16th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS – September, 2015

PAPER – 4:Energy Performance Assessment for Equipment and Utility SystemsDate: 20.09.2015Timings: 14:00-16:00 HRSDuration: 2 HRSMax. Marks: 100

0

Section - I: BRIEF QUESTIONS

Marks: 10 x 1 = 10

- (i) Answer all <u>**Ten</u>** questions</u>
- (ii) Each question carries <u>One</u> mark

S-1	The Net present value of a Energy Conservation Project is Rs.38784/- and the initial
	capital investment Rs 1,50,000/- calculate the Profitability Index of the project.
Ans	PI = 38784 = 0.258
	1,50,000
S-2	Between a natural gas fired boiler and oil fired boiler which will have a higher
	percentage of hydrogen loss in flue gas? Why?
Ans	Gas fired boiler. Because the hydrogen percentage is more in natural gas compared
	to oil.
S-3	If the condenser back pressure is 82 mm Hg, calculate the condenser vacuum
	if the atmospheric pressure is 755 mmHg.
Ans	Condenser vacuum, mmHg = (Atmospheric pressure, mmHg - Condenser back
	pressure, mmHg)
	= (755 - 82) = 673 mmHg.
S-4	For a process requiring indirect heating to 200°C, thermic fluid is preferred to steam
	as a heat carrier. Why ?
Ans	Because for steam to be heated to high temperatures, the pressure required will be
	very high.
S-5	After cleaning of choked AHU filter, AHU fan power increased. Why?
Ans	Due to less resistance, the air flow increased.
56	Why is the exhaust temperature of furnace oil fired systems limited to about $170^{\circ}C^{2}$
0-0 Ano	Acid dow point due to presence of culpbur
AIIS	Actu dew point due to presence of suprior sources of wests heat resources in a water
2-1	Other than exhaust gas what is the major source of waste heat recovery in a water

	cooled DG set?
Ans	Engine jacket cooling water
S-8	In poorly loaded motor, current measurements are not a right indicator of motor
	loading. Why?
Ans	PF will be low.
S-9	If the coal GCV is 4500 kcal/kg and specific coal consumption is 0.60 kg/kWh, what is
	the Power station Gross efficiency?
Ans	$(860 / (4500 \times 0.60)) \times 100 = 31.85\%$
S-10	The dry bulb and wet bulb temperatures of air entering an air washer are 35 and 28
	^o C respectively. If the saturation efficiency is 90 %, calculate the air temperature
	leaving the air washer.
Ans	$90\% = 35 - T_{out}$
	35-28
	$T_{out} = 28.7^{\circ}C$

..... End of Section - I

SHORT NUMERICAL QUESTIONS Section - II:

Marks: 2 x 5 = 10

- (i) Answer all <u>Two</u> questions(ii) Each question carries <u>Five</u> marks

L-1	A luxury hotel is using a dies	el fired hea	ter with an efficiency of 70% for supplying ture of 20°C. The bot water requirement is
	24,000 litres per day.		
	The management is considering the specific high hot water te performance (C. O. P.) of 2.5 pump in place of diesel fire following data are given.	ng to install mperature r Find out th d heater ig	a specially designed electric heat pump for equirement with a heat pump coefficient of e reduction in daily operating cost with heat noring auxiliary energy consumption. The
	Electricity cost	=	Rs.10/kWh
	Diesel cost	=	Rs.50/litre
	G.C.V. of diesel	=	9100 kcal/litre
Ans			
	Diesel required		

= [24000 Lit_{Hotwater}/ day) x (60-20°C) x (1 kca/Lit°C)] For hot water heater (0.7 Effy x 9100 kcal/Lit diesel) = 150.7 Lit _{diesel} /day ... 1 Mark $= 150.7 \times 50 = 7535 \text{ Rs./day}$ Diesel cost / day ...1 Mark COP = Heat pump refrigeration effect / input electrical energy or Input electrical energy, kW = Heat pump refrigeration effect, kcal COP x 1 kW or Input electrical energy, kW = Heat pump refrigeration effect, kcal COP x 860 kcal/hr Electrical energy required with heat <u>24000 x 1 x (60 - 20)</u> = (2.5 x 860)(1 Mark) pump of COP = 2Energy input with heat pump = 446.51 Kwh/day Operating cost with heat pump $= 446.51 \times 10$ = 4465.1 Rs./day 1 mark Reduction in operating cost = 7535 - 4465.1 = Rs.3069.9 /day 1 mark L-2 A pump is drawing water through a 150 mm diameter pipe with a suction head of 3 m below the pump centre line. Find out the pump efficiency if the actual power input the motor is 16.7 kW at a motor efficiency of 90 %. The discharge pressure is 4.5 kg/cm² and the velocity of water through the pipe as measured by an ultrasonic flow meter is 1 m/s.

