Marks: $50 \times 1 = 50$

18th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – September, 2017

PAPER - 1: GENERAL ASPECTS OF ENERGY MANAGEMENT & ENERGY AUDIT

Date: 23.09.2017 Timings: 0930-1230 HRS Duration: 3 HRS Max. Marks: 150

General instructions:

- Please check that this question paper contains 11 printed pages
- Please check that this question paper contains 64 questions
- The question paper is divided into three sections
- All questions in all three sections are compulsory
- o All parts of a question should be answered at one place

Section - I: OBJECTIVE TYPE

- (i) Answer all **50** questions
- (ii) Each question carries one mark
- (iii) Please hatch the appropriate oval in the OMR answer sheet with Black Pen, as per instructions

1.	Which of the fol	lowing is not a green	house gas?	
	a) CFCs	b) SO ₂	c) PFC	d) SF ₆
2.	Bio-gas generat	ed through anaerobic	process mainly consists o	f
	a) only methanec) only ethane		b) methane and carb d) none of these	on dioxide
3.	a) energy conseb) energy effici	rvation ency conservation and ener	with rice husk results in	
4.	Energy conserva) connected leb) contract der	ation building code voted is 120 kW and abmand is 100 kVA and		Act, 2001 provided its

	d) connected load is 500 kW and contract demand is 600 kVA						
5.	Which of the following is not a part of energy audit as per the Energy Conservation Act, 2001?						
	a) monitoring and analysis of energy use						
	b) verification of energy use						
	c) submission of technical report with recommendations						
	d) ensuring implementation of recommended measures followed by review						
6.	Which of the following criteria is a responsibility of Designated Consumer?						
	a) designate or appoint an accredited Energy Auditor						
	b) adhere to stipulated energy consumption norms and standards as notified						
	c) submit the status of energy consumption information every three yearsd) conduct energy audit through a certified energy auditor periodically						
7.							
/.	Which of the following is an energy security measure?						
	a) fully exploiting domestic energy resources						
	b) diversifying energy supply source						
	c) substitution of imported fuels for domestic fuels to the extent possibled) all of the above						
8.	Which of the following statements are true?						
	i) reactive current is necessary to build up the flux for the magnetic field of inductive devices						
	ii) some portion of reactive current is converted into work						
	iii) the cosine of angle between kVA and kVAr vector is called power factor						
	iv) the cosine of angle between kW and kVA vector is called power factor						
	a) i & iv b) ii & iii c) i & iii d) iii & iv						
9.	Which of the following statements regarding evacuated tube collectors (ETC) are true?						
	i) ETC is used for high temperatures upto 150°C						
	ii) because of use of vacuum between two concentric glass tube, higher amount						
	of heat is retained in ETC						
	iii) heat loss due to conduction back to atmosphere from ETC is high						
	iv) performance of evacuated tube is highly dependent upon the ambient temperature						
	i & iii b) ii & iii c) i & iv d) i & ii						

10.	Which among the following has the highest flue gas loss on combustion due to Hydrogen in the fuel?						
	a) natural gas b) furnace oil c) coal d) light diesel oil						
11.	Assume CO ₂ equivalent emissions by the use of a 60 W incandescent lamp are of the order of 60 g/hr. If it is replaced by a 5 W LED lamp then the equivalent CO ₂ emissions will be						
	a) nil	b) 5 g/hr	c) 12 g/hr	d) 300 g/hr			
12.	The benchmarking	parameter for a	vapour compression	refrigeration system is			
	a) kW / kg of refc) BTU / Ton of l	•		n ³ of chilled water on of Refrigeration			
13.	The rate of energy measured in	transfer from a l	nigher temperature to	a lower temperature is			
	a) kcal	b) Watt	c) Watts per second	d) none of the above.			
14.	Energy sources wh	nich are inexhaus	tible are known as				
	a) commercial enec) renewable ener		b) primary d) seconda	- •			
15.	1 kg of wood contains 15% moisture and 5% hydrogen by weight. How much water is evaporated during complete combustion of 1kg of wood?						
	a) 0.6 kg	b) 200 g	c) 0.15 kg	d) none of the above			
16.	The internal rate o a) positive	f return is the dis	count rate for which c) negative	the NPV is d) less than 1			
17.	As per Energy Corbe appointed/desig		001, a BEE Certified	Energy Manger is required to			
	a) state designatedc) designated cons	•	,	strial consumers al distribution licensees			
18.	The process of cap	oturing CO ₂ from	n point sources and st	coring them is called			
	a) carbon sequesc) carbon capture	tration	b) carbon d) carbon	sink adsorption			
19.	Which of the follo	wing has the high	hest specific heat?				
	a) lead	b) mercury	c) water	d) alcohol			
20.	The retrofitting of	a variable speed	drive in a plant costs	Rs 2 lakh. The annual savings			

