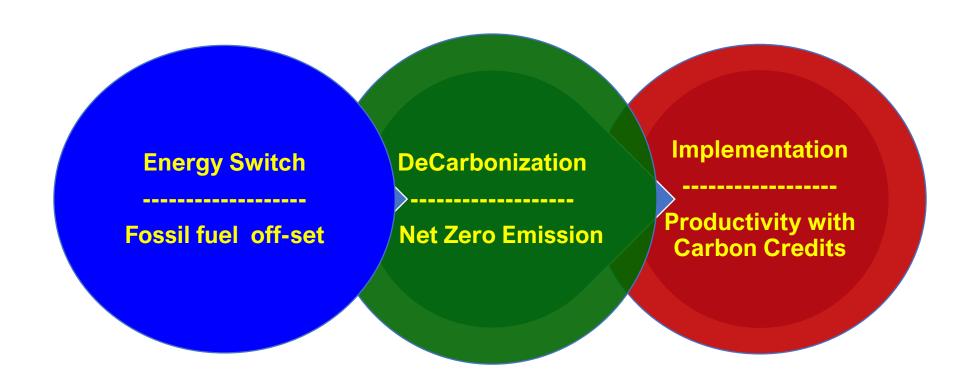
Best Practices in HP Cogeneration in Pulp & Paper Sector for Exceeding Energy & DeCarbonization Targets


Dr T.G. Sundara Raman
Vice-President- EnERG TEkH &
Consultant – Energy & DeCarbonization-OPIL

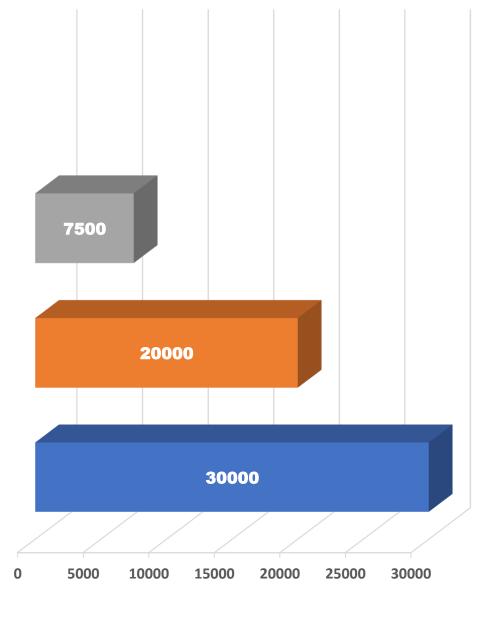
Best Practices in Energy Efficiency in Pulp & Paper Sector-A Path for DeCarbonization

BEE- FCDO Workshop
Amritsar

13th Feb. 2024

EDI – APPROACH TO DC TARGET EXCEEDANCE

Cross – Sector Energy
Efficiency &
DeCarbonization
Scheme Exchange


ENERGY SECTORS - PAT

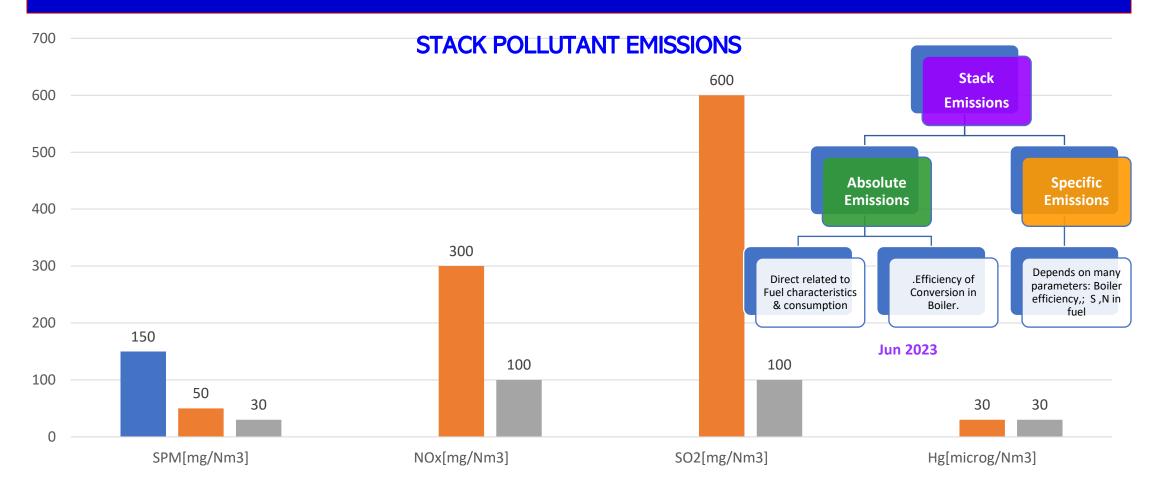
- **▶ A.** Thermal Power plants
- Iron & Steel
- C. Cement ←
- D. Fertilizer
- Aluminium
- F. Pulp & Paper _____
- G. Textile
- H. Chlor-Alkali
- Petroleum Refinery —
- Sugar
- Chemicals, Zn, Cu,glass, tyre, dairy, ceramic, foundry etc
- Independent Captive Power Plants