Ans			
	Discharge Head, kg/cm ²	=	4.5
	Suction Head, m	=	- 3
	Total Head	=	45 - (-3)
			48 m
	Flow rate	=	(22/7 x D ² /4) x 1 m/s
		=	(22/7 x 0.15 ² / 4) x 1
			m/s
		=	0.0177 m ³ /sec
			2 marks
	Hydraulic Power	=	0.0177 x 1000 x 9.81 x
			48/1000
		=	8.33 kW
			1 mark
	Pump Efficiency		8.33/(16.7x0.9)
		=	55.2 %
			2 marks

..... End of Section - II

Section - III: LONG NUMERICAL QUESTIONS

Marks: 4 x 20 = 80

- (i) Answer all Four questions
- (ii) Each question carries <u>Twenty</u> marks
- N-1 In an organic chemical industry 15 Tonne per hour steam is generated at 10 kgf/cm² in a 18 TPH natural gas fired smoke tube boiler. The % oxygen in the exit flue gas was 3.1% and the flue gas temperature was 190°C. The following data have been provided. Ultimate analysis of natural gas per kg, Carbon = 0.72 kg/kg; Hydrogen = 0.236 kg/kg; Nitrogen = 0.03 kg/kg; Oxygen = 0.011 kg/kg;Specific heat of flue gas = 0.297 kcal/kg°C Specific heat of superheated water vapor = 0.45 kcal/kg°C G.C.V. of natural gas = 9100 kcal/m^3 Density of natural gas = 0.7Density of air = 1.12 kg/m^3 Enthalpy of steam at 10 kg/cm² = 665 kcal/kg Temperature of feed water at inlet to boiler = 95°C Yearly hours of operation = 8000 hours

	 a. Find out the S/F (steam to fuel) ratio in kg steam/m³ gas b. Estimate the annual reduction in carbon dioxide emission in tones/ye compared to the furnace oil fired boiler of 83% efficiency on G.C.V. whi was earlier used for delivering the same steam load. Assume G.C.V. furnace oil as 10300 Kcal/kg and 0.86 carbon per kg furnace oil. 	ar ch of
Ans	Ultimate analysis of natural gas per kg. of gas	
	Carbon = 0.72 kg/kg; Hydrogen = 0.236 kg/kg; Nitrogen = 0.03 kg/kg; Oxygen = 0.011 kg/kg;	
	Theoretical air required = $11.6C + [34.8 (H_2 - O_2/8)] + 4.35S$, = $11.6 \times 0.72 + [34.8 (0.236 - 0.011/8)]$ (note S= sulfur in above composition is nil) = $16.524 \text{ kg air/kg gas} \dots (1 \text{ Mark})$	
	% Excess Air = [% O_2 / (21 - % O_2)] x 100 = [3.1 / (21 - 3.1)] x 100 = 17.3% (1 Mark)	
	Actual Air Supplied (AAS) = [1 + 0.173] x 16.524 = 19.38 kg air / kg gas (1 ma	rk)
	Mass of dry flue gas; mdfg = mass of combustion gases due to presence C, N_2 ,S in the fuel+mass of residual O_2 in flue gas + mass of N_2 supplies with air	эd
	= 0.72 X 44/12 + 0.03 + (19.38 – 16.524) x 0.23 + 19.38 x 0.77 = 18.24 kg dfg / kg gas (1.5 mark L ₁ = % heat loss due to dry flue gases	
	mdfg x cpfg x (T _g – T _a) = X 100 G.C.V. of gas	
	G.C.V. of gas = $\begin{array}{c} \text{Kcal / } \text{m}^3 & 9100 \\ \hline & = & \\ \text{Density} & 0.7 \end{array}$ = 13000 Kcal/kg	

