hours of operation				
Ans	a)				
	Efficiency of gas turbine generator= 28%				
	:. Heat Rate = 860 / 0.28				
	= 3071.43 kcal/kWh				
	4 marks				
	b)				

Paper 4 – Set A with Solutions

Gas Rate		= 3071.	.43 / 13000
		=	0.236 kg.Natural gas/kWh
			2 marks
Power ger	nerated by Gas turbine	=	16000 KW
Steam sup	oplied by WHB	=	48000 Kg./hr
∴ power f	o Steam ratio	=	3 KW / Kg. steam
Air to fuel	ratio of gas turbine com	bustion =	60 : 1
∴ Exhaus	gas per Kg. of natural g	gas fired =	60 + 1 = 61 Kg. per Kg
of natural	gas		
			48000 x (665 – 105)
(without s	of waste heat boiler	= 6000 X 0.	236 X 61 X 0.3 X 515
= 75.	5%		
C)			4 marks
, Efficiency	of WHB with supplement	ntary firing (a	as per claim)= 75 5+1 5
			= 77%
Additional suppleme	gas consumption for ntary firing in WHB =	meeting 10	Tonne/hr steam through
	10000 (665 – 105)		
=	0.77 X 13000	= 559.4	4 Kg./hr.
			10000 (665 – 105)
Gas consumption	n in separate gas fired b	olier with 82°	% on GCV = 0.82 X 13000
			= 525.33 Kg/hr
Operating	separate gas fired bo	iler is econo	omical.
Saving	in gas consumption by boiler –	y meeting a	dditional steam through
=	559.44 – 525.33		
=	34.1 Kg/hr		
=	34.1 / 0.7		
=	48.714 m ³ /hr		

	· Vearly monetary savings- 48 714 X 25 X 8760				
	$= - R_{s} 1.06.68.366$				
	= Say Rs 10 67 million				
	- Say NS. 10.07 million				
N-4	Answer any one of the following				
11-4					
A)	The heat balance of a stenter in a textile industry is given below:				
	Heat used for Drying = 48%				
	Heat loss in exhaust air = 42%				
	Heat loss through insulation $= 6\%$				
	Heat loss due to air infiltration $= 4\%$				
	The choice stantage is during 75 maters not give af slath to final maintum of $70/$				
	The above stenter is drying 75 meters per min. or cloth to final moisture of 7%				
	with inlet moisture of 50%. Temperature of cloth at inlet and outlet is 25°C and				
	75°C respectively.				
	The hot air for drying in the stenter is heated by thermic fluid. The thermic fluid				
	heater is fired by furnace oil, having an efficiency of 84%. The following data				
	has been given:				
	Density of furnace oil = 0.95 Kg/litre				
	GCV = 10000 kcal/kg				
	Cost of furnace oil = Rs.24 per litre				
	Weight of 10 mts of outgoing dried cloth= 1 Kg				
	a) Find out the existing furnace oil consumption for stenter drying.				
	b) What will be the appual furges oil sovings and appual manatery soving if				
	b) What will be the annual furnace oil savings and annual monetary saving if				
	approximate the second the lass due to gir infiltration, by helf				
	for operations at 22 hours per day and 220 days per year				
	for operations at 22 hours per day and 550 days per year.				
Δns	Stenter speed – 75 meters / min				
	Dried cloth output = $75 \times 60/10$				
	= 450 kg/br				
	Weight of hone dry cloth per hr $-$ 450 x 0.93				
	$i \in W$ = 430×0.05				
	2.5 marks				
	: Weight of outlet moisture per ka, of hope, dry cloth				
	$m_0 = (450 - 418.5) / 450$				
	= 0.0753 kg/kg				

