Regular set A

Regn No: ______ Name : ______ (To be written by the candidate)

17th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – September, 2016

PAPER – 4:Energy Performance Assessment for Equipment and Utility Systems

Date: 25.09.2016 Timings: 14:00-16:00 HRS Duration: 2 HRS

General instructions:

- Please check that this question paper contains 6 printed pages
- Please check that this question paper contains 16 questions
- The question paper is divided into three sections
- All questions in all three sections are compulsory
- All parts of a question should be answered at one place

Section - I: BRIEF QUESTIONS

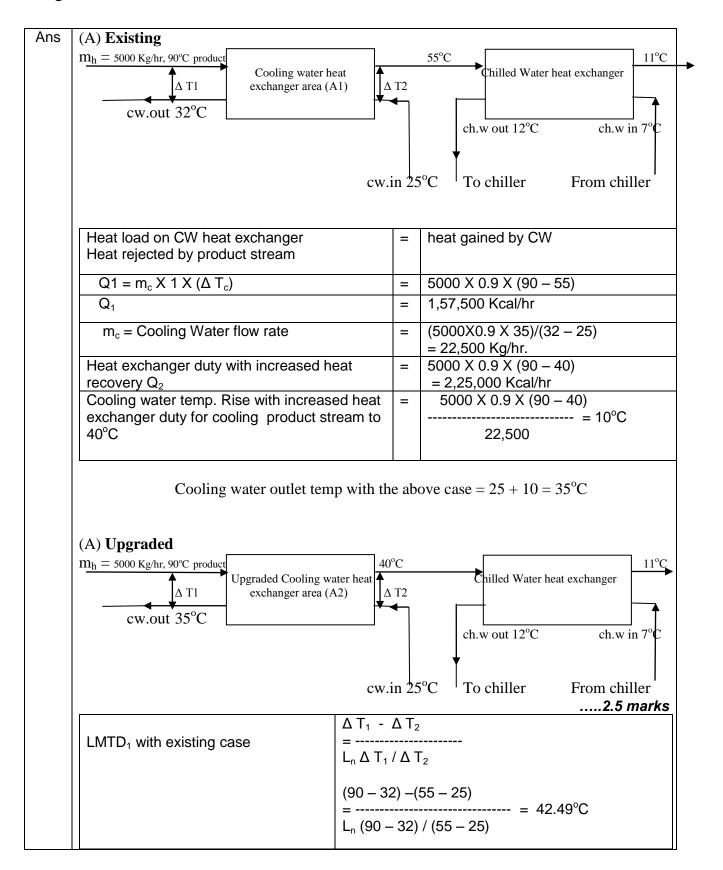
S-1	An air washer cools the water and a cooling tower cools the air. True or False.
Ans	False.
S-2	A 11 kW induction motor has an efficiency of 90% what will be its maximum delivered
	output?
Ans	11 kW.
S-3	The COP of a vapour absorption refrigeration system is lower than the COP of a
	vapour compression refrigeration system-True /false.
Ans	True.
S-4	An industrial electrical system is operating at unity power factor. Addition of further
	capacitors will reduce the maximum demand (kVA). True or False.
Ans	False.
S-5	Which parameter in the proximate analysis of coal is an index of ease of ignition?
Ans	Volatile matter.
S-6	The major source of heat loss in a coal fired thermal power plant is through flue gas
	losses in the boiler. True or false.
Ans	False.
S-7	With evaporative cooling, it is possible to attain water temperatures below the
	atmospheric wet bulb temperature. True or False
Ans	False
S-8	A pump is retrofitted with a VFD and operated at full speed. Will the power
	consumption increase or decrease or remain the same?
Ans	Increase
S-9	De-aeration in boiler refers to removal of dissolved gases. True or false
Ans	True

S-10	In a compressed air system, the function of the after cooler is to reduce the work of compression. True or False
Ans	False

..... End of Section - I

Section - II: SHORT NUMERICAL QUESTIONS

L-1	In a petrochemical industry the LP & HP boilers have the same evaporation ratio of 14 using the same fuel oil. The operating details of LP & HP boiler are given below:						
	ParticularsLP BoilerHP BoilerPressure10 Kg./cm²a32 Kg./cm²aTemperatureSaturated Steam400°CEnthalpy of steam665 Kcal/kg732 Kcal/kgEnthalpy of feed water80°C105°CEvaporation Ratio1414						
	Find out the efficiency of HP boiler if the LP boiler efficiency is 80%.						
Ans	$\begin{array}{rcl} \text{Effy } n &= \text{ER. } (\text{hg} - \text{hf}) / \text{GCV} \\ \text{Effy}_{\text{L,P}} n_1 &= 0.8 &= 14 \text{ x}(665 - 80) / \text{GCV} \\ \text{Effy}_{\text{H,P}} n_2 &= 14 \text{ x}(732 - 105) / \text{GCV} \\ \text{Effy}_{\text{H,P}} n_2 / \text{Effy}_{\text{L,P}} n_1 &= (732 - 105)0.8 / (665 - 80) = 0.8574 = 85.74\% \end{array}$						
	Or						
	$ \begin{array}{l} {\sf Effy}_{{\sf L},{\sf P}}{}^{{\sf n}}_{{\sf 1}}{=}0.8{=}14x(665{-}80)/{\sf GCV}\\ {\sf GCV}{=}14x(665{-}80)/0.8$						
L-2	While carrying out an energy audit of a pumping system, the treated water flow (in open channel) was measured by the tracer method. 20% salt solution was used as the tracer which was dosed @ 2 lts/min. The water analysis about 500 mtrs away revealed salt concentration of 0.5%. Assuming complete mixing and no losses, calculate the water flow rate.						
Ans	20% salt solution=200 gms of salt in 1 Litre of water0.5% salt solution=5 gms of salt in 1 litre of waterDosing rate=2 lts/minSalt added in water=2 x 200=Total flow= $400/5$ =80 lts/minWater flow rate= $80 - 2$ =78 lts/minOr						
	C1V1 = C2V2 V2 = C1V1/C2 = 0.2x2/0.005 = 80 lts/min Actual flow = total flow - dosage flow = 80-2 = 78 \text{ lts/min}						
	End of Section - II						