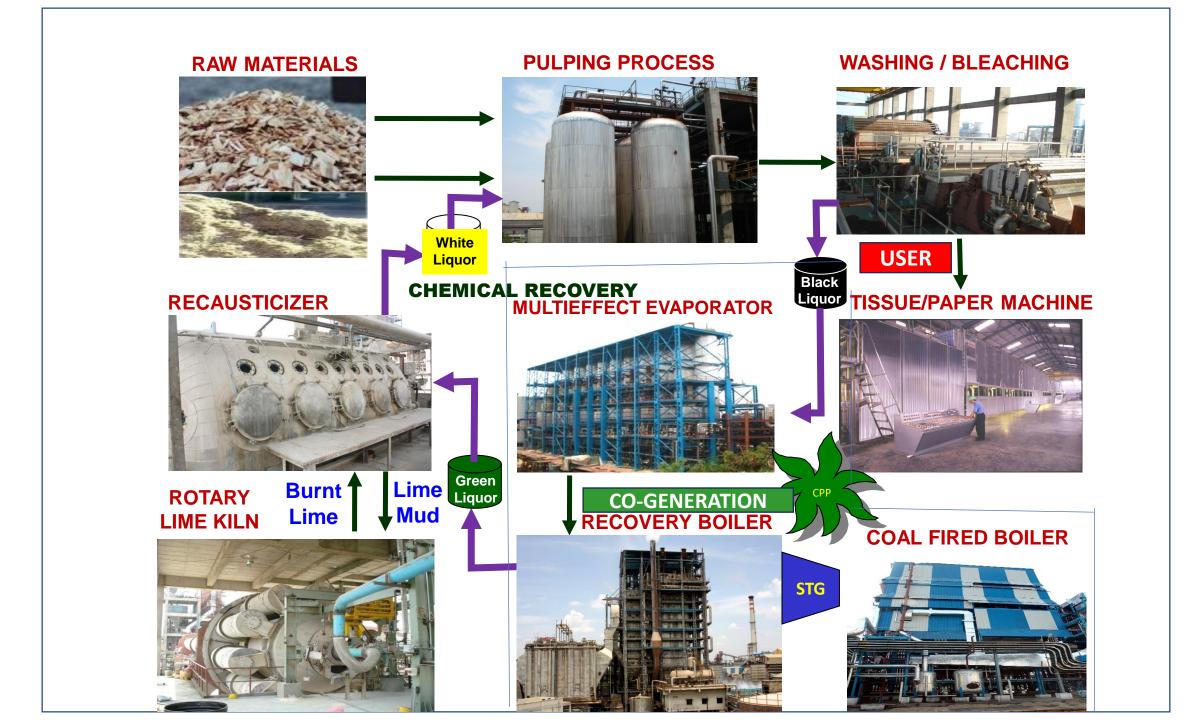
EMISSION REDUCTION PROJECTION by 2030 [Pulp & Paper sector] -INDIA -PWC Report 2022