18.24 x 0.297 x (190 - 30) ------ X 100 = 6.67 % = 13000 (2 marks) L_2 = Loss due to presence of hydrogen forming water vapor $9H [584 + Cps x (T_g - T_a)]$ ----- X 100 = G.C.V. 9 x 0.236 [584 + 0.45 (190 - 30) = ----- x 100 13000 L₂ = 10.72 % (2 marks) Radiation and unaccounted losses in the boiler (given) = 1.45%Total losses = 6.67 + 10.72 + 1.45 = 18.84%Efficiency of natural gas fired boiler on = 100 - 18.84 = 81.16%G.C.V. by indicated method (1.5 marks) Steam to fuel ratio in kg steam/m³ gas= $0.8116 \times 9100 / (665 - 95) =$ 12.96 (2 marks) Amount of gas required for generation = $(15,000 / 12.96) \times 0.7$ 15 tonne/hr of steam = 810.19 kg/hour ...(1.5 Marks) CO₂ emission with natural gas firing $= 0.72 \times 3.67 \times 810.19$ (1 kg carbon gives 44/12 i.e. 3.67 kg CO₂) = 2140.77 kg/hr (1.5 marks) Furnace oil required for 15TPH steam = $(15,000 \times 570) / (0.83 \times 10^{-5})$ 10,300) ... (1.5 Marks) = 1000.12 kg/hr CO₂ emission with furnace oil firing $= 0.86 \times 3.67 \times 1000.12$ = 3156.58 kg/hr ...(1.5 Marks)

		Net reduction in CO ₂ emission with natural gas compared to furnace oil firing	= 3156.58 – 2140.77 = 1015.81 kg/hr (1 mark)
		Annual reduction in CO ₂ for 8000 h operation	rs. = 1015.81 x 8000 = 8126.140 Tonnes
			(1 mark)
	N-2	A gas engine-based trigeneration plant operates	in two modes:
		 Power and heating mode (10 hours per day) : P_{el}= 650 kW of electricity and 325 kg/h of steam steam EUF_{heat} = 0.85 	with enthalpy addition of 530 kcal/kg of
• Power and cooling mode (14 hours per day) : $P_{el} = 650 \text{ kW}$ of electricity and chilling load of 250 TR for absorption chillers $EUF_{cool} = 0.73$		0 TR for absorption chillers	
		 Calorific value of natural gas = 8500 kcal/Sm³ Average operating days/year = 330 Alternator efficiency = 0.95 The energy loss in the flue gas and that in the output and other losses are negligible 	e cooling water is same as engine power
		Answer the following:	
		 What is the average plant energy utilization Calculate the useful energy produced daily b Determine the daily plant natural gas required utilization factor The plant proposes to install a 60 TR hot wat a COP of 0.5 using waste heat from jacket consupporting calculations. 	factor y the trigeneration plant in Gcal ements based on average energy ter driven Vapour absorption chiller with poling water. Check if it is feasible with

	1			
Plant average energy utilization factor	=	(0.85 x 10 + 0.73 x 14)/24		
	=	0.78		
·		(3 marks		
2) The useful energy produced daily by the trigeneration plant in Gcal				
P _{Ele}	=	650 KW		
Q _{Heat}	=	325 x 530		
	=	172250 kcal/h		
Q _{Cool}	=	250 x 3024		
	=	756000 kcal/h		
		(2 marks		
Total daily useful energy production		(650 x 860 x 24 +172250 x 10 +		
of the plant	=	756000 x 14)		
		13416000 + 1722500 +		
	=	10584000		
The useful energy produced daily	=	25722500 kcal/day (2 Marks		
The useful energy produced in		25722500x 330 / 10 ⁶		
Gcal/year	=			
	=	8488.43 Gcal		
		(2 marks		
3)The daily plant natural gas requirements				
Input heat	=	25722500/ 0.78		
•		000775041		
	=	32977564 kcal/day (2 Marks)		
Natural gas requirements	=	32977564 / 8500		
	+_	3879.7 Sm³/day		
		(2 marks		
4) Justification for a 60 TR Vapour Absorption chiller from waste heat				
Heat required for operating 60 TR at	=	60 x 3024/0.5		
	_	362880 Kcal/hr (2 Marks)		
COP of 0.5	_			
COP of 0.5				
COP of 0.5		650 /0 95		