Section - III: LONG NUMERICAL QUESTIONS

S.No	Parameter	Before refurbishment	After refurbishment
1	CW inlet temp to CT	35°C	35°C
2	Atmospheric air conditions	WbT -25 °C, DbT - 38 °C	WbT -25 °C, DbT - 38 °C
3	COC	3.5	5
4	Suction head of CW pump	-1m	-1m
5	Discharge pressure of CW pump	4kg/cm ² (g)	4kg/cm ² (g)
6	Efficiency CW Pump CW Pump motor CT fan CT fan motor	54% 89% 55% 90%	53% 89% 54% 90%
7	Pressure developed by CT fan	20mmwc	20mmwc
8	Effectiveness of CT	60 %	70%
9	L/G ratio	1.5	1.5
10	Density of air	1.29kg/m ³	1.29kg/m ³
6. Alsov	t of cooling tower refurbishmer with improved water treatment uction in power consumption o	the COC has increas	sed to 5.

Paramet er	Equation / formulae	Before refurbishment	After refurbishment
Effectiven ess	= (T_{cwi}-T_{cwo})/(T _{cwi} - WbT)	0.6=(35- T _{CWO})/(35- 25) T _{CWO} = 29 °C	0.7=(35- T _{CWO})/(35- 25) T _{CWO} = 28 °C
CW flow rate Q	= heat load/(T _{CWi} - T _{CW0})	=(3000x10 ⁶ /10 ³) / (35- 29) = 500000 kg/h = 500 m3/h	=(3000x10 ⁶ /10 ³)/(35- 28) = 428571 kg/h = 429 m ³ /hr
Evaporati on loss	=1.8*.00085*CW flow x Range	1.8x0.00085x500x (35-29) = 4.59 m ³ /h	1.8x.00085x429x(35- 28) = 4.59 m ³ /h
Blow down loss	= Evaporation Loss/(COC-1)	= 4.59/(3.5-1) = 1.84 m ³ /h	4.59/(5-1) = 1.15 m ³ /h
Total water oss	= Eva loss+ Blow down loss	= 4.59+1.84 =6.43 m ³ /h	=4.59+1.15 =5.74 m ³ /h
Make-up water	= Total water loss x 24hrs	= 6.43 x 24 = 154.2 m³/day =154.2KL/day	= 5.74 x 24 = 137.76m³/day =137.76 KL/day
Total nead H	= discharge head- suction head	= 40-(-1) = 41 mWC	= 40-(-1) = 41 mWC
Pump LKW	= ((Q*1000/3600)*(H* 9.81))/1000	= (500*1000/3600)*(41 *9.81)/1000 = 55.86KW	= (429*1000/3600)*(41 *9.81)/1000 = 47.9 kW
Pump input	= Pump LKW/Eff.Pump	=55.86/0.54 =103.4 kW	= 47.9/0.53 =90.4 kW
Motor input	= Pump input/motor eff	= 103.4/0.89 =116.2 kW	=90.4/0.89 = 101.6kW
Air flow in CT fan Q _f	=[(CW flow)x1000]/ [((L/G)]*1.29)	= (500x1000/(1.5x1.29) = 258398 m ³ /h	= (429x1000/(1.5x1.29) = 221705m ³ /h
H _f	Pressure developed by fan H _f	= 20mmWC	= 20mmWC
Air KW	= [(Qf in m ³ /h)*(Hf in mmWC)]/(3600*102)	=(258398*20)/(3600* 102) =14.07 kW	=(221705*20)/(3600* 102) = 12.08 kW
Fan motor input	=Air KW/(FanEffi x Motor Eff)	=14.07/(0.55*0.9) = 28.43kW	=12.058/(0.54*0.9) = 24.9 kW