	is Rs 0.5 lakh. The maintenance cost is Rs. 5,000/year. The return on investment is					
	a) 25%	b) 22.5%	c) 24%		d) 27.5%	
21.		veen variables and en tion. ession analysis	ables standa b) t	rd equati	es and quantifies the ons to be established for ndent energy analysis	
22.	The power gener	ration potential in min			for a water flow of 3 m ³ /sec 5% is	
	a) 226.6 kW	b) 76.4 kW	c) 23.1	kW	d) none of the above	
23.	Which of the fol energy conservat	•	ts are true re	garding a	application of Kaizen for	
	ii) Kaizen even energy consiii) Implementa top manageriv) In a Kaizen	ts are structured for its engage workers in ervation efforts tion of kaizen events ment event, it may happen difficant savings in over	such a way takes place that small c	so that the after review thange in	ew and approval of	
	a) ii & iv	b) i & iii	c) iii &	iv	d) i & iv	
24.	The electrical po	wer unit Giga Watt (GW) may b	e written	as	
	a) 1,000,000 MV	b) 1,000 MW	c) 1,000	kW	d) 1,000,000 W	
25.	The producer gas	s basically consists of	f			
	a) Only CH ₄	b) CO & CH ₄	c) CO, H ₂	& CH ₄	d) Only CO & H ₂	
26.	Which of the fol	lowing statements is	correct rega	rding 'flo	at' for an activity?	
	 a) Time between its earliest start time and earliest finish time b) Time between its latest start time and latest finish time c) Time between latest start time and earliest finish time d) Time between earliest finish time and latest finish time 					
27.		servation Act,2001 renducted periodically	-	all design	ated consumers should get	
	a) certified ener	gy manager	b) cer	rtified en	ergy auditor	

	c) accredited e	nergy auditor	,	d) st	ate Designated Agencies
28.	The term missin	g in the follow	ing equation (kV	$^{\prime}$ A) 2 =	$(kVA \cos phi)^2 + (?)^2$ is
	a) cos phi	b) sin phi	c) kVA sin ph	i	d) kVArh
29.			500 kg of ice at 0 ce in kg melted v		ne latent heat of fusion of ice is
	a) 1.49	b) 83.75	c) 5.97		d) None of the above
30.	An electric hear	ter draws 5 k	W of power for	continu	ious hot water generation in an
	industry. How r 85°C ignoring le	•	of water in litro	es per n	nin can be heated from 30°C to
	a) 1.3	b) 78.18	c) 275		d) none of the above
31.	An electric heate	er consumes 10	000 Joules of ene	ergy in 5	seconds. Its power rating is:
	a) 200 W	b) 1000 W	c) 5000W		d) none of the above
32.	The quantity of known as:	heat required	to raise the temp	erature (of a given substance by 1 °C is
			neat c) heat cap		<u> </u>
33.	Which of the fol	llowing parame	eters is not consi	dered fo	r external Bench Marking?
	a) scale of operac) raw materials		uality		rgy pricing age of technology
34.	A sling psychron	meter is used	to measure:		
	a) only dry bulbc) both a & b_	temperature		•	wet bulb temperature tive humidity
35.	The number of r	noles of water	r contained in 36	kg of w	ater is
	a) 2	b) 3	c) 4		d) 5
36.	•	V. It will tak	_		h the desired temperature while he same temperature if the supply
	a) 2	b) 3	c) 4		d) 5
37.	1200 pieces; spe	cific energy co	onsumption - 100	00 kWh/	or a given month: Production - piece; variable energy mption of the plant for the month