	Heat in the jacket cooling water	=	684.2 x 860 588412 kcal/hr (2 Marks)
	Since the heat requirement (362880 K available (588412 kcal/hr) the proposa	cal/ Il is	/hr) is much less than heat feasible (1 mark)
N-3	Hot effluent having a flow rate of 56789 a heat exchanger for cooling. The o exchanger is 38 °C. Air having a flo exchanger at a temperature of 30°C a fan is 30 KW. The plant works for 16 ho Now plant has decided to replace air c) Kg utle w r and ours oole	g/hr at 85 ^o C from the process is sent to et temperature of effluent in the heat rate of 370057 Kg/hr enters the heat leaves at 60 ^o C. Power drawn by the s a day for 300 days per year. ed heat exchanger with a water cooled
	counter current Heat Exchanger.		
	Given that Pump Efficiency = 80%, M water cooled heat exchanger is 0.4 wa in plate heat exchanger is 1.2 kg/cm ² exchanger is 22300 Kcal/m ² / ^O C.	loto ater , O	or efficiency = 90 %, Effectiveness of is available at 25 ^o C & Pressure drop over all heat transfer coefficient of heat
	 Calculate the savings due to replace Calculate the heat transfer area of here 	mer eat	nt by water cooled heat exchanger exchanger.
Ans	Heat Duty Heat duty in hot fluid = M x Cp _h x (= 56789 x 1 = 2669083 K	(T _i - x (8 Ical	• T _o) 35 – 38) / Kg (2 marks)
	$= 370057 \times 0$ $= 2664410 \text{ K}$	(10).24 (cal	(-1) x (60 - 30) / Kg
	In heat exchanger, Heat duty in ho	t flu	(2 marks) iid = Heat duty in cold Air
	Effectiveness of water cooled heat	exc	changer = 0.4
	<u>Cold Water outlet –</u> Effectiveness = Hot effluent inlet –	<u>Co</u> Col	<u>Id water inlet</u> Id water inlet
	Cold Water Outlet = (0.4 x (85 -	- 25	5)) + 25

= 49 °C (2.5 marks)
Mass flow rate of cooling water (M) = <u>Heat duty in hot fluid</u> Cpx(Cold Water outlet – Cold water inlet)
= <u>2669083</u> 1 x (49 – 25) x 1000
= 111.21 m ³ /Hr (2.5 marks)
Pressure drop in Plate Heat exchanger = 12 m
Hydraulic Power Requirement for one Cooling Water Pump:
$= \frac{(\text{Flow in } \text{m}^3/\text{Hr x Head in } \text{m x Density in Kg/m}^3 \text{ x g in } \text{m/s}^2)}{(1000 \text{ x } 3600)}$
$= \frac{(111.21 \times 12 \times 1000 \times 9.81)}{(1000 \times 3600)}$ = 3.64 KW
(3 marks)
Pump Power Requirement at 80% pump efficiency = <u>3.64 KW</u> 0.8 = 4.55 KW (1 mark)
Motor Input Power Required at 90% Efficiency = $\frac{4.55}{0.9}$ = 5.06 KW
Thus savings = Power consumption by fans – Water Pumping Power = $30 - 5.06$ = 24.94KW
Annual Saving in kWh = 24.94 KW x 16 Hrs x 300 Days = 119712 kWh/Annum
(2 marks)