	2019-20		2030-31 [Projection]		CO ₂ e Savings/yr
	Emission Intensity	Production Annual	Emission Intensity	Production Annual	
	Kg CO2e/t	Mil tonnes	kgCO2e/t	Mil. tonnes	Mil.tonnes
Value	2170		1010		<u>21</u>
<u>Projection</u>		18 .0		34.22	<u>39.7</u>
Production Increase			90%		
Emission Reduction/yr			39.7 Mil.tonnes		
Emission Intensity Reduction			<u>54 %</u>		

PAT -QUAL. LIMITS: ENERGY CONSUMPTION [MTOE /YR]

Carbon Credits Notification – MoP & MoEF & CC


Ministry of Power – Notification [June 2023] CARBON CREDIT TRADING SCHEME -2023


- The Notification empowers Central government to specify Carbon credit trading scheme.
- Carbon credit implies a tradeable permit to produce a specified amount of carbon emissions.
- Central government or any authorised agency may issue Carbon credit certificates to entities registered under and compliant with the scheme.
- The entities will be entitled to purchase or sell the certificate. Any other person may also purchase a Carbon credit certificate on a voluntary basis.

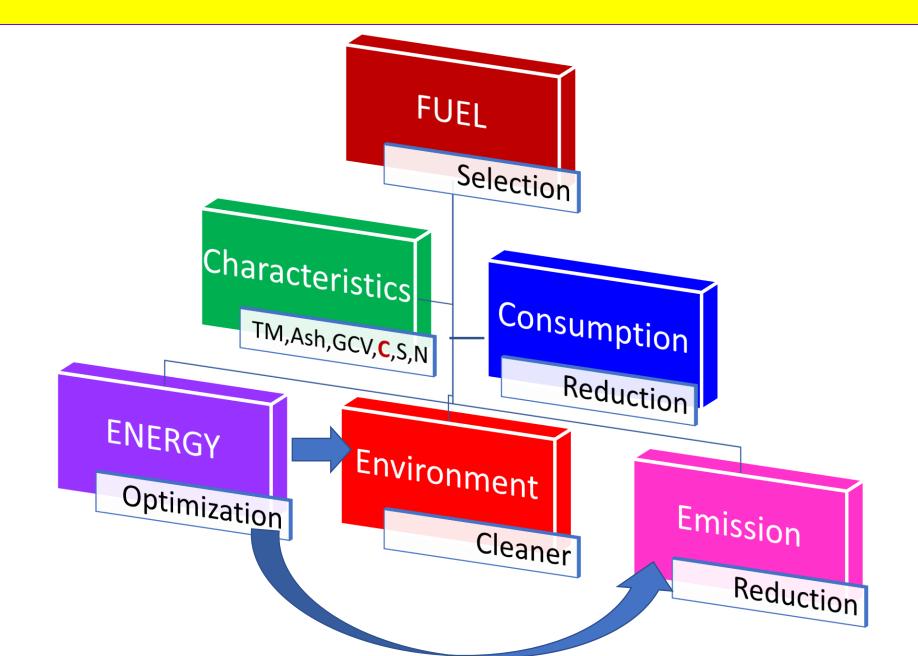
MoEF & CC LIFE GREEN CREDITS PROGRAMME IMPLEMENTATION RULES 2023

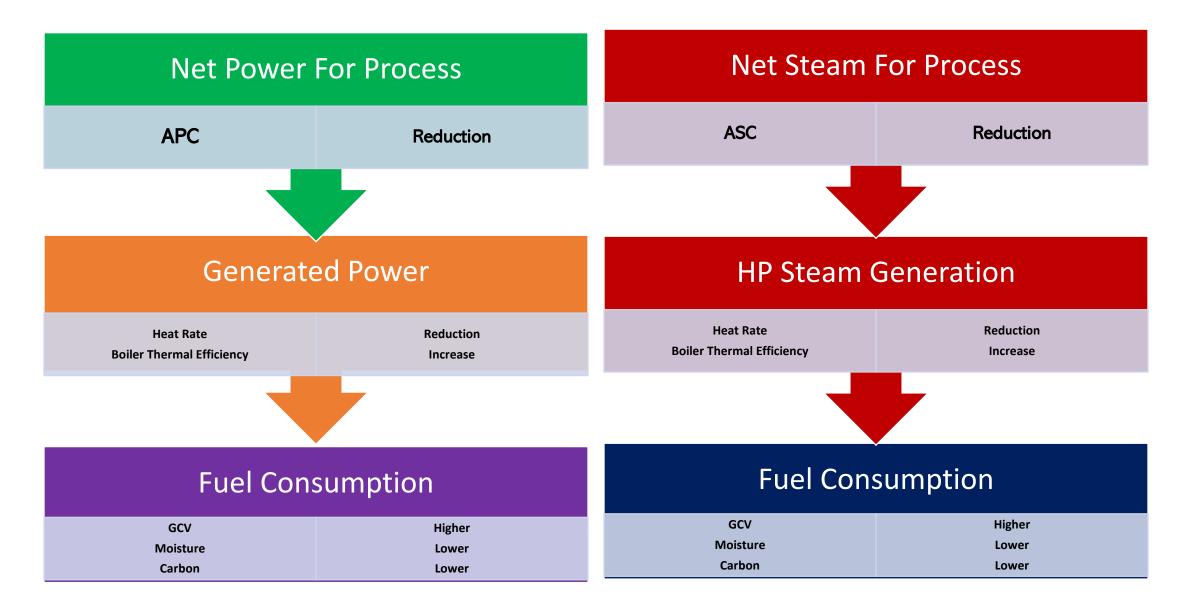
	Activity	Requirement
1	Tree Plantation	Activities for Green Cover Increase
2	Water	Water Conservation, harvesting, conservation, use & savings
3	Sustainable Agriculture	Promote Natural Agricultural Practices & Land Restoration