	is							
	a) 6,000 kWh b)10,000 kWh	c) 12,000 kWh d) 60,000 kWh						
38.	Which of the following GHGs has the longest atmospheric life time?							
	a) CO ₂ c) Sulfur Hexafluoride (SF ₆)	b) CFC d) perfluorocarbon (PFC)						
39.	The component of electric power which yie as	lds useful mechanical power output is known						
	a) apparent power b) active power c) reactive power d) none of the above							
40.		conut shell chips. Boiler thermal efficiency percentage change in energy consumption to						
	a) 12% increasec) 17.1% decrease	b) 14.6% increase d) 17.1% increase						
41.	A three phase induction motor is drawing 16 Ampere at 440 Volts. If the operating power factor of the motor is 0.90 and the motor efficiency is 92%, then the mechanical shaft power output of the motor is							
	a) 12.04 kW c) 10.97 kW	b) 10.09 kW d) None of the above						
42.	The energy conversion efficiency of a solar cell does not depend on							
	a) solar energy insolationc) area of the solar cell	b) inverter d) maximum power output						
43.	To maximize the combustion efficiency, who be done?	hich of the following in the flue gas needs to						
	a) maximize O_2 b) maximize CO_2	c) minimize CO ₂ d) maximize CO						
44.	An indication of sensible heat content in air-	-water vapour mixture is						
	a) wet bulb temperaturec) density of air	b) dew point temperatured) dry bulb temperature						
45.	Which of the following is false?							
	 a) electricity is high-grade energy b) high grade forms of energy are highly orc c) low grade energy is better used for app than heating water for bath 							

	d) the molecules of low grade energy are more randomly distributed than the molecules of carbon in coal						
46.	Which of the following is not applicable to liquid fuels?						
	a) the viscosity of a liquid fuel is a measure of its internal resistance to flow. b) the viscosity of all liquid fuels decreases with increase in its temperature c) higher the viscosity of liquid fuels, higher will be its heating value d) viscous fuels need heat tracing						
47.	The cost of replacement of inefficient chiller with an energy efficient chiller in a plant was Rs. 10 lakh .The net annual cash flow is Rs 2.50 lakh .The return on investment is:						
	a) 18% b) 20%	c) 15 %	d) none of the above				
48.	3. Which one is not an energy consumption benchmark parameter?						
	a) kcal/kWh of electricity generatedc) kW/ton of refrigeration	b) kg/ °C. d) kWh/kg of y	yarn				
49.	The contractor provides the financing and is paid an agreed fraction of actual savings achieved. This payment is used to pay down the debt costs of equipment and/or services. This is known as						
	a) traditional contract b) extended technical guarantee/service c) performance Contract d) shared savings performance contract						
50.	In project financing ,sensitivity analysis	is applied because					
	a) almost all the cash flow methods invo	•					
	b) of the need to assess how sensitive the c) what if one or more factors are different						
	d) all the above situation	and from what is predic	icu				

 End	of	Section -	I	

Section - II: SHORT DESCRIPTIVE QUESTIONS

- (i) Answer all <u>Eight</u> questions(ii) Each question carries <u>Five</u> marks

S-1	Explain Time of Day (TOD) Tariff and how it is beneficial for the power system and consumers?
Ans	➤ In Time of the Day Tariff (TOD) structure incentives for power drawl during off- peak hours and disincentives for power drawl during peak hours are built in. Many

Marks: $8 \times 5 = 40$

electrical utilities	like to	have flat	demand	curve to	achieve	high i	nlant efficiency
ciccircai utilities	IIKE tO	nave nat	uemanu	cui ve io	acineve	шұп	piani chicichey.

- ➤ ToD tariff encourage user to draw more power during off-peak hours (say during 11pm to 5 am, night time) and less power during peak hours. Energy meter will record peak, off-peak and normal period consumption, separately.
- TOD tariff gives opportunity for the user to reduce their billing, as off peak hour tariff is quite low in comparison to peak hour tariff.
- ➤ This also helps the power system to minimize in line congestion, in turn higher line losses and peak load incident and utilities power procurement charges by reduced demand

.....5 marks (each point consider 1.5 marks)

- S-2 In a chemical factory where dyes are made, wet cake at 30 °C consisting of 60% moisture is put in a dryer to obtain an output having only 5% moisture, at atmospheric pressure. In each batch about 120 kgs of material is dried.
 - a. The quantity of moisture removed per batch.
 - b. What is the total quantity (sensible & latent) of heat required to evaporate the moisture, if the latent heat of water is 540 kcal/kg at atmospheric conditions, Ignore heat absorbed by the solids
 - c. Find the quantity of steam required for the drying process (per batch), if steam at 4 kg/cm² is used for generating hot air in the dryer and the dryer efficiency is 80%. Latent heat of steam at 4 kg/cm² is 520 kcal/kg.

Ans Given that

- Qty of material dried per batch 120 Kgs
- Moisture at inlet 60%
- a. The quantity of moisture removed per batch.
 - Water quantity in a wet batch $120 \times 0.6 = 72 \text{ Kgs}$.
 - Quantity of bone dry material 120 72 = 48 Kgs.
 - Moisture at outlet 5%
 - Total weight of dry batch output 48/0.95 = 50.5 Kgs.
 - Equivalent water in a dry batch 50.5 48 = 2.5 Kgs.