Inle					2.3 mark
	et moisture	=	50%		
ا.:.	nlet wet cloth flow rate	=	418.5/ 0.5	=	837kg/hr
m _i inlet m	oisture per Kg. of bone dry clo	th=	(837 – 418.	5) / 418	.5
	m _i	=	1 kg/kg bon	e dry cl	oth
.∴.H + 5	Heat load on the dryer 540] Kcal/hr	=	Wx(m _i – m _c	b)x[(T _{ou}	_t – T _{in})
Τ _{οι}	ut= Outlet cloth temperature				
=	75°C				
T _{in}	= Inlet cloth temperature				
=	25°C				
	Heat load on the dryer=418.5	kg/hrx			
(1 -	– 0.0753)kg/kg dry.clthx				
[(7	5 – 25) + 540] 2 28 322 3 kcal/br				
_	2,20,322.3 KCal/11				2.5 marl
Ba	sed on heat balance, dryer effi	iciency	is 48%.		
	Heat input to the dryer	=	228322.3 /	0.48	
		=	4,75,671.46	6 kcal/hr	
_	Furnace oil consumption in	=			
<u></u>	and the first first second	4 75 0	74 40//0 04	40000	
∴l Th	ermic fluid heater =	4,75,6	56 63 kg /b	(10000) r	
∴l Th	ermic fluid heater =	4,75,6 =	571.46/(0.84) 56.63 kg./h	<10000) r.	2.5 mark
∴ Th Th After red input will	ermic fluid heater = ucing insulation and air infi reduce by 100% – 0.5 (6 + 4	4,75,6 = tratio)%	571.46/(0.84) 56.63 kg./h n loss by ha = 95%	<10000) r. alf, the	2.5 mark
∴ Th Th After red input will	ermic fluid heater = ucing insulation and air infi reduce by 100% – 0.5 (6 + 4	4,75,6 = tratio %	571.46/(0.84) 56.63 kg./h n loss by ha = 95%	<10000) r. alf, the	2.5 mark
ا∴ Th After red input will ∴.[ermic fluid heater = ucing insulation and air infi reduce by 100% – 0.5 (6 + 4 Dryer efficiency will increase to	4,75,6 = tration)%	571.46/(0.84) 56.63 kg./h n loss by ha = 95% (48/0.95) x	<10000) r. alf, the 100	2.5 marl
ا∴ Th After red input will ∴[ermic fluid heater = ucing insulation and air infi reduce by 100% – 0.5 (6 + 4 Dryer efficiency will increase to	4,75,6 = (Itration)%	571.46/(0.84) 56.63 kg./h h loss by h = 95% (48/0.95) x 50.52%	<10000) r. alf, the 100	2.5 marl heat energy
∏ Th After red input will ∴.[∴ آ	ermic fluid heater = ucing insulation and air infi reduce by 100% – 0.5 (6 + 4 Dryer efficiency will increase to Furnace oil consumption with	4,75,6 = (Itration)%	571.46/(0.84) 56.63 kg./h h loss by h = 95% (48/0.95) x 50.52% 2,28.322.3/	<10000) r. alf, the 100 (0.5052	2.5 marl heat energy x0.84x
∴I Th After red input will ∴I ∴I	ermic fluid heater = ucing insulation and air infi reduce by 100% – 0.5 (6 + 4 Dryer efficiency will increase to Furnace oil consumption with 000)	4,75,6 = tration)% = = =	571.46/(0.84) 56.63 kg./h h loss by ha = 95% (48/0.95) x 50.52% 2,28,322.3/	<10000) r. alf, the 100 (0.5052	2.5 marl heat energy x0.84x
∴I Th After red input will ∴I ∴I 100 i	ermic fluid heater = ucing insulation and air infi reduce by 100% – 0.5 (6 + 4 Dryer efficiency will increase to Furnace oil consumption with 000) improved dryer efficiency	4,75,6 = (Itration)% = = =	571.46/(0.84) 56.63 kg./h h loss by h = 95% (48/0.95) x 50.52% 2,28,322.3/	<10000) r. alf, the 100 (0.5052	2.5 marl heat energy x0.84x
∴I Th After red input will ∴I ∴I 100 i	ermic fluid heater = ucing insulation and air infi reduce by 100% – 0.5 (6 + 4 Dryer efficiency will increase to Furnace oil consumption with 000) improved dryer efficiency	4,75,6 = tration)% = = = =	571.46/(0.84) 56.63 kg./h n loss by ha = 95% (48/0.95) x 50.52% 2,28,322.3/ 53.80 kg/hr	<10000) r. alf, the 100 (0.5052	2.5 marl heat energy x0.84x
∴I Th After red input will ∴I ∴I 100 i	ermic fluid heater = ucing insulation and air infi reduce by 100% – 0.5 (6 + 4 Dryer efficiency will increase to Furnace oil consumption with 000) improved dryer efficiency	4,75,6 = tration %)%) = = = =	571.46/(0.84) 56.63 kg./h h loss by h = 95% (48/0.95) x 50.52% 2,28,322.3/ 53.80 kg/hr	<10000) r. alf, the 100 (0.5052	2.5 mar heat energy x0.84x
∴I Th After red input will ∴I 100 i	ermic fluid heater = ucing insulation and air infi reduce by 100% – 0.5 (6 + 4 Dryer efficiency will increase to Furnace oil consumption with 000) improved dryer efficiency Saving in Furnave oil	4,75,6 = (Itration)% = = = =	571.46/(0.84) 56.63 kg./h h loss by h = 95% (48/0.95) x 50.52% 2,28,322.3/ 53.80 kg/hr	<10000) r. alf, the 100 (0.5052	2.5 marl heat energy x0.84x
∴I Th After red input will ∴I ∴I 100 i S cor	ermic fluid heater = ucing insulation and air infi reduce by 100% – 0.5 (6 + 4 Dryer efficiency will increase to Furnace oil consumption with 000) improved dryer efficiency Saving in Furnave oil nsumption due to improved stenter efficiency	4,75,6 = tration % = = = =	571.46/(0.84) 56.63 kg./h h loss by h = 95% (48/0.95) x 50.52% 2,28,322.3/ 53.80 kg/hr	<10000) r. alf, the 100 (0.5052	2.5 marl heat energy x0.84x
∴I Th After red input will ∴I ∴I 100 i S cor	ermic fluid heater = ucing insulation and air infi reduce by 100% – 0.5 (6 + 4 Dryer efficiency will increase to Furnace oil consumption with 000) improved dryer efficiency Saving in Furnave oil nsumption due to improved stenter efficiency	4,75,6 = (Itration)% = = = = =	571.46/(0.84) 56.63 kg./h h loss by h = 95% (48/0.95) x 50.52% 2,28,322.3/ 53.80 kg/hr 56.63 - 53. 2.83 kg/hr	<10000) r. alf, the 100 (0.5052	2.5 marl heat energy x0.84x