4	Waste Management	Improved practices (incl. Collection, segregation & treatment
5	Air Pollution Reduction	Measures for Promotion for reducing Air pollutants & other Pollution Abatement activities
6	Mangrove Conservation & Restoration	Measures for Conservation & restoration
7	Ecomark	Encourage manufacturers to obtain Ecomark label for goods and services
8	Sustainable Building & Infrastructure	Encourage construction of Buildings and other infrastructure using sustainable technologies and materials.

Min. of Env.& Forests /Climate Change Gazette Notification Environment [Protection] Amendment Rules, 2018 [2003-2017] & LiFE [2023]

CPP – GROSS CYCLE EFFICIENCY HP Boiler Integrated with Steam Turbine & Generator

Boiler Thermal **#**


Turbine Efficiency


Generator Efficiency

GHR [kcal/kWh]= 86000 / Cycle Efficiency [%]
NHR= GHR/(100-APC%)/100

TOTAL PRODUCTIVITY OPTIMIZATION with 3 E's

TOTAL ENERGY OPTIMIZATION - HP COGEN UNIT

Orient Paper Mill - Amlai - ENERGY TRANSITION - Available Options - Implementation Mill-wide - March towards Net Zero Emission

Biomass &
Biogas offsetting
Coal in CFB &
RLK with EES

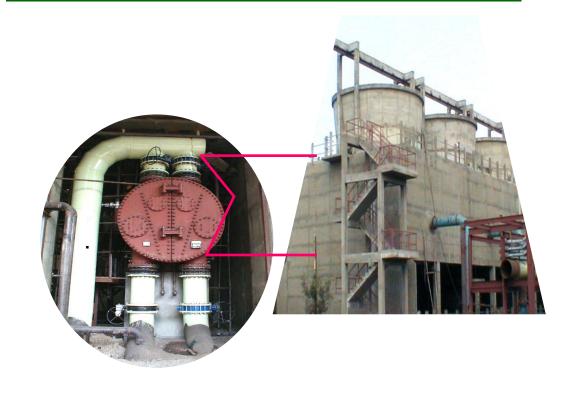
BLS in CRB HP Cogen – Net Green Energy Enhancement

ENERGY TRANSITION

HP STG Battery-Back Pressure & Extraction Condensing incl Optimization Automation