	Calculations for LMTD for Proposed HEx:
	I MTD for counter current flow in HEx
	$= \{(85-49) - (38-25)\} / \ln \{(85-49) / (38-25)\}$
	= 22.5 Deg C
	(2 marks)
	Considering overall heat transfer coefficient (U) = $22300 \text{ kW/m}^{2/0}\text{C}$
	Heat transfer Area - O
	$\square eat transfer Area = \underline{Q}$
	(U x ∆11m)
	= <u>2669083</u>
	(22300 x 22.5)
	$= 5.32 \text{ m}^2$ (Sav 6 m ²)
	(2 marks)
N_4	Answer ANY ONE OF THE FOLLOWING among A. B. C and D
11-4	Answer ANT ONE OF THE FOLLOWING among A, B, C and D
• • •	
A)	A steam power plant consisting of high pressure Turbine(HP Turbine) and low
	pressure Turbine(LP Turbine) is operating on Reheat cycle(schematic of power
	plant is represented below). Steam from Boiler at a pressure of 150 bar(a) and a
	temperature of 550°C expands through the HP Turbine. The exhaust steam from
	HP Turbing is repeated in a Poheater at a constant pressure of 40 bar (a) to
	FIF Turbine is remeated in a Remeater at a constant pressure of 40 bar (a) to
	550°C and then expanded through LP Turbine. The exhaust steam from LP
	Turbine is condensed in a condenser at a pressure of 0.1 bar (a). The isentropic
	efficiency of HP Turbine and LP Turbine is same and is 0.9. Generator efficiency
	is 95%
L	

Ans	 (a) Power developed by the Generator: Turbine output x Generator efficiency(1) Turbine out put = Q1 (H1 – h2) + Q2(H3 – h4)/860 MW (2) Where, Q1=main steam flow rate =228 TPH H1=main steam enthalpy=3450 KJ/Kg h2=actual enthalpy at HP Turbine outlet= ?=cold reheat enthalpy Q2=steam flow through reheater=228TPH H3=enthalpy of hot reheat steam=3560 KJ/kg h4= actual enthalpy of LP turbine exhaust steam=? (1 mark)
	HP Turbine isentropic efficiency= Actual enthalpy drop/isentropic enthalpy drop 0.9= (H1- h2)/(H1-h2is), h2is=isentropic enthalpy of cold reheat steam = 3050
	0.9= (3450 –h2)/(3450—3050) h2= 3090KJ/kg (3 marks)
	LP Turbine isentropic efficiency= (H3—h4)/(H3—h4is), h4is=isentropic enthalpy of LP Turbine Exhaust steam=2300KJ/kg 0.9=(3560-h4)/(3560—2300) h4= 2426 KJ/kg (3 marks)
	Substituting the values in equation-2, we get
	Turbine output = 228(3450—3090) + 228(3560—2426)/860 =75.73MW Generator output= 75.73 x 0.95= 71.5 MW (3 marks)
	(b) Turbine heat rate=Q1 (H1—hfw) +Q2(H3—h2)/Generator output =KJ/kwhr
	hfw=enthalpy of feed water=990.3KJ/kg Substituting the values in the above equation-3, we get
	Turbine heat rate=228 (3450—990.3) + 228(3560—3090)/71.5 =9342 KJ/kWhr
	(C) Turbine cycle efficiency= 860/Turbine heat rate =860/9342=38.5% (2 marks)
	(d)Dryness fraction of steam at 0.1 bar(a) and 45.8C

	Actual enthalpy of LP Exhaust steam=	enthalpy of water + dryness fraction of		
	steam x L.H of vaporisation of steam			
	2426 = 191.9+ dryness fraction of steam x(2584.9—191.9)			
	Dryness fraction of steam= 93 35%			
		(3 marks)		
	(e) Specific steam consumption of cycl	= -228/71 = -2.10 tops/M/V br		
		=226/71.5=5.19 tons/ww fil		
		Or		
B)	Stenter operations in a textile process	were significantly improved to reduce inlet		
	moisture from 60% to 55% in wet cloth wh	nile maintaining the same outlet moisture of 7%		
	in the dried cloth. The Stenter was open	rated at 80 meters/min in both the cases. The		
	fuel oil fired thermic fluid heater from 80%	to 82%, which was supplying heat energy to		
	the dryer. The other data and particulars a	re		
	Latent best of water evenerated - F	40/2001/20		
	Inlet temperature of wet cloth = 28°	40kca/kg, C.		
	Outlet temperature of dried cloth = 8	30°C,		
	Dryer efficiency = 50% ,			
	Yearly operation of the stenter = 700	00 hours		
	a) Find out the % reduction in Dryer h	eat load ,		
	b) Estimate the overall yearly fuels	savings in tonnes by reducing moisture and		
	efficiency improvement compared	to the initial case. Assume only energy for		
		loau		
Ans	Initial case: inlet moisture, 60%, outlet n	noisture 7%, dryer efficiency 50%,thermic fluid		
	heater efficiency 80%			
	Output of stenter	= 80 mts/min x 0.1 x 60		
		= 480 Kg/hr (1 Mark)		
	Moisture in the dried output eleth	- 70/		
		= 770		
	Wt. of bone- dry cloth,W	= 480 X (1 – 0.07)		
		= 446.4 Kg/hr (4 morts)		
		(1 mark)		
	m _o = moisture in outlet cloth	= (480 - 446.4) /446.4		
		= 0.0753 Kg/Kg bone dry cloth (1 Mark)		