• Total water removed in drying 72 - 2.5 = 69.5 Kgs./batch.....1.5 marks b. The total quantity of heat required to evaporate the moisture. To evaporate the moisture at atmospheric pressure, the material has to be first heated up to 100 °C. The total heat required would be; Sensible heat $72 \times 1 \times (100 - 30) = 5040 \text{ Kcal/batch}$ $69.5 \times 540 = 37530 \text{ Kcal/batch}$ Latent heat Total heat required 5040 + 37530 = 42570 Kcal/batchThe quantity of steam required for the drying process Dryer Efficiency 80% Heat input to dryer 42570/0.8 = 53212.50 Kcal/batch Latent heat in 4 Kg/cm² steam - 520 Kcal/Kg Steam quantity required 53212.50 / 520 = 102.3 Kgs / batch.....1.5 marks S-3 Explain PAT scheme and why it is a market based mechanism? Perform, Achieve and Trade (PAT) Scheme is a market based mechanism to Ans enhance cost effectiveness of improvements in energy efficiency in energy-intensive large industries and facilities, through certification of energy savings that could be traded. The genesis of the PAT mechanism flows out of the provision of the Energy Conservation Act, 2001 (amended in 2010). The key goal of PAT scheme is to mandate specific energy efficiency improvements for the most energy intensive industries in sectors as listed below. Sector 1. Aluminium 2. Cement 3. Chlor-Alkali 4. Fertilizer 5. Iron and Steel 6. Pulp and Paper 7. Textile 8. Thermal Power Plant

The energy intensity reduction target mandated for each unit is depended on its operating efficiency and the specific energy consumption reduction target is less for those who are more efficient and more for the less efficient units.

Further, the scheme incentivizes units to exceed their specified SEC improvement targets. To facilitate this, the scheme provides the option for industries who achieve superior savings to receive energy savings certificates for this excess savings, and to trade the additional certified energy savings certificates with other designated consumers who can utilize these certificates to comply with their specific energy consumption reduction targets. Energy Savings Certificates (ESCerts) so issued will be tradable at Power Exchanges. The scheme also allows units which gain ESCerts to bank them for the next cycle of PAT, following the cycle in which they have been issued. The number of ESCerts which would be issued would depend on the quantum of energy saved over and above the target energy savings in the assessment year.

After completion of baseline audits, targets varying from unit to unit ranging from about 3 to 7% are set and need to be accomplished during the 3 year cycle; after which new cycle with new targets will be proposed. Failing to achieve the specific energy consumption targets in the time frame would attract penalty for the non-compliance under Section 26 (1A) of the Energy Conservation Act, 2001 (amended in 2010). For ensuring the compliance with the set targets, system of verification and check-verification will be carried out by empanelment criteria of accredited energy auditors.

.....5 marks

Refer Book 1: Pg no 40-41

S-4 Give a short description about Availability Based Tariff (ABT).

Ans

Introduction of availability based tariff(ABT) and scheduled interchange charges for power was introduced in 2003 for interstate sale of power , have reduced voltage and frequency fluctuation $\frac{1}{2}$

- It is a performance-based tariff system for the supply of electricity by generators owned and controlled by the central government.
- It is also a new system of scheduling and dispatch, which requires both generators and beneficiaries to commit to day ahead schedule.
- It is a system of rewards and penalties seeking to enforce day ahead precommitted schedules, though variations are permitted if notified one and a half hours in advance.
- The order emphasizes prompt payment of dues, non-payment of prescribed charges will be liable for appropriate action.