AFBC HP Boiler with High Steam Economy +Energy Efficiency

Circular Economy Waste Energy [Heat & Power] Recovery


Impact Maximum on Net Heat Rate of CPP

Boiler – Stack

Heat Losses: [18% to 25%]

Turbine -Cooling Tower
Heat Losses: [20% to 60%]

RECOMMENDATORY ADVISE FOR BEE'S KIND CONSIDERATION FOR PAT - DECARBONIZATION

- For Carbon Emission Reduction [CER] computation, it is standard practice is to go with that stipulated for Grid Emission factor for India
- As Grid Power in take comprises of mix of Net Power from TPS as also Renewable Power viz., Wind, Solar etc.], Carbon Emission factor [0.82 tCO2e] taken as default for computation is a low figure.
- Since Energy consumption reduction is off-setting Coal [as fired in Boilers within the plant premises], it is apt to go in for equivalent reduction in coal consumption/fired in Boilers.
- Hence for CER computation, it would be justified if one goes for equivalent coal consumption in-house, from wherein CER is computed.

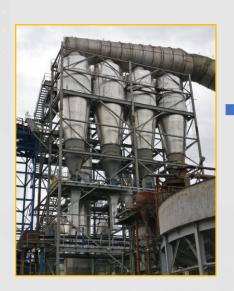
CARBON EMISSION FROM COAL-BASIS: <u>Ultimate analysis of Coal</u>

Functional Unit: 1 te Indigenous High ash Low GCV Coal [Illustration]

Parameter	Units	Case A	Case B
Coal fired in AFBC Boiler	t	1.0	1.0
Carbon in Coal	%	40	38
CO ₂ Produced	t	1.47	1.40
N ₂ O Produced [10- 20 ppm]	t	0.02-0.04	0.03
CH ₄	Traces	0	0
Total GHG generation from Boiler	t	1.5	1.43
HP Steam Generation	t	5	5
Gross Power Generation	MW	1.1	1.1
Aux. Power Consumption	MW	0.132	0.132
Net Power available	MW	0.968	0.968
CO2equiv. For unit Power avail for process [/MW]	tCO2e	1.54	1.47
EI –Grid Power Import [/MW]	tCO2e	0.	84

EMISSION REDUCTION IN OPM – KEY TO EXCEEDING DECARBONIZATION TARGETS

- Coal off-set through increasing proportion of Biofuel & [Biogas firing planned]
- Importance to lowered Carbon content in Coal selection
- AFBC Boiler Thermal efficiency enhancement
- Maximize Recovery Cogen [High Steam Economy] Green HP Steam
- Lower APC & ASC in CRB resulting in Maximized Net Green Steam & Power for Process


Stack flue gas Waste Heat Recovery

Biomass drying with boiler exhaust Flue Gas to stack. Reduction in Stack heat loss by 8 to 9 %. Steam Economy is enhanced by 8 to 9%.