Paper 4 – Set A with Solutions

		= 20545.8 kgs/year				
		3 marks				
	∴ Annual monitory savings	= 20545.8x(1/0.95)x24				
		= Rs.5,19,051.8				
		3 marks				
	Note:					
	If candidates had done the calculation with	temperature of cloth at inlet at 75°C and outlet				
	at 25° C, the marks can be awarded according the steps					
B)	In a secondary steel manufacturing u	nit steel scrap is melted in an arc furnace				
_,	The molten metal is then taken for ladle refining followed by vacuum degassing,					
	before being cast into ingots.					
	After the ingots are cooled down to ambient temperature, the entire lot is load					
	in a batch forging furnace and heated	to 1150°C. The heated ingots are forged				
	into desired shapes. The monthly num	ber of batches are 160.				
	The management has decided to im	prove energy efficiency of the system by				
	incorporating a holding furnace (el	ectric resistance furnace) in between the				
	electric arc furnace and the fuel fired fu	praing furnace, in order that the bot ingots (
	ofter apating) could directly fed into the	a intermediate helding furnage to maintain				
	atter casting) could directly ted into the intermediate holding furnace to maintain					
	temperature and be fed at high temperature	erature to the forging furnace, instead of at				
	atmospheric temperature.					
	Following are the data obtained in the	energy audit study of the unit.				
	1. Scrap material fed into the arc furn	ace = 10 tons per heat				
	2. Yield of ingot casting from scrap	= 95%				
	val of mould = 600° C					
	4. Ambient temperature	= 30°C				
	5. Specific heat of steel	$= 0.682 \text{ kJ/ kg}^{\circ}\text{C}$				
	6. Efficiency of forging furnace	= 25 %				
	7. Calorific value of Furnace oil fuel	= 10500 kcal/ kg				
	8. Specific gravity of E O	= 0.9				
	9. Yield of forged steel in forging furn	ace = 97 %				
	10. Melting point of steel	$= 1650^{\circ}$ C				
	11. Latent heat of melting of steel	= 272 k.l/kg				
	12. Electrical energy consumption mea	asured per ton of steel melted = 800 kWh				
	13 Electrical energy consumption for l	holding ingots at 600° C in electric furnace				
		-75kWh per batch				
	14 Cost of electricity	= Re 6 / k/k/h				
	15. Cost of Europeo oil	$- R_{e} = 30.000 / top$				
		= KS. 30,000 / 1011				