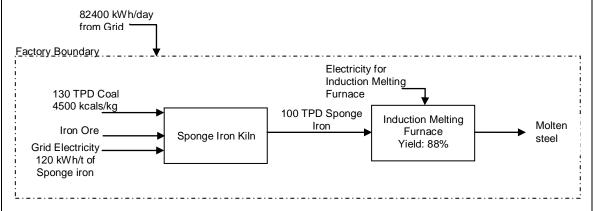
.....5 marks

S -5											
	In a heat treatment shop, steel components are heat-treated in batches of 80 Tons. The heat treatment cycle is as follows;										
	• Increase temperature from 30 °C to 850 °C in 3 hours.										
	• Maintain 850 °C for 1 hour (soaking time).										
	• Cool the material to 60 °C in 4 hours.	• Cool the material to 60 °C in 4 hours.									
	a) Calculate the efficiency of the furnace, if the and fuel oil consumption per batch is 1400	_	ic heat of steel is 0.12 kcal/kg ^o C								
	 GCV of fuel oil - 10200 k Cost of fuel oil - Rs. 46,0 Sp. gr. of fuel oil - 0.92. 	_									
	b) Due to high cost of oil, the plant management cost LPG fired furnace lined on the inside was operating efficiency of 80%, for same requirement the new furnace is Rs. 50 lakhs. Calculate the two batches per day and 250 days in a year. • Cost of LPG - Rs. 75/kg • GCV of LPG - 12500 kg	vith ceran ent. The Return on	mic fibre insulation and with an investment towards installation of								
	GC V OI LI G 12500 K	-									
Ans	Quantity of steel treated per batch	-	80 Tons								
Ans		-	80 Tons								
Ans	Quantity of steel treated per batch	-	80 Tons 80000 x 0.12 x (850 – 30)								
Ans	Quantity of steel treated per batch a. Efficiency of Furnace:	-									
Ans	Quantity of steel treated per batch a. Efficiency of Furnace:	-	80000 x 0.12 x (850 – 30)								
Ans	Quantity of steel treated per batch a. Efficiency of Furnace: Useful heat supplied to steel	-	80000 x 0.12 x (850 – 30) = 7872000 kcal/batch 1 mark								
Ans	Quantity of steel treated per batch a. Efficiency of Furnace: Useful heat supplied to steel Total heat supplied by fuel Efficiency of Furnace	-	80000 x 0.12 x (850 – 30) = 7872000 kcal/batch 1 mark 1400 x 0.92 x 10200								
Ans	Quantity of steel treated per batch a. Efficiency of Furnace: Useful heat supplied to steel Total heat supplied by fuel	-	80000 x 0.12 x (850 – 30) = 7872000 kcal/batch								

80%

7872000/0.8

Efficiency of new LPG furnace

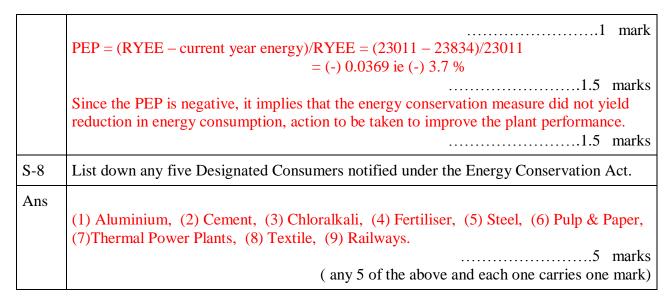

Heat supplied in new LPG furnace

= 9840000 kcal/batch Equivalent LPG consumption 9840000/12500 = 787.2 kg/batch.....1 mark Cost of operating LPG Furnace 787.2 x 75 =Rs. 59040/batch Cost saving per batch 64400 - 59040 =Rs. 5360/-Annual cost saving 5360 x 2 x 250 =Rs. 26,80,000/-.....1 mark Investment for new furnace Rs. 50 Lakhs Return on Investment (RoI) (26.8/50)*100 = 53.6%.....1 mark

S – 6 In a 100 TPD Sponge Iron plant, the sponge iron is fed to the Induction melting furnace, producing molten steel at 88% yield. The Energy consumption details are as follows:

Coal Consumption : 130 TPD
GCV of coal : 4500 kcal/kg
Power Purchased from Grid : 82400 kWh / day

Specific Energy consumption for Kiln producing Sponge Iron: 120 kWh / ton sponge iron



Calculate the following

- 1. Specific Energy Consumption of Induction melting furnace in terms of kWh/ton of molten steel
- 2. Specific Energy Consumption of the entire plant, in terms of kcal/kg of molten steel (product).
- 3. Total Energy Consumption of Plant in Tons of Oil Equivalent (TOE)

Ans	a) Specific Energy Consumption of Induction Melting Furnace							
	Molten Steel Production from the Induction melting furnace per day							
	$= 100 \times 88/100 = 88 \text{ TPD}$							
	Total Energy Consumption of the Plant = 82400 kWh							
	Electrical Energy Consumption in Sponge Iron Making = 120 x 100 = 12000 kWh per day							
	Electrical Energy Consumption in Induction Melting Furnace = 82400-12000 = 70400 kWh/day							
	Specific Energy Consumption of Induction Melting Furnace= 70400 / 88 = 800 kWh/ton of molten steel							
	b)Total Energy Consumption of the Plant:							
	(82400x860) + (130x1000x4500) = (70864000 + 585000000) $= 655864000 kcal/day$							
	Specific Energy Consumption in terms of kcal/kg of Molten metal =655864000/88000 =7453 kcal/kg of molten metal							
	c) Total Energy consumption of Plant in ToE							
	= 655864000/10⁷ = 65.586 ToE							
S- 7	A manufacturing industry plans to improve its energy performance under PAT through implementation of an energy conservation scheme. After implementation, calculate the Plant Energy Performance (PEP) with 2015-16 as the reference year. What is your inference? Given that:							
	 The current year (2016-17) Annual Production - 28,750 T, Current year (2016-17) Annual Energy Consumption - 23,834 MWh, Reference year (2015-16) production - 34,000 T, Reference year (2015-16) Energy consumption - 27,200 MWh. 							
Ans	Production factor (PF) = $28750/34000 = 0.846$							