Off-setting Coal consumption, thereby lowering Net Carbon **Emission**

HYBRID DRYER

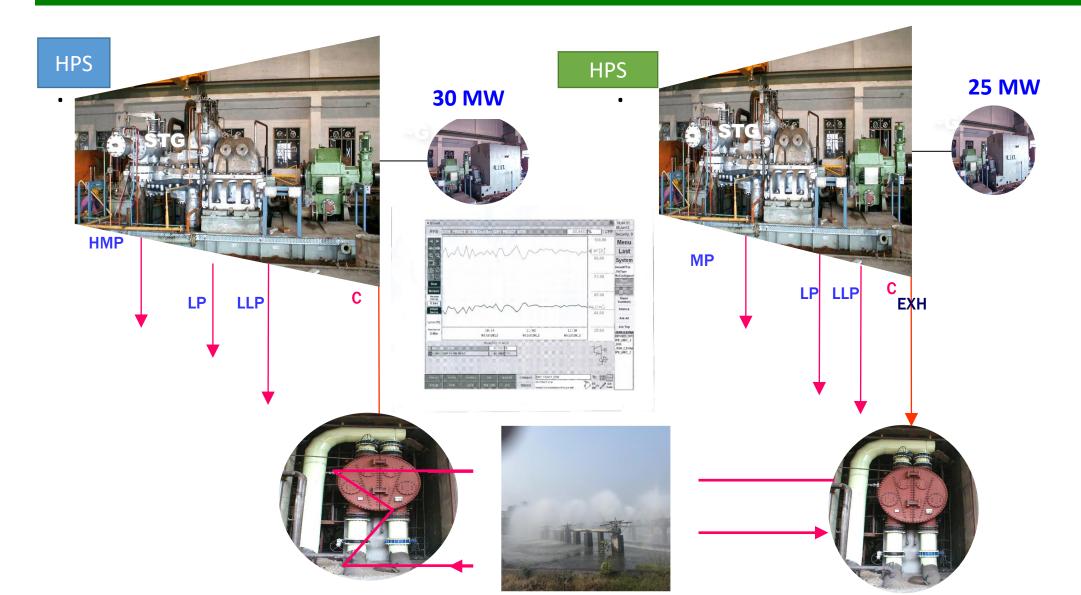
BIOMASS DRYING & FLUE GAS CLEANING

NHR/NER reduction: Leveraging Aux. Steam Gen/Consn

Process condensate polishing with HRU	Reduced DM water consumption and lowered Deaerator steam consumption
Higher Boiler feed water temperature[195°C & 140°C]	Increase in Steam economy & NHR reduction
Advanced Nanoinsulation coating of Main steam pipe connecting Boilers & turbines	Cogen Net Heat rate reduction & CER
Combustion intake luke warm air reducting in FD /PA fan advocated	LP steam consumption lowered
CPP Air Compressor	WHR & Lower Pressure reset+IOT 5.0

CCU-CARBON CAPTURE OF CO₂ IN BOILER FLUE GAS FOR USE IN PCC

CO₂ in Stack flue gas from AFBC Boiler captured & utilized for Carbonation in PCC


Net CER: 2500 tCO2e/annum

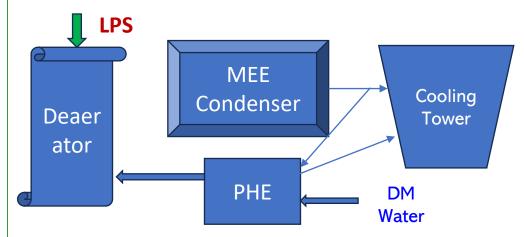
CER due to Value addition to Final Product

View of OPM - Onsite PCC Plant

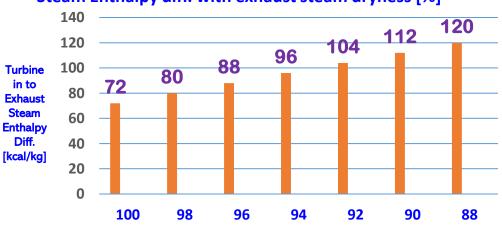
AFBC & CRB HP COGEN BATTERY Orient Paper Mills - Amlai

EMISSION REDUCTION IN OPM — KEY TO EXCEEDING DECARBONIZATION TARGETS

- 30MW STG- HP COGEN [Fossil fuel fired CPP- High Steam Economy with HP & LP heaters in place] & 25 MW STG -CR HP COGEN
- Energy efficient Multi- Extraction Condensing 30 MW STG
- LP & HP Heaters for increasing Overall Cycle efficiency & lowered Heat Rate
- Conversion of MEC to Extraction Back Pressure* 25 MW STG with increased inlet steaming conditions [56 to 63 ksca]
- Split condensing to single condensing exhaust steam lowering SSC /Unit Power
- APC significant reduction with one CW pump off & other New EE CWP* with lower rating
- PRDS HP steam flow avoidance*