	c) Net Savings in energy cost by holding the hot forged casting in an
	intermediate electric furnace at 600°C before feeding into forging
	furnace
	Oil consumption = 9500 x (0.682 /4.18) x (1150-600) / (10500 x 0.25)
	= 324.76 kg FO per batch
	Additional electrical energy consumption for holding ingots at 600°C = 75kWh per batch
	Reduction in FO consumption by hot charging the forge furnace
	= 661.3 - 324.76 = 336.54 kg EO per batch
	2 5 marks
	Net savings in energy cost = $(336.54 \times 30) = (75 \times 6) = \text{Rs}.9646.2$ per batch
	Appual Net savings in energy cost $= 9646.2 \times 12 \times 160 = \text{Rs} \cdot 185.20 \cdot 704 / \text{yr}$
	A marks 4 marks
C)	A steam power plant consisting of high pressure Turbine(HP Turbine) and low pressure Turbine(LP Turbine) is operating on Reheat cycle(schematic of power plant is represented below).
	Steam from Boiler at a pressure of 150 bar(a) and a temperature of 550°C expands through the HP Turbine. The exhaust steam from HP Turbine is reheated in a reheater at a constant pressure of 40 bar(a) to 550°C and then expanded through LP Turbine. The exhaust steam from LP Turbine is condensed in a condenser at a pressure of 0.1 bar (a).
	The isentropic efficiencies of HP Turbine and LP Turbine are same and is 90%. The generator efficiency is 96%
	The other data of the power plant is given below:
	Main steam flow rate : 228 TPH Enthalpy of main steam: 3450 kJ/kg Enthalpy of feed water : 990.3kJ/kg Isentropic Enthalpy of cold reheat steam : 3050 kJ/kg Enthalpy of hot reheat steam : 3560 kJ/kg
	Condenser pressure and temperature: 0.1 bar(a) and 45.8°C
	Isentropic enthalpy of LP Turbine exhaust steam : 2300 kJ/kg
	Enthalpy of dry saturated steam at 0.1 bar(a) and 45.8°C : 2584.9kJ/kg Enthalpy of water at 0.1 bar(a) and 45.8°C:191.9 kJ/kg
	Based on the above data calculate the following parameters (a) Power developed by the Generator (b) Turbine heat rate (c) Turbine cycle efficiency (d) Specific steam consumption of turbine cycle.

Paper 4 – Set A with Solutions

	htu-ontholou of food water-000 2KL/kg
	Substituting the values in the above equation 2, we get
	Substituting the values in the above equation-5, we get
	Turbine best rate=228 (3/50—990 3) + 228/3560—3090)/90 83
	=7354.08 KI/kW/brANSWER (5 MARKS)
	(C) Turbine cycle efficiency= 860/Turbine heat rate
	=860/(7354.08/4.18) =48.95%ANSWER (3MARKS)
	(d) Specific steam consumption of cycle=Steam flow/generator output
	=228/90.83
	=2.51 tons/MWhrANSWER(3MARKS)
D)	In a cement kiln producing 4500 TPD of clinker output, the grate cooler hot exhaust air
	temperature is vented to atmosphere at 275°C.
	It is proposed to apparate bot water from this waste exhaust for operating a Vapour
	Absorption Machine(VAM)chiller. This will replace the existing Vapour Compression
	Chiller (VCR) of 50 TR capacity used for air-conditioning of control rooms and office
	buildings.
	The following are the data:
	 Diameter of the cooler vent : 2 m
	 Velocity of cooler exhaust air : 18.6 m/s
	 Density of cooler exhaust air at 275°C : 0.64 kg / m³
	 Existing VCR Chiller Specific power consumption : 0.9 kW/TR
	 Existing VCR condenser water pump power
	consumption : 2.8 kW
	 Investment towards 50TR VAM & its associated system :Rs 30 lakhs
	CoP of VAM system : 0.75
	 Power consumption of VAM auxillaries: 2.83 kW
	 Temperature of circulating bot water of VAM generator: Inlet - 90°C.
	\circ remperator of orediating not water of V/in generator. Intel \circ 50 C,
	• Specific heat of exhaust cooler air : $0.24 \text{ kcal/ kg}^{\circ}$
	• Specific fleat of exhaust cooler all . 0.24 Kcall Kg C
	 The enciency of all pumps and their unverticities are 75% & 90% respectively.
	The east of electricity and C/U/M/h
	 No of hours of operation : 8000 hrs/ yr
	Calculate
	a) Cooler Exhaust air temperature after heat recovery
	b) Payback period by replacement of VCR by VAM
Ans	a) Cooler Exhaust air temperature after heat recovery