(2) Reduction in makeup water = 154.2-137.76 = 16.44 or 16.5 KL/day

	Coolin	g Water heat e	exchanger	Chilled Water heat exchange			
		Inlet temp	Outlet temp		Inlet temp	Outlet te	
	Product	90°C	55 °C	Product	55°C	11 °C	
	Cooling Water	25 °C	32 °C	Chilled water	7°C	12°C	
А.	A. Depict the heat exchanger in existing and upgraded (improved) heat recovery ca in a simple block diagramB. Calculate						
B.	•	olock diagram					
	Calculate	onal heat excha	anger area (as a g there is no ch		•		

	I MTD, with additional heat receive	n /	(90 – 35) – (40 – 25) = = 30.77°C
	LMTD ₂ with additional heat recove	гy	$L_n (90 - 35) / (40 - 25)$
	$\begin{array}{rcl} Q_2 &=& U \; X \; A_2 \; X \; LMTD_2 \\ Q_2 &=& 2,25,000 = U \; X \; A_2 \; X \; 30.77 \end{array}$		$Q_1 = U X A_1 X LMTD_1$ $Q_1 = 1,57,500 = U X A_1 X 42.49$
	$A_2 / A_1 = (2,25,000 / 1,57,500) X (42)$	2.49	9/30.77) = 1.973
	Additional area required =		97.3% of existing heat exchanger area of CW heat exchanger
	Refrigeration load in existing case	=	5000 X 0.9 X (55 – 11)
		=	1,98,000 Kcal/hr
		=	1,98,000 /3024
	Motor input power	=	65.476 TR 60 KW
	Motor input power Motor eff.	=	87%
	C.O.P. of refrigeration chiller	=	198000 /(60 X 0.87 X 860) 4.41
	Input KW / TR	=	60 / 65.476 = 0.916
	Reduction in refrigeration load	=	5000 X 0.9 X (55 – 40) / 3024
	due to lower input temperature of the product to chilled water heat exchanger	=	22.32 TR
	Yearly energy savings at 600 hrs. operation per month	=	22.32 X 0.916 X 600 X 12 1,47,204.86 Kwh
N-3	plant interconnected with grid. T	he	n and Power are supplied through a cogeneration design and actual operating parameters of the eschematic are given in the table below.
	B		T T T T T T T T T T O Plant
	Double Extraction – Conc	dens	² ³ ⁴ sing Steam Turbine Cogeneration System