Marks: $6 \times 10 = 60$

..... End of Section – II

Section – III: LONG DESCRIPTIVE QUESTIONS

- (i) Answer all **Six** questions
- (ii) Each question carries **Ten** marks
- Saturated steam at 1 atm is discharged from a turbine at 1200 kg/h. Superheated steam at 300 °C and 1 atm is needed as a feed to a heat exchanger. To produce it, the turbine discharge stream is mixed with superheated steam at 400 °C, 1 atm and specific volume of 3.11 m³/kg. Calculate the amount of superheated steam at 300 °C produced and the volumetric flow rate of the 400 °C steam. Turbine Discharge steam H - 2676 kJ/kg, M Q - 1200 kg/h, Mixed Super heated steam to HEx ı P-1atm, T-110°C. H - 3074 kJ/kg, Х $Q - m_2 kg/h$ Super heated steam ı P-1atm, T-300°C. H - 3278 kJ/kg, Ν $Q - m_1 kg/h$, G P-1atm, T-400°C. **Solution** Ans 1. Mass balance of water $1200 + m_1 = m_2$1 mark 2. Energy balance $(1200 \text{ kg/h})(2676 \text{ kJ/kg}) + m_1(3278 \text{ kJ/kg})$

 $= m_2(3074 \text{ kJ/kg}) \tag{2}$

.....1 mark

Eqs. (1) and (2) are solved simultaneously

$$3211200 + 3278m_1 = (1200 + m_1)3074$$

$$m_1 = 2341.2 \text{ kg/h}$$

$$m_2 = 1200 + 2341.2 = 3541.2 \text{ kg/h}$$
 (superheated steam produced)

......4 marks

3. Volumetric flow rate of 400°C steam

The specific volume of steam at 400 C and 1 atm is $3.11 \text{ m}^3/\text{kg}$. The volumetric flow rate is calculated as follows:

$$(2341.2 \text{ kg/h})(3.11 \text{ m}^3/\text{kg})$$

$$= 7281.1 \text{ m}^3/\text{h}$$

.....4 marks

L –2 The energy consumption and production patterns in a chemical plant over a 9 month period is provided in the table below;

Month	1	2	3	4	5	6	7	8	9
Production in Tonnes / month	493	297	381	479	585	440	234	239	239
Energy Consumption MWh /month	78.2	75.7	76.3	76.1	78.1	70.7	73.7	64.4	72.1

Estimate the cumulative energy savings at end of the 9th month and give your inference on the result? (consider 9 month data for evaluation for predicted energy consumption)

Ans It is required to use the equations

$$Y = mX + C$$
 and

$$nC + m\Sigma X = \Sigma Y$$

$$c\Sigma X + m\Sigma X^{2} = \Sigma XY$$

Month	X = Production in Tonnes / month	Y =Energy Consumption MWh /month	X ²	XY
1	493	78.2	243049	38574.12
2	297	75.7	88209	22479.51
3	381	76.3	145161	29076.88
4	479	76.1	229441	36436.09
5	585	78.1	342225	45671.42
6	440	70.7	193600	31110.53
7	234	73.7	54756	17240.63
8	239	64.4	57121	15402.96
9	239	72.1	57121	17228.98
_	3387	665.3	1410683	253221