Inlet moisture = 60% Wt of inlet cloth = 446.4 / (1 - 0.60) = 1116.00 Kg./hr.= moisture in inlet cloth mi $= ((60/40) \times 446.4)/446.4 = 1.5 \text{ Kg./Kg. bone- dry}$ cloth ---- (1 mark) 28°C Inlet temperature of cloth T_{in} = Final temperature of clothTout = 80°C Heat load on the dryer $w x (m_i - m_o) X [(T_{out} - T_{in}) + 540] Kcal/hr.$ = . . Heat load on the dryer 446.4 (1.5 – 0.0753) X [(80 – 28) + 540] = 3,76,503.76 Kcal/hr = ---- (2.5 marks) Efficiency of the dryer is 50%, Efficiency of the thermic fluid heater is 80% Fuel oil consumption in the thermic fluid heater =3,76503.76/(0.5x 0.8x10300) = 91.40 kg/hr ---- (2.5 marks) Improve case: inlet moisture, 55%, outlet moisture 7%, dryer efficiency 50%, thermic fluid heater efficiency 82% Inlet moisture = 55% Wt of inlet cloth = 446.4 / (1 - 0.55) = 992.00 Kg./hr. (1 Mark) = moisture in inlet cloth mi $= ((55/45) \times 446.4)) / 446.4$ = 1.22 Kg./Kg. bone-dry cloth ---- (1 mark) Heat load on the dryer $w x (m_i - m_o) X [(T_{out} - T_{in}) + 540] Kcal/hr.$ = Heat load on the dryer 446.4 (1.22 – 0.0753) X [(80 – 28) + 540] = 3,02508.00 Kcal/hr = ---- (2.5 marks) Efficiency of the dryer is 50%, Efficiency of the thermic fluid heater is 82% Fuel oil consumption in the thermic fluid heater in impoved case $= 3.02.508.00/(0.5 \times 0.82 \times 10300)$

		= 71.63 kg/hr	(2.5 Marks)				
	% reduction in driver lead due to reduction inlet mainture						
	(3.76,504-3.02,508) x 100						
		=					
		(3,76,504)					
			(2 marks)				
	Saving in fuel oil consumptic	on in improved case					
	3	= 91.4 - 71.63					
		= 19.77 kg/hr					
	Yearly fuel oil savings	=19.77x7000 x1/1000					
		=138.390 tonnes					
			(2 marks)				
		or					
C)	In a steel industry, the composition of blast furnace gas by volume is as follows						
	CO – 27%, H ₂ - 2%, CO ₂ – 11%, N ₂ - 60%.						
	i) Calculate the stoichiometric	c air for combustion					
	ii) Calculate the gross calorific	c value of gas in kcal/m ³					
	iii) Calculate the net calorific value of gas in kcal/Nm ³						
	iv) If 3,00,000 Nm ³ /hr of gas	is available and is to be co-fired in	a coal fired boiler.				
	How much coal it can repla	ace if the GCV of coal is 4300 kcal/kg.					
Ans	(i) Stoichiometric air for combustion	<u>on</u> :					
	$C \pm O_{0} = 0.02 \pm 8.084 \text{ kcal/kg}$	Carbon					
	$C + O_2 - C_2 + 0,004$ Kcal/kg Calbon						
	$20 \pm 0_2 = 200 \pm 2,450$ KGal/Kg Galboll						
	$11_2 + 7_2O_2 = 11_2O_2 + 20,322$ KG						
	$CO + \frac{1}{2}O_2CO_2 + 5,054$ KCa	likg Carbon					
			(2 marks)				
	1 mole CO + 0.5 mole O_2 1 r	mole CO_2 + 5654 kCal/kg					
	For 27% CO, O_2 required is (0.5/1	1) x 0.27 = 0.135 O ₂					
			(2 marks)				
	1 mole H ₂ + 0.5 mole O ₂ 1 m	nole H_2O + 28922 Kcal/kg	(2 marks)				