			Desi	gn	actu		
B -	Boiler	75	tph,64kg/cm²(a efficie), 450°C @82% ncy	68.75t 64kg/cm²(a @81% eff), 450°C	
Τ-	Steam Turbine			Extraction - Co			
G -	Generator		10M	W	7.2M	W	
Stream Ref			Steam Flow (tph)	Steam Pressure (kg/cm ²)	Steam Temp (°C)	Steam enthal py (kCal/k g)	
1	Steam input to turbine		68.75	64	450	745	
2	First extraction		18.75	17	270	697	
3	Second extraction	۱	31.25	9	200	673	
4	Condenser in		18.75	0.1	-	550	
4	Condenser out		18.75	-	-	46	
efrigerati oiler, wh equireme	istry is installing a ion load due to proc nich will go into the ent. The additional p	duct (e tur bowe	diversification. bine and be e r thus generate	Additional stear xtracted at 9kg	n will be genera /cm²(a) to meet	ited by th the VA	
efrigerati oiler, wh equireme The follow Maximu	ion load due to proc hich will go into the ent. The additional p <u>ving additional data</u> m allowable steam f	duct o e tur bowe has	diversification. bine and be ein r thus generate been provided:	Additional stear xtracted at 9kg d will reduce the	n will be genera /cm²(a) to meet	ited by th the VA	
efrigerati oiler, wh equireme The follow Maximu Kg/cm ² a	ion load due to prod nich will go into the ent. The additional p <u>ving additional data</u> m allowable steam f	duct of e tur bowe <u>has</u> flow t	diversification. bine and be ex r thus generate been provided: the extraction at	Additional stear xtracted at 9kg d will reduce the	n will be genera /cm²(a) to meet e imported grid p 40 TPH	ited by th the VA	
efrigerati oiler, wh equireme The follow Maximu Kg/cm ² a Minimun	ion load due to prod nich will go into the ent. The additional p <u>wing additional data</u> m allowable steam to n allowable steam to	duct of e tur powe has flow t	diversification. bine and be end r thus generate been provided: the extraction at indenser	Additional stear xtracted at 9kg d will reduce the	n will be genera /cm ² (a) to meet e imported grid p 40 TPH 9 TPH	ited by th the VAI	
efrigerati oiler, wh equireme The follow Maximun Kg/cm ² a Minimun Critical p	ion load due to proc nich will go into the ent. The additional p ving additional data m allowable steam f n allowable steam to power requirement o	duct of e tur powe has flow t	diversification. bine and be end r thus generate been provided: the extraction at indenser	Additional stear xtracted at 9kg d will reduce the	n will be genera /cm ² (a) to meet e imported grid p 40 TPH 9 TPH 3800 KW	ited by th the VAI	
efrigerati oiler, wh equireme The follow Maximu Kg/cm ² a Minimun Critical p Power ir	ion load due to proc nich will go into the ent. The additional p wing additional data m allowable steam to n allowable steam to power requirement of nport from grid	duct of e tur powe has flow t	diversification. bine and be end r thus generate been provided: the extraction at indenser	Additional stear xtracted at 9kg d will reduce the	n will be genera /cm ² (a) to meet e imported grid p 40 TPH 9 TPH	ted by th the VAI	
efrigerati oiler, wh equireme The follow Maximum Kg/cm ² a Minimum Critical p Power in Cost of g	ion load due to proc nich will go into the ent. The additional g m allowable steam f n allowable steam to power requirement of nport from grid grid power	duct of e tur powe has flow t	diversification. bine and be end r thus generate been provided: the extraction at indenser	Additional stear xtracted at 9kg d will reduce the	n will be genera /cm ² (a) to meet e imported grid p 40 TPH 9 TPH 3800 KW 500 KW	ted by th the VAI	
efrigerati oiler, wh equireme The follow Maximu Kg/cm ² a Minimun Critical p Power in Cost of g G.C.V. c	ion load due to proc nich will go into the ent. The additional p wing additional data m allowable steam to n allowable steam to power requirement of nport from grid grid power	duct of e tur powe has flow t	diversification. bine and be end r thus generate been provided: the extraction at indenser	Additional stear xtracted at 9kg d will reduce the	n will be genera /cm ² (a) to meet e imported grid p 40 TPH 9 TPH 3800 KW 500 KW Rs.4.25 / K	ted by th the VAI	
efrigerati oiler, wh equireme The follow Maximu Kg/cm ² a Minimun Critical p Power in Cost of g G.C.V. c Cost of g Feed Wa	ion load due to proc nich will go into the ent. The additional data m allowable steam to power requirement of nport from grid grid power of coal coal ater temperature	duct of e tur powe has flow t	diversification. bine and be end r thus generate been provided: the extraction at indenser	Additional stear xtracted at 9kg d will reduce the	n will be genera /cm ² (a) to meet e imported grid p 40 TPH 9 TPH 3800 KW 500 KW Rs.4.25 / K 4000 Kcal/l Rs. 4000/tc 105°C	ted by th the VAI	
efrigerati oiler, wh equireme The follow Maximum Kg/cm ² a Minimum Critical p Power ir Cost of g G.C.V. c Cost of g Feed Wa Feed Wa	ion load due to proc nich will go into the ent. The additional p wing additional data m allowable steam to n allowable steam to power requirement of nport from grid grid power of coal coal ater temperature ater enthalpy	duct of e tur powe has flow t p cor of the	diversification. bine and be end r thus generate been provided: the extraction at indenser e plant	Additional stear xtracted at 9kg d will reduce the	n will be genera /cm ² (a) to meet e imported grid p 40 TPH 9 TPH 3800 KW 500 KW Rs.4.25 / K 4000 Kcal/l Rs. 4000/tc 105°C 105 Kcal/K	ted by th the VAI	
efrigerati oiler, wh equireme The follow Maximu Kg/cm ² a Minimun Critical p Power ir Cost of g G.C.V. c Cost of g Feed Wa Feed Wa Combine	ion load due to proc nich will go into the ent. The additional data m allowable steam for n allowable steam to power requirement of nport from grid grid power of coal coal ater temperature ater enthalpy ed efficiency of gear	duct of e tur powe has flow t p cor of the	diversification. bine and be ex r thus generate been provided: the extraction at ndenser plant and generator	Additional stear xtracted at 9kg d will reduce the 9	n will be genera /cm ² (a) to meet e imported grid p 40 TPH 9 TPH 3800 KW 500 KW Rs.4.25 / K 4000 Kcal/I Rs. 4000/tc 105°C 105 Kcal/K 96%	wh c c c c c c c c c c c c c	
efrigerati oiler, whe equireme The follow Maximum Kg/cm ² a Minimum Critical p Power in Cost of g G.C.V. c Cost of g Feed Wa Feed Wa Combine Steam re	ion load due to proc nich will go into the ent. The additional p wing additional data m allowable steam to n allowable steam to power requirement of nport from grid grid power of coal coal ater temperature ater enthalpy	duct of e tur powe has flow t p cor of the	diversification. bine and be ex r thus generate been provided: the extraction at ndenser plant and generator	Additional stear xtracted at 9kg d will reduce the 9	n will be genera /cm ² (a) to meet e imported grid p 40 TPH 9 TPH 3800 KW 500 KW Rs.4.25 / K 4000 Kcal/l Rs. 4000/tc 105°C 105 Kcal/K	wh c c c c c c c c c c c c c	

Calculate

The Energy Utilization Factor (EUF) for the existing operating case

(i) (ii) The net additional annual operating cost, after installation of VAM.