	Theref	ore, the no	rmal equations be 7m = 665.3	ecome;		i			
		3387C + 1	l410683m = 2532	21.1		. ii			
								2	marks
			(0.07) /o				
			c = (665	.3-33871	m)/9				
		Substituti	ng in Eq. ii,						
			m = 0.021		and				
			c = 66.1						
		The best-	fit straight line eq	uation is	3;				
		V =	0.021x + 66.1						
		,						3	marks
			Production in						
			Tonnes /		$E_{cal}Y = 0.021x +$	Difference			
		Month	month x	E _{actual}	66.1		CUSUM		
		1	493	78.2	76.45	1.75	1.75		
		2	297	75.7	72.34	3.36	5.11		
		3	381	76.3	74.10	2.20	7.31		
		4	479	76.1	76.16	-0.06	7.25		
		5	585	78.1	78.39	-0.28	6.97		
		6	440	70.7	75.34	-4.64	2.33		
		7	234	73.7	71.01	2.69	5.01		
		8	239	64.4	71.12	-6.72	-1.71		
		9	239	72.1	71.12	0.98	-0.73		
			M value at the er n has to be taken				rmance of t	ot achieved any net he encon option.	
								1	mark
L - 3		in the follo Dry Bulb	owing o Temperature a	nd Wet	bulb Temp	erature			
	b)	b) Maximum Demand and Power Factor							
	c)	Gross Ca	alorific Value &	Net Ca	ılorific Valu	ie			
	d)	5S & Re	turn of Investme	ent (RO	I)				
	e)	CUSUM							

a) Dry Bulb Temperature and Wet bulb Temperature Ans Dry bulb Temperature is an indication of the sensible heat content of air-water vapour mixtures Wet bulb Temperature is a measure of total heat content or enthalpy. It is the temperature approached by the dry bulb and the dew point as saturation occurs. b) Maximum Demand and Power Factor Maximum demand is maximum KVA or KW over one billing cycle Power Factor $\cos \theta = kW/KVA$ or $kW = kVA \cos \theta$ c) Gross Calorific Value & Net calorific Value: Gross calorific value assumes all vapour produced during the combustion process is fully condensed. Net calorific value assumes the water leaves with the combustion products without being fully condensed. The difference being the latent heat of condensation of the water vapour produced during the combustion process. d) 5S: **Housekeeping.** Separate needed items from unneeded items. Keep only what is immediately necessary item on the shop floor. Workplace Organization. Organize the workplace so that needed items can be easily and quickly accessed. A place for everything and everything in its place. **Cleanup.** Sweeping, washing, and cleaning everything around working area immediately. **Cleanliness.** Keep everything clean in a constant state of readiness. **Discipline.** Everyone understands, obeys, and practices the rules when in the plant. d) Return on Investment: ROI expresses the annual return from project as % of capital cost. This is a broad indicator of the annual return expected from initial capital investment,

	6	expressed as a percentage.						
			1	mark				
	e) Cum	ulative Sum (CUSUM) Technique:						
	 Difference between expected or standard consumption with actual consumption data points over baseline period of time. 							
		Follows a fixed trend unless something (energy saving measureerformance) happens	re, deterioration in					
	• 1	Helps calculation of savings/losses till date after changes						
			2 r	narks				
L-4	Answer	the following						
	S. No	Statement	Chose the correct answer OR Fill-in-the-blanks					
	1	Fyrite measures CO ₂ , O ₂ and SO ₂	True/False					
	2	Ultrasonic Flow Meter uses the principle of&	Fill in the blanks					
	3	Non Contact Infrared Thermometer cannot measure temperature of objects placed in hazardous places	True/False					
	4	To measure the RPM of a Flywheel, type of RPM meter is used and for a visible shaft-end type of RPM meter is used.	Fill in the blanks					
	5	In a switch yard, instrument is used to identify the loose joints and terminations	Fill in the blanks					
	6	Every Designated Consumer shall have its first energy audit conducted by Energy Auditor within months of notification issued by the Central Government	Fill in the blanks					
	7	280 kcal/ hr is equivalent toWatts and 3.5 bar is equivalent tokPa	Fill in the blanks					
	8	One metric ton of oil equivalent is toMW	Fill in the blanks					
	9	1 kg of Coal, consisting of 30% of Carbon produces kg of CO ₂	Fill in the blanks					

	10	In a gasification system the reduce combustion zone	True/False			
Ans	Sr No	Statement	Chose the correct answer OR Fill-in-the-blanks	Solution		
	1	Fyrite measures CO ₂ , O ₂ and SO ₂	Fyrite measures CO ₂ , O ₂ and True/False False			
	2	Ultrasonic Flow Meter uses the principle of&	Fill in the blanks	Transit Time; Doppler Effect		
	3	Non Contact Infrared Thermometer cannot measure temperature of objects placed in hazardous places	True/False	False		
	4	To measure the RPM of a Flywheel, type of RPM meter is used and for a visible shaft-end type of RPM meter is used.	Fill in the blanks	Stroboscope; Tachometer		
	5	In a switch yard, instrument is used to identify the loose joints and terminations	Fill in the blanks	Thermal imager or IR gun		
	6	Every Designated Consumer shall have its first energy audit conducted by Energy Auditor within months of notification issued by the Central Government	Fill in the blanks	Accredited; 18 months		
	7	280 kcal/ hr is equivalent toWatts and 3.5 bar is equivalent tokPa	Fill in the blanks	325.6 Watts; (280x4.187x1000/3600) 350 kPa (3.5 x100)		
	8	One metric ton of oil equivalent is toMW	Fill in the blanks	11.62 MW (1x1000x10000/(860x1000)		
	9	1 kg of Coal, consisting of 30% of Carbon produces kg of CO ₂	Fill in the blanks	1.1 [(44/12)x(0.3]		
	10	In a gasification system the reduction zone is above the combustion zone	True/False	False		