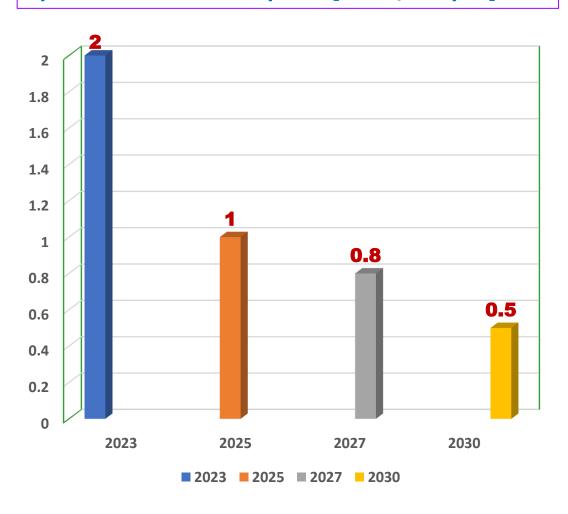

Innovative Unique & First of its kind Energy Conservation / DeCarbonization Schemes

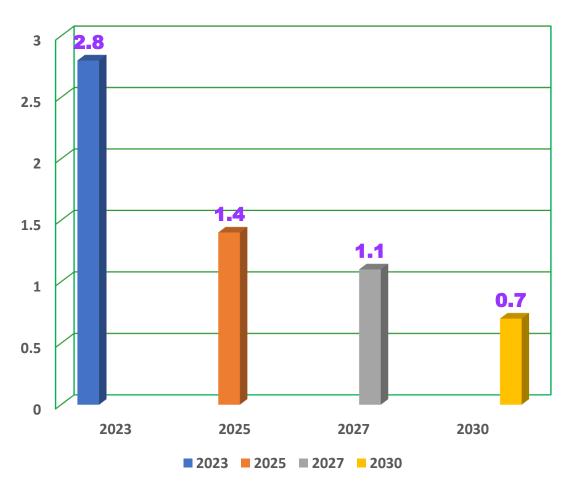
Utilizing part of MEE condenser Lukewarm cooling water return diverted for DM water heating [first of its kind] during summer as well as in winter-24x7


CW flow optimization through Condensers for NHR reduction

Scheme planned to link Turbine Exhaust steam Dryness with varying Cooling water flow [first of its kind] in ST Condenser of CPP

MP & LP steam flows apportioning optimization within 2 STGs





Path to Net Zero Emission —Giant Strides - OPM

Specific Coal Consumption [tCoal/tPaper]

Emission Intensity [tCO2e/tPaper]

INNOVATIVE ENERGY SAVING SCHEMES-SUMMARY

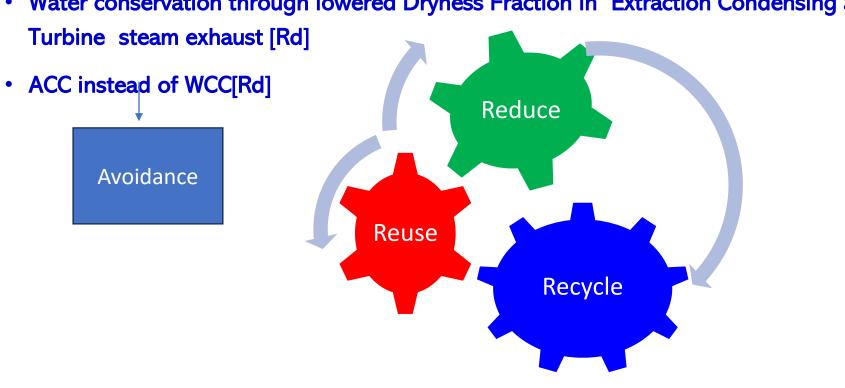
BOILER COMPLEX	TURBINE GENERATOR- CONDENSER STATION	APC & ASC reduction MISCELLANEOUS	ROTARY LIME KILN CENTRE	PAPER MACHINE STATION
Coal: [C/H]-LowerLower Stack flue gas temp.	 Genr.η Max. Genr. DM-C switch BIr–STG connect- R & C losses min. [Nano-insulation] 	 High η BFP & CWP High η Fans High η Air Compressor& WHR 	Biogas offset of FO	Air to Steam switch-Carrier [Partial/ Total]
 Fuel Drying: Flash Biomass drying with WESP – Stack Flue gas Solar Drying 	 TG design Improven ST Condent flow design optimizn Cder warm CW return divert for DM water/Proc water heating Dryness fraction of Cond steam[<0.9] lowering & sustain 	Steam consn redn Deaerator, Soot blower, SCAPH IPR]DS to ECT	 Heat Recovery from Flue gas/Product Lime mud Belt Dryer–Flue gas 	 DC Insulation Dry steam to DC Nip/ shoe Press for dewatering sheet Metal Belt Calendering
Renewable Energy Enhancement-	 Cooling water flow adjust with Condensing steam flow 	 Hot Water /LPS VAM for Power& Process Condensate 	 R & C losses min. [Nano-insulation coating of shell & 	 Latent heat in Waste steam vapour Heat