(iii) The Energy Utilization Factor (EUF) after installation of VAM. Regular

set A

Ans	(i) Energy Utilization Factor (EUF) =		Q thermal + P electrical				
	(before VAM installation		Fuel Consumption X G.C.V.				
	Q thermal	=	$m_2 h_2 + m_3 h_3 + m_4 h'_4$				
	Q in	_	m (h ₁ – h _f)				
		_	η X G.C.V.				
	Q thermal	= (18.75 = (1306) X 697 + 31250 X 673 + 18750 X 46 5 X 697 + 31.25 X 673 + 18.75 X 46) X 10 ³ Kcal/hr 8 X 21031 + 862.5) X 10 ³ Kcal/hr 2.5 X 10 ³ Kcal/hr				
	P _e	= 7200 2 = 6192 2	X 860 X 10 ³ Kcal/hr				
	Fuel Consumption	=	- 105) X 68.750x1000 = 13.58 TPH .81X 4000 X 1000				
	EUF	=	$2.5 \times 10^{3} + 6192 \times 10^{3}$ 				
	(ii) Refrigeration Load	= 1200	TR				
	1TR requires 4.5 Kg./hr Steam consumption in o	double effect	t absorption chiller = 1200×4.5 = 5400 Kg./hr.				
	Every 12 Kg./hr extracti efficiency of generator a	0	cm²a gives 1 KW output at turbine , x = 0.96				
	Additional power recove	ery due to ind	crease in extraction = (5400 / 12) X 0.96 = 432 KW				
	Additional coal consum	otion due to	increase in extraction = (745 – 105)X 5400/(0.81x4000) = 1066 kg/h				
	Additional cost of coal		= 4000x1.066 = Rs 4266.6 /hr				
	Monetary realisation by	reducing im	2 marks nport cost of purchased electricity = 4.25 Rs./unit = 432 X 4.25 = 1836 Rs./hr				

		onal annual operating	cost after VAM	installation		6.6-1836)*800 94 crore/y	
	(iii) Stream Ref	Steam flow location	Steam Flow (tph)	Steam Pressure (kg/cm ²)	Steam Temp (°C)	Steam enthalpy (kCal/kg)	
	1	Steam input to turbine	68.75+5.4 =74.15	64	450	745	
	2	First extraction	18.75	17	270	697	
	3	Second extraction	31.25+5.4 =36.65	9	200	673	
		Condenser in	18.75	0.1	-	550	
	4	Condenser out	18.75	-	-	46	
	Q thermal P _e	= = = = =	(18.75 X 697 + (13068 X 38596.7 > (7200+43	97 + 36650 X 6 · 36.65 X 673 + ′ 21031 + 862.5) X (10 ³ Kcal/hr	18.75 X 46) 2	X 10 ³ Kcal/hr	
		el Consumption =	38596.7	H + 1.066 TPH = X 10 ³ + 6563.5 X	(10 ³	77.08%	
•	14.646 X 10 ³ X 4000 Answer ANY ONE OF THE FOLLOWING among A, B, C and D The operating parameters observed w.r.t. design in a 110 MW power generation unit given below:						

Parameters	Design	Operation
Generator output	110 MW	110 MW
Steam generator outlet super heat temperature	540°C	525°C
Steam generator outlet pressure	140 Kg/cm ² a	130 Kg/cm²a
Feed water inlet temperature	135°C	135°C
Boiler η	87.5%	87.5%
GCV of Coal	3800	3800
Turbine exhaust pressure	0.09 Kg./cm²a	0.11 Kg./cm²a
Dryness fraction of exhaust steam	0.87	0.89
Turbine heat rate	2362.5 Kcal /Kwh	
Efficiency generator	96%	96%
Energy loss in gear box	4420 KW	4420 KW
Enthalpy of steam at 520°C, 130 Kg/cm ² a,		810 Kcal/Kg.
Enthalpy of steam at 0.11 Kg./cm ² a		550 Kcal/Kg
Calculate the		·
I. Actual steam flow to the turbine		
II. Specific steam consumption of turbine		
III. % increase in gross unit heat rate compa	ared to design	
V. Increase in monthly (720 hours/month) of	coal consumption o	

operation w.r.t. design at a plant load factor of 80%

Ans

Ans				
	Generator output	=	110 MW	
	η of generator		96%	
	Generator input	=	110 / 0.96 114.58 MW	
	Energy loss in gear box	= =	4420 KW 4.42 MW	
	Turbine output	=	Total input at gear box + energy loss in gear box	
	Turbine out put	=	114.58 + 4.42 119 MW	
	Turbine out put	=	m _s (810 – 550) X (1 / 860)	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
turbine = 393.615 Tonne/hr	
Specific steam consumption = (393.615 X 1000) / ((110 X
= 3.58 Kg./kW	
Boiler η = $M_s (h_g - h_w)$	
X 100	
GCV X m _f	
393615 (810 – 135)	
Coal consumption m _f	
79906.8 Kg./hr	
= 79906.8 /(110 X 1000)	
Specific coal consumption = 0.726 Kg./Kwh	
Actual unit heat rate = 0.726 X 3800	
= 2758.8 Kcal/Kwh	
Design turbine heat rate 2362.5 Kcal / KW	
η of steam generator or boiler 87.5%	
Design unit heat rate = 2362.5 / 0.875	
= 2700 Kcal/Kwh	
% increase in heat rate w.r.t. = [(2758.8 – 2700) / 2700] X 1 design = 2.17 %	100
Specific coal consumption for = 2700/3800	
design heat rate = 0.71kg/kwh	
= (0.726 - 0.71) X 110 X 1000 X 0.8	X 720
Additional coal consumption per 1000	
month with a PLF of 80% 1013.76 tonnes	
Or	
B) In a textile process house the production from the stenter machine is 7200	0 mtrs per day.
The effective operation of stenter is 20 hours per day. The percentage	moisture in the
dried cloth (output) is 6% and its temperature is 75°C and wet cloth inlet is	
stenter is heated by steam at 8 kg/cm ² a and the daily steam consumption for	or the stenter is
16.5 tonnes. The efficiency of the stenter dryer is 47%. Calculate the	
(i) Linear speed of the stenter machine	
(ii) Inlet moisture	
(iii) Feed rate of the stenter.	
The following data have been provided	
Weight of 10 meter of dried cloth = 1 kg.	
Enthalpy of the steam to the stenter $= 665$ kcal/kg.	