• Area of the duct= πr^2 $= 3.14 \text{ x} (2/2)^{2} = 3.14 \text{ m}^{2}$ • Volume of cooler exhaust $air_{275}O_{C} = 3.14 \times 18.6 = 58.4 \text{ m}^3/\text{s} = 2,10,240 \text{ m}^3/\text{h}$ • Mass flow rate of cooler exhaust $air_{275}^{\circ}Cm_{cxa} = 210240 \times 0.64 = 134553 \text{ kg/hr}$ Capacity of existing chiller= 50 TR Cooling load $= 50 \times 3024$ • = 151200 kcal/ hr CoP of VAM= 0.75 = (Cooling Load / Heat Input) • Heat Input to VAM generator = 151200 / 0.75 • = 201600 kcal/hr 201600 kcal/hr= $m_{hw}xC_{p-hw} \times (90^{\circ}C - 80^{\circ}C)$ m_{hw} = 201600 / (1 x 10) = 20160 kg/hr Hot water flow rate Heat input to VAM generator = Heat recovered from Cooler Exhaust Air (m_{cxa}xC_{p-cxa}x) $(275-T_{o})$ Cooler Exhaust air temperature after heat recovery $T_0 = 275 - [201600 / (134553 \times 0.24)]$ $= 268.76^{\circ}C$5 marks b) Payback period by replacement of VCR by VAM Hot water circulation pump capacity • motor input power $P_m = m_{hw} x$ head developed x 9.81 / (1000 x Pump n x motor n_m) $P_{m} = [(20160 / 3600) \times 20 \times 9.81 / (1000 \times 0.75 \times 0.9)] = 1.63 \text{ kW}$ Heat load in the cooling tower= heat load from chilled water + heat load from generator hot water = 151200 + 201600 = 352800 kcal/ hr Condenser water circulation rate = 352800 / 5 = 70560 kg / hr3 marks Condenser water circulation pump capacity • motor input power $P_m = m_{hw} x$ head developed x 9.81 / (1000 x Pump n x motor n_m) $P_{m} = [(70560 / 3600) \times 20 \times 9.81 / (1000 \times 0.75 \times 0.9)] = 5.69 \text{ kW}$4 marks Savings • Existing VCR Chiller Specific power consumption = 0.9 kW/TR • Existing VCR Chiller total power consumption $= 50 \times 0.9$ = 45 kW• Existing VCR condenser water pump power consumption = 2.8 kW • Total Energy Saving = Existing VCR Chiller total power consumption – (Proposed VAM chiller power consumption) =(45+2.8) - (1.63+2.83+5.69) = 37.65 kW5 marks

Annual Energy savings	= 37.65 x 8000 = 301200 kWh/yr
Annual Monetary savings	= 301200 x 6 = Rs. 18.07 Lakhs /y
Investment towards 50TR VAM &	its associated system = Rs 30 lakhs
 Simple payback period 	= 30 / 18.07 = 1.7 yrs or 19.9 months
	2 marks
	 Annual Energy savings Annual Monetary savings Investment towards 50TR VAM & Simple payback period

----- End of Section - III ------