SC]

recovery

Biofuel & Biogas

& DF exh steam


VISION – Following footsteps of Fossil free Anaekoski Biproduct Mill-Chemical Recovery Boiler –Green Energy

High main steam pressure&temp	111 kscg &515 C
Exhaust flue gas tube condenser	Vent gases from Dissolving tank heat for preheating boiler feed water
Exhaust stack flue gas cooler	Feed water further heating
Pressurized Deaerator/FW tank	Higher operating FW temp.with pressure losses minimized from LP Steam extraction to FW tank
Feed water preheater and interheater – higher feed water temp cycle effy incr.	Feed water preheating between Economizer and Inter-heater using MP Extr. steam
High BLS Concentration: 83 %	High Steam Economy ; ER : 4.35
Vent and exhaust flue gas coolers	High combustion air temp; LP steam replaced for first stage heating

Energy Benefits integrated to Water Conservation & LiFE [MoEF&CC Rules-2023]

- Water conservation through CPU PHE in CPP [Rc]
- Cooling Tower Make-up Water reduction through use of heat in warm water return from surface condenser [Rd & Ru]

Water conservation through lowered Dryness Fraction in Extraction Condensing Steam

MoEF & CC Rules 2023 - LiFE

8 Sustainable Building & Infra-structure : Encourage construction of Buildings and

other infrastructure using sustainable technologies and materials.

SPRAY POND & CANAL

Recovery Boiler ESP - Stack

PENETRON-GREEN PRODUCT- Proposed

- Penetron application over the entire Spray Pond Concrete Basin and canal relates to Water saving —connected to MoEF/CC Rules 2023- LiFE [Carbon Credits]-as water seepage through the floor, pores, cracks etc. can be totally arrested.
- Crystalline technology of Penetron shall ensure permanent closure of leaking concrete towers & tanks as also protection of casing ,flue gas duct & to Stack.[CC]

Scope 3 Emissions -Accounting & Reporting Standard -SBT

1: Purchased Goods and Services Vendors	9: Downstream Transportation and Distribution	
2: Capital Goods	10: Processing of Sold Products	
3: Fuel- and Energy-Related Activities Not Included in Scope 1 or Scope 2	11: Use of Sold Products	
4: Upstream Transportation and Distribution	12: End-of-Life Treatment of Sold Products 13: Downstream Leased Assets	
5: Waste Generated in Operations		
6: Business Travel		
7: Employee Commuting	14: Franchises	
8: Upstream Leased Assets	15: Investments	

DECARBONIZATIONACCELERATING NET ZERO EMISSION: ADVISORY

- 1) Energy Efficiency with Innovative & Proven Schemes for Total Energy Solutions
- 2) Renewable Energy Mix Augmentation off-setting Fossil fuel.
- 3) Circular Economy: Waste to Valued Resource Conversion
- 4) Maximizing Waste to Thermal /Electrical Energy Conversion
- 5) SGR/SEC reduction per unit of Product.
- 6) Absolute Gaseous /Solid/liquid pollutants discharge reduction
- 7) Scope 3 Emission [CFP] lowering through Logistics optimization Raw Material & Fuel Sourcing, Vendor selection etc.
- 8) Digitalization –Automation & Controls +IIoT 5.0 Manufacturing
- 9) Carbon Capture & Utilization & Green Product Utilization
- 10) Water Conservation

Contact: Dr Ram; drramspb@gmail.com; M:+91 9025400519