	Enthalpy of condensate at the exit of stenter = 130 kcal/kg. Ignore losses in start-up and stoppage.
Ans	Production per day=72000 metersActual hours of operation=20 hours/ dayLinear speed of the stenter =72000 / (20x60) = 60 meters per min
	Dried cloth output = $72000 / (20x10) = 360 \text{ kg/hr}.$
	Moisture in dry cloth=6%Bone dry cloth= $360 \times 0.94 = 338.4 \text{ kg/hr}$
	Moisture in outlet cloth $m_o = (360 - 338.4) / 338.4$ = 0.0638 Kg./Kg. bone dry cloth
	Steam consumption per day = 16.5 tonnes = $16500 / 20 = 825 \text{ Kg./hr.}$
	Heat load on the dryer =Energy input in steam x Dryer Efficiency = Steam flow rate x (Enthalpy steam – Enthalpy condensate) x Efficiency Dryer = 825 x (665 – 130) x 0.47 = 207446.3 Kcal/hr.
	Further Heat load on the dryer $= w \times (m_i - m_o) \times [(T_{out} - T_{in}) + 540]$ Kcal/hr. w =weight of bone dry cloth rate kg/hr $m_i =$ weight of cloth inlet moisture Kg./Kg. bone dry cloth $T_{out} =$ dried cloth outlet temperature= 75°C $T_{in} =$ wet cloth inlet temperature $= 25^{\circ}C$
	338.4 x (m _i – 0.0638) X [(75 – 25) + 540] = 207446.3 Kcal/hr m _i = 1.1028 Kg./Kg. bone dry cloth(1.1028) / (1.1028+1)x100 % inlet moisture in wet cloth = 52.44 %
	total moisture in inlet cloth = 1.1028x338.4= 373.2 kg/hr
	feed rate(inlet cloth rate), = total inlet moisture/hr +bone dry cloth/hr = 373.2+338.4 = 711.6 Kg./hr.
	or
C)	The preheater exhaust gas from a cement kiln has the following composition on dry basis :CO2 – 23.9%, O2 – 5.9%, CO – 0.2%, remaining is N2. The static pressure and temperature measured in the duct are -730 mmWC and 350° C respectively. The velocity pressure measured with a pitot tube is 19 mmWC in a duct of 2800 mm diameter (Pitot tube constant = 0.89). The atmospheric pressure at the site is 10350 mmWC and universal gas constant is 847.84 mmWCm ³ /kg mol k. The specific heat capacity of preheater exhaust gas is 0.25 kcals/kg ⁰ C.

	The static pressure developed by PH exhaust fan is 630mmWC and power drawn is 1582 kW. Calculate the efficiency of fan given that the motor efficiency is 92%.
	The management had decided to install a 1.3 MW power plant with a cycle efficiency of 15% by using this preheater exhaust gas. Calculate the exhaust gas temperature at the outlet of waste heat recovery boiler of the power plant.
Ans	Molecular weight exhaust gas (dry basis) M
	$= \%CO_2 x M_{CO2} + \%O_2 x M_{O2} + \%CO x M_{CO} + \%N_2 x MN_2$ (70)
	= {(23.9 x 44) + (5.9 x 32) + (0.2 x 28) + (70 x 28)}/100 = 32.06 kg/kg mole
	Exhaust Gas density at operating temperature = γ = [PM / RT]
	$= [(10350 - 730) \times 32.06) / \{847.84 \times (273 + 350) \}$
	$= 0.584 \text{ kg/m}^3$
	Duct Area = $3.14 \text{ x} (2.8/2)^2 = 6.15 \text{ m}^2$
	Volume flow rate =A Cp $(2 \text{ x g x } \Delta P / \gamma)^{1/2} = 6.15 \text{ x } 0.89 (2 \text{ x } 9.81 \text{ x } 19 / 0.584)^{1/2}$
	$= 138.3 \text{ m}^3/\text{s}$
	Volume flow rate= $497880 \text{ m}^3/\text{ h}$
	Fan efficiency = <u>volumetric flow rate x pressure developed</u> (102 x power drawn x motor eff)
	$= \frac{138.3 \times 630}{(102 \times 1582 \times 0.92)} \times 100 = 58.69\%$
	Mass flow rate of preheater exhaust gas = Volume flow rate x density = 497880*0.584 = 2,90,762 kg/hr
	Heat equivalent of power generated from power plant =1.3MW =1300 x 860 = 1118000 kCals/hr
	Heat given up to power plant by exhaust gas = $290762 \times 0.25 \times (350-T_{o}) \times 0.15$
	$T_o = 350 - (1118000/(290945x0.25x0.15)) = 247.5^{\circ}C$
	or
 `	
D)	For a commercial building, using the following data,
	(i) Determine the building cooling load in TR (ii) Coloulate the supply air quantity to the secling appear in m ³ /a
	(ii) Calculate the supply air quantity to the cooling space in m^3/s
	Outdoor conditions : DBT = 40° C, WBT = 28° C, Humidity = 19 g of water / kg of dry air
	Desired indoor conditions : DBT = 25° C, RH = 60 %, Humidity = 12 g of water / kg of dry
	air