L - 5	A company below;	has to choose between two projects whose cash flows are as indicated
	Projed	et 1:
	i.	Investment – Rs. 15 Lakhs
	ii.	Annual cost savings – Rs. 4 lakhs.
	iii.	Bi-annual maintenance cost – Rs. 50,000/-
	iv.	Reconditioning and overhaul during 5 th year: 6 lakhs
	V.	Life of the project – 8 years
	vi.	Salvage value – Rs. 5 lakhs
	Projed	et 2:
	vii.	Investment – Rs. 14 Lakhs
	viii.	Annual cost savings – Rs. 3.5 lakhs.
	ix.	Annual Maintenance cost – Rs. 20,000/-
	X.	Reconditioning and overhaul during 4th year: 5 lakhs
	xi.	Life of the project – 8 years
	xii.	Salvage Value- 2 lakhs
	Which	n project should the company choose? The annual discount rate is 12%.

٨		~
А	n	S

Year	Project 1			Project 2			
	Outgo	Saving	NPV	Outgo	Saving	NPV	
0	15.0	0	=-15.0	14.0	0	= -14	
1	0	4.0	$= (4 / (1+.12)^{1}$	0.2	3.5	$= (3.3 / (1+.12)^{1})$	
			= 3.571			= 2.95	
2	0.5	4.0	$= (3.5 / (1+.12)^2)$	0.2	3.5	$= (3.3 / (1+.12)^2)$	
			= 2.79			= 2.63	
3	0	4.0	$= (4 / (1+.12)^3)$	0.2	3.5	$= (3.3 / (1+.12)^3)$	
			= 2.84			= 2.35	
4	0.5	4.0	$= (3.5 / (1+.12)^4)$	5	3.5	$= (-1.5 / (1+.12)^4)$	
			= 2.22			= -0.95	
5	6	4.0	$= (-2 / (1+.12)^5)$	0.2	3.5	$= (3.3 / (1+.12)^5)$	
			= -1.13			= 1.87	
6	0.5	4.0	$= (3.5 / (1+.12)^6)$	0.2	3.5	$= (3.3 / (1+.12)^6)$	
			= 1.77			= 1.67	
7	0	4.0	$= (4 / (1+.12)^7)$	0.2	3.5	$= (3.3 / (1+.12)^7)$	
			= 1.81			= 1.49	
8	0.5	9 (4+5)	$= (8.5 / (1+.12)^8)$	0.2	5.5	$= (5.3 / (1+.12)^8)$	
			= 3.43		(3.5+2)	= 2.14	
NPV			= + 2.301	@12%		= + 0.15	

NPV Project 1 is higher than Project 2. Hence project 1 is preferred.

	1 (1
	10	marks

A project activity has several components as indicated below;

L- 6

S.	Activity	Preceded by	Duration (in
No.			Weeks)
1	Α	-	8
2	В	Α	6
3	С	Α	12
4	D	В	4
5	Е	D	5
6	F	В	12
7	G	E& F	9
8	Н	С	8
9		F&H	5
10	J	I & G	6

d. Prepare a PERT chart, estimate the duration of the project and identify the critical path.

e. What are the Earliest Start, Latest Start and Total Float of activity 'H'? f. What would be the project duration if activity 'H' got delayed by 3 weeks? PERT Diagram based on Activity on Arrow Ans G В 5 J, 6 5, ا F,12 8 OR PERT Diagram based on Activity on Node 18 В D 18 6 5 26 26 21 35 26 12 8 26 33 28 33 12 8 30 356 marks a. Critical Path: A-B-F-G-J1 mark b. Estimated Project Duration: 41 weeks

	1	mark			
	c. For activity H, Early Start is 20, Latest Start is 22 and Total Float is 2 weeks.				
	1	mark			
	d. Project duration will be 42 weeks- a delay of 1 week.				
	1	mark			
Fnd of Section – III					