				(2 marks)	
	Total stoichiometric oxygen required = $0.135 + 0.01 = 0.145 O_2$				
	Stoichiometric air required = $\frac{100}{21} \times 0.145 = 0.690 \text{ m}^3 \text{ air / m}^3 \text{ blast furnace gas}$				
				(3 marks)	
	(ii) <u>Gros</u>	ss calorific value of gas:			
	1 kg mo	ble of any gas at STP occup	pies 22.4 m ³ of volume.	(1 mark)	
$((5654 \text{ x } 12) / 22.4) \text{ x } 0.27 = 817,83 \text{ kCal/m}^3$ (molecular weight of				= 12) (2 marks)	
	((28922	2 x 2) / 22.4) x 0.02 = 51.64	kCal/m ³ (molecular weight of Hydroge	n = 2) (2 marks)	
	Gross (Calorific Value = 817.83 + 5	1.64 = 869.5 kcal/m ³	(1 mark)	
	(iii) Replacement of coal by blast furnace gas:				
	Gross calorific value of coal = 4300 kcal/kg (given) Blast furnace gas available = 3,00,000 m ³ /hr (given)				
	Heat co	ntent available from gas	= 3,00,000 m ³ /hr x 869.5 kcal/m ³ = 2608.5 x 10 ⁵ kcal/hr	(2.5 marks)	
	If X is the coal quantity to be replaced, then				
	4300 kcal/kg x X = 2608.5 x 10^5 kcal/hr				
	X = 60663 kg/hr of coal can be replaced by gas of 3,00,000 m ³ /hr.				
				(2.5 marks)	
			or		
D)	As an energy auditor, auditing a cement plant, it is essential to assess the specific coal consumption for the production of the clinker. With the following data available, calculate the specific coal consumption (kgCoal/ KgClinker).				
	S.No	Parameter		Value	
	1.	Reference temperature		20 ^o c	

2.	Barometric pressure	10329 mmWC
3.	Density of the Pre-heater at NTP	1.436kg/m3
4.	Density of Air	1.293Kg/m3
5.	Pitot Tube Constant	0.85
6.	Clinker production rate	4127 TPD
7.	Static Pressure of the Pre-heater gas in the pre-heater duct	640mmWC
8.	Dynamic pressure of the pre-heater gas in the duct	15.8mmWC
9.	Temperature of the Pre-heater gas	320°C
10.	Specific heat of the Pre-heater gas	0.247kCal/kg
11.	Area of the Pre-heater Duct	8.5 m2
12.	Temperature of the exit clinker	128 ^o C
13.	Specific heat of the clinker	0.193 kCal/kg °C
14.	Static Pressure of the Cooler Exhaust gas in the duct	42mmWC
15.	Dynamic pressure of the Cooler Exhaust gas in the duct	15.5mmWC
16.	Temperature of the Cooler Exhaust gas gas	290
17.	Specific heat of the Cooler Exhaust gas	0.247kCal/kg
18.	Area of the Cooler exhaust duct	7.1m2
19.	Heat of Formation of Clinker	405 Kcal/Kg _{Clinker}
20.	All other heat loss except heat loss through Pre-heater gas, exiting clinker and cooler exhaust gases	84.3 Kcal/Kg _{Clinker}
21.	All heat inputs except heat due to Combustion of fuel (Coal)	29 Kcal/Kg _{Clin}
22.	GCV of the Coal	6200Kcal/Kg