	Total area of wall = 324 m^2 , out of which 50)% is window area.		
	U – Factor (Wall) = $0.33 \text{ W/m}^2\text{K}$ U – Factor (Roof) = $0.323 \text{ W/m}^2\text{K}$ U – factor [fixed windows with aluminium fr Other data:	ames and a thermal break] = 3.56 W/m ² K		
	 decking. CLTD at 17:00 hr : Details : Wall = 1 SCL at 17 : 00 hr : Details : Glass V Shading coefficient of Window = 0.7 Space is occupied from 8:00 to 17:0 work. Sensible heat gain / person = 75 W people = 0.9 Fluorescent light in space = 21.5 W Ballast factor details = 1.2 for fluores Computers and office equipment in a 	74 0 hr by 30 people doing moderately active ; Latent heat gain / person = 55 W ; CLF for $/m^2$; CLF for lighting = 0.9 scent lights & 1.0 for incandescent lights space produces 5.4 W/m ² of sensible heat of sensible heat and 450 W of latent heat.		
Ans	(i) Cooling Load Determination:			
	I. External Heat Gain			
	(i) Conduction heat gain through the wall	 = U - factor x net area of wall x CLTD = 0.33 x (324*0.5) x 12] = 641.5 W 		
	(ii) Conduction heat gain through the roof	= U – factor x net area of roof x CLTD = 0.323 x (20 x 25) x 44 = 7106 W		
	(iii) Conduction heat gain through the windows = U – factor x net area of windows x CLTD = $(3.56 \times 162 \times 7) = 4037 \text{ W}$			
	(iv) Solar radiation through glass	= Surface area x Shading coefficient x SCL = (162 x 0.74 x 605) = 72527 W		
	II. Internal Heat Gain			
	(i) Heat gain from people =Sensible	heat gain + Latent heat gain		

Regular set A

	heat gain		ople x Sensible heat gai 0.9) = 2025 W	n / person x CL
Latent he	eat gain		pple x Latent heat gain /	person
Therefor	e, Heat gain from peop	= (30 x 55) le = (2025 + 1		
	gain from lighting gy input	= (Amount o	nput x Ballast factor x CL f lighting in space / unit a x 25) = 10750 W	
Therefor	e, heat gain from lightir	ng = (10750 x 1	.2 x 0.9) =11610 W	
(iii) Heat	generated by equipme	nt :		
Latent he Sensible	heat generated by coff eat generated by coffee heat gain by computer e, Heat generated by e	e maker s and office eq	=1050 W = 450 W = 5.4 x 500 = 4200 W	= 2700 W
(iv)Heat	gain through air infiltra	tion = (Sensible	e heat gain + Latent heat	gain)
Airflow	heat gain	=(1210 x airf)		
	-	$= \{ (20 \times 25) \\ = 0.15 \text{ m}^3 / \text{s} \\ = 1210 \times 0.15 \\ = 3010 \times 0.15 $	x(40-25)=2722.5 W x(19-12) =3160.5 W	1
Therefor	•	$= \{ (20 \times 25) \\ = 0.15 \text{ m}^3 / \text{s} \\ = 1210 \times 0.15 \\ = 3010 \times 0.15 $	x (40 – 25) =2722.5 W	1
Therefor Latent he	eat gain	$= \{ (20 \times 25) \\ = 0.15 \text{ m}^3 / \text{s} \\ = 1210 \times 0.15 \\ = 3010 \times 0.15 \\ \text{omponents} $	x (40 – 25) =2722.5 W x (19 – 12) =3160.5 W Sensible Heat Load	/
Therefor Latent he	eat gain Space Load Co	= { (20 x 25 x = 0.15 m ³ / s =1210 x 0.15 =3010 x 0.15 pmponents exterior wall	x (40 – 25) =2722.5 W x (19 – 12) =3160.5 W Sensible Heat Load (W)	/
Therefor Latent he No. 1.	eat gain Space Load Co Conduction through e	= $\{(20 \times 25) = 0.15 \text{ m}^3 / \text{s} = 1210 \times 0.15 = 3010 \times 0.15 = 3010 \times 0.15$	x (40 – 25) =2722.5 W x (19 – 12) =3160.5 W Sensible Heat Load (W) 641.5	/
Therefor Latent he No. 1. 2.	eat gain Space Load Co Conduction through	= { (20 x 25 x = 0.15 m ³ / s =1210 x 0.15 =3010 x 0.15 mponents exterior wall roof windows	x (40 – 25) =2722.5 W x (40 – 25) =3160.5 W X (19 – 12) =3160.5 W Sensible Heat Load (W) 641.5 7106	/
Therefor Latent he No. 1. 2. 3.	eat gain Space Load Co Conduction through Conduction through Conduction through	= { (20 x 25 x = 0.15 m ³ / s =1210 x 0.15 =3010 x 0.15 mponents exterior wall roof windows gh windows	x (40 – 25) =2722.5 W x (40 – 25) =3160.5 W X (19 – 12) =3160.5 W Sensible Heat Load (W) 641.5 7106 4037.0	/
Therefor Latent he No. 1. 2. 3. 4.	eat gain Space Load Co Conduction through Conduction through Conduction through Solar radiation through	= { (20 x 25 x = 0.15 m ³ / s =1210 x 0.15 =3010 x 0.15 omponents exterior wall roof windows gh windows ople	$(3.6) \times 0.3 \} / 3600$ (40 - 25) = 2722.5 W (19 - 12) = 3160.5 W Sensible Heat Load (W) 641.5 7106 4037.0 72527	Latent Heat Load (W)
Therefor Latent he No. 1. 2. 3. 4. 5.	eat gain Space Load Co Conduction through Conduction through Conduction through Solar radiation throug Heat gained from per	$= \{ (20 \times 25) \\ = 0.15 \text{ m}^3 / \text{s} \\ = 1210 \times 0.15 \\ = 3010 \times 0.15 \\ \hline \text{omponents} \\ \hline \text{exterior wall} \\ \hline \text{roof} \\ \hline \text{windows} \\ \hline \text{gh windows} \\ \hline \text{ople} \\ \hline \text{nting} \\ \hline \end{tabular}$	x (40 – 25) =2722.5 W x (40 – 25) =2722.5 W x (19 – 12) =3160.5 W Sensible Heat Load (W) 641.5 7106 4037.0 72527 2025	Latent Heat Load (W) 1650
Therefor Latent he No. 1. 2. 3. 4. 5. 6.	eat gain Space Load Co Conduction through Conduction through Conduction through Solar radiation throug Heat gained from per Heat gained from ligh	$= \{ (20 \times 25 \times 20 \times 25 \times 25$	x (40 – 25) =2722.5 W x (40 – 25) =2722.5 W x (19 – 12) =3160.5 W Sensible Heat Load (W) 641.5 7106 4037.0 72527 2025 11610	Latent Heat Load (W) 1650
Therefor Latent he No. <u>1.</u> <u>2.</u> <u>3.</u> <u>4.</u> <u>5.</u> <u>6.</u> 7.	eat gain Space Load Co Conduction through Conduction through Conduction through Solar radiation throug Heat gained from per Heat gained from ligh Heat gained from equi	$= \{ (20 \times 25) \\= 0.15 \text{ m}^3 / \text{s} \\= 1210 \times 0.15 \\= 3010 \times 0.15 \\$ $= 3000 \times 0.$	$(3.6) \times 0.3 \} / 3600$ (40 - 25) = 2722.5 W (19 - 12) = 3160.5 W Sensible Heat Load (W) 641.5 7106 4037.0 72527 2025 11610 3750	/ Latent Heat Load (W) 1650 450
Therefor Latent he No. <u>1.</u> <u>2.</u> <u>3.</u> <u>4.</u> <u>5.</u> <u>6.</u> 7.	eat gain Space Load Co Conduction through a Conduction through a Conduction through a Conduction through a Solar radiation through Solar radiation through Heat gained from per Heat gained from light Heat gained from equilibrium Heat gained by air in Total space cooling	= { (20 x 25 x = 0.15 m ³ / s =1210 x 0.15 =3010 x 0.15 mponents exterior wall roof windows gh windows ople nting uipment filtration J load	$(3.6) \times 0.3 \} / 3600$ (40 - 25) = 2722.5 W (19 - 12) = 3160.5 W Sensible Heat Load (W) 641.5 7106 4037.0 72527 2025 11610 3750 2722.5	Latent Heat Load (W) 1650 450 3160.5
Therefor Latent he No. 1. 2. 3. 4. 5. 6. 7. 8.	eat gain Space Load Co Conduction through of Conduction through of Conduction through of Conduction through of Solar radiation through Solar radiation through Heat gained from per Heat gained from light Heat gained from equilibrium Heat gained by air in Total space cooling Total Cooling Dy Air Quantity Calcular in flow	$= \{ (20 \times 25) \\= 0.15 \text{ m}^3 / \text{s} \\= 1210 \times 0.15 \\= 3010 \times 0.15 \\$ $= 3000 \times 0.$	x (40 – 25) =2722.5 W x (40 – 25) =2722.5 W x (19 – 12) =3160.5 W Sensible Heat Load (W) 641.5 7106 4037.0 72527 2025 11610 3750 2722.5 104419 79.5W/3516 =31.2 TR gain / {1210 * (Room dr	y bulb tempera

----- End of Section - III ------