Ans	Solution: Heat Lost in the along with the Exiting pre-heater gases:	
	$Q_{PH Gas} = m_{phgas} \times Cp_{phgas} \times (t_{ephgas}-t_r)$ $m_{phgas} = V_{phgas} X \rho_{Phgas}$	
	$V_{phgas} = v_{ph gas} X A$	
	Corrected density of the pre-heater gas: $\rho_{\text{Phgas}} = 1.436 \times \frac{10329 - 640}{10334} \times \frac{273}{273 + 320}$	
	$= 0.6198 \text{ kg/ m}^3$	(1 Mark)
	Velocity (v) = $P_t \times \sqrt{(2g(\Delta P_{dynamic})_{avg} / \rho_{Phgas})}$ m/sec	
	$= 0.85 \times \frac{\sqrt{2 \times 9.81 \times 15.8}}{\sqrt{0.6198}} \text{ m/sec}$	
	= 19.0 m/sec	(2 Marks)
	$V_{PH gas} = 19.0 \text{m}^3/\text{s X 8.5 m}^2$ = 161.5 m ³ /sec	
	= 5,81,400 m3/hr	(1 Mark)
	$M_{ph gas} = 581400 \text{ m}^3/\text{hr X } 0.6198 \text{ kg/m}^3$	(1 Mostr)
	=3,00,331/72 Kg/III	(1 WIAIK)
	$m_{phgas} = 3,60,351 \text{ kg/hr} / 1,71,958 \text{ kg/hr} = 2.095 \text{Kg}_{ph} \text{ gas} / \text{Kg}_{clinker}$	(1 Mark)
	$Q_{PH Gas} = 2.095 X 0.247 X (320 - 20) = 155.24 K cal/K g_{Clinker}$	(1 Mark)
	Heat Lost in the along with the Exiting Hot Clinker:	
	$Q_{\text{Hot clinker}} = m_{\text{clinker}} \times Cp_{\text{clinker}} \times (t_{\text{clinker}} t_{\text{r}})$ = 1 x 0.193 x (128 - 20),	
	$= 20.84 \text{ kCal/kg}_{Clinker}$	
		(2 marks)
	Heat Lost in the along with the Exiting Cooler Exhaust gases:	
	$ Q_{\text{Cooler Exhaust Gas}} = m_{\text{Cooler Exhaust Gas}} \times Cp_{\text{Cooler Exhaust Gas}} \times (t_{\text{Cooler Exhaust Gas}})$	_{Gas} -t _r)

= $V_{\text{Cooler Exhaust Gas}} X \rho_{\text{Cooler Exhaust Gas}}$ m_{Cooler Exhaust Gas} V_{Cooler Exhaust Gas} $= v_{\text{Cooler Exhaust Gas}} X A$ Corrected density of the pre-heater gas: $=1.293\times\frac{10329-42}{10334}\times\frac{273}{273+290}$ ho Cooler Exhaust gas (1 Mark) $= 0.624 \text{ kg/ m}^3$ Velocity (v) = $P_t \times \sqrt{(2g(\Delta P_{dynamic})_{avg} / \rho_{Cooler Exhausts})}$ m/sec $0.85 \times \frac{\sqrt{2 \times 9.81 \times 15.5}}{\sqrt{0.624}}$ m/sec 18.76 m/sec (2 Marks) = $V_{coolerExhaustgas} = 18.76 \text{m/s} \text{ X } 7.1 \text{ m}^2$ $= 133.196 \text{ m}^3/\text{sec}$ = 4,79,505m3/hr (1 Mark) M_{coolerExhaustgas} = 479505 m3/hr X 0.624 kg/m3 =2,99,211 Kg/hr (1 Mark) mcoolerExhaustgas = 2,99,211 kg/hr / 1,71,958 kg/hr =1.74 KgcoolerExhaustgas/ Kg clinker (1 Mark) $Q_{\text{coolerExhaustgas}} = 1.74 \text{ X } 0.244 \text{ X } (290 - 20)$ = 114.63Kcal/Kg_{Clinker} (1 Mark) Heat Input = Heat output Heat Input_{coal} + Heat input_{others} = Heat_{Clikerfrmtn}+ Heat_{PH gas} + Heat_{Cliker}+ Heat_{cooler exhaust gas} + Heat_{others} $GCV_{coal}X m_{coal} + 29 = 405 + 155.24 + 20.84 + 114.63 + 84.3$ = 751 / 6200mcoal = 0.121 Kgcoal/Kgclinker ---- (4 marks)

----- End of Section - III ------

REGULAR