ENERGY SAVING OPPORTUNITIES In CHLORE ALKALI SECTOR

SOM DERASHRI MD, AEA (BEE) **INTERNATIONAL TRAINER FOR** CEA (AEE, USA), CEM (AEE, USA), CMVP(EVO, USA) 🕰 SyGuru Innovators Pvt. Ltd., Vadodara **ISO 9001:2015 CERTIFIED**

info@syguruace.com, 9824079910

ENERGY SAVING OPPORTUNITIES IN CA

N O	PRESENT SYSTEM	PROPOSED SYSTEM	ENERGY SAVING
1	The 48% caustic lye from CEU at 90'C is being cooled to 50'C by cooling water & then stored in the tanks for feeding to Flaker & marketing tankers	Feed 48% lye at 90'C directly to Flaker to save cooling load & again heating by steam to be fed to Flaker.	 Cooling Water Energy used for reheating 48% Iye from 50-60'C storage to flaker Payback less than 1 year
2	The hot 48% lye from CEU is cooled by cooling water to 50'-60C & stored in tanks for marketing.	Generate hot DM water 90'C/80'C in present Ni PHE to cool the 48% lye to 81'C and use this hot water to generate chilled water in VAM 10/15'C which can be used in control room air conditioning. Further cool the 48% Lye from 81'C to 50-60'C by pre- heating the Boiler Feed Water.	 AC load from electricity to waste heat recovery VAM for control rooms BFW pre heat to save NG Reducing the cooling water load 3. Payback less than 1 years
3	The steam from Flaker is vented to open atmosphere at 270'C from the last stage.	To utilise the vent steam after saturating it by fogger/mist and compressing it in the steam screw compressor MVR to 3.5/10 barg for utilisation as process steam.	 NG saving as MVR generates steam with COP of > 7 (for 3.5 barg) Lesser Steam to be generated in boilers. Water Conservation as now there is no steam vent. Payback 1-2 years

ENERGY SAVING OPPORTUNITIES IN CA

Ν	PRESENT SYSTEM	PROPOSED SYSTEM	ENERGY SAVING
4	80 bar RLNG is reduced by PRV to 40 bar & then from 40 bar to 20 bar by PRV for use in Gas turbines.	Use NG expander to generate power by pressure reduction and also lower the cooling water temp going to Steam condenser and get better vacuum & more power.	 Additional power generation without burning NG. Higher power generation in condensing steam turbine due to lower condenser temperature Payback period ~ 2-3 years
5	NG boilers with flue gas exhausts at ~ 180'C is a waste of energy	Condensing Boilers to have flue gas exhausts at 55'C meeting all pollution norms as there is no Sulphur in the NG	 Saving NG Saving environment – no heat exhaust Payback period 1-2 years
6	Electricity board Tariff has TOU Night: 10 pm to 6 am : Rebate of Rs 0.43/kWh Peak Hours: 7 to 11 am & 6 pm to 10 pm: Penalty of Rs 0.85/kWh ED @ 15% For any load shift from Peak to Night gives benefit of (0.43+0.85).1.15 = Rs. 1.472/kWh	Exploit TOU and run higher CD during Night time & lower CD during Peak hrs to save Rs. 1.472/kWh without changing the daily output.	1. No energy saving but Energy cost reduction by TOU exploitation of nearly 10 lakhs/yr

ENERGY SAVING OPPORTUNITIES IN CA

Ν	PRESENT SYSTEM	PROPOSED SYSTEM	ENERGY SAVING
7	Big Cooling water pumps (> 100 kW) are being run in parallel without knowing their efficiency.	After checking the efficiency (baseline) we guarantee 5% improvement by coating at site with just 1 day after sand blasting, pre & final special anti-corrosive, ANTI- Erosive & hydrophobic USA based coating, impeller balancing & boxup	 Improved efficiency of pump Lower power consumption /higher flow per pump. Enhanced pump life Payback – 1-2 years
8	V belt transmission system in compressors/blowers	Sandwiched multi-layered flat belt with crowned pulleys save 5% power	 Reduced power consumption Reduced slip Increased belt life No black particle generation Payback period less than 1 yr
9	10 bar steam is fed to cell house at 1 bar thru PRV to maintain brine temperature being fed to cell.	Install Micro turbine to generate power by production	 Saves Power generated Payback period less than 1 yr

DIRECT FEEDING OF 48% LYE AT 90'C FROM CEU TO CCU WITHOUT COOLING FOR STORAGE

48% CSL flow to CCU = 10 m3/hr = 10*1.48 = 14.8 MT/Hr

Energy required to increase temp of 48% CSL from 60 C to 90 C in pre-heater

= 14.8*0.826*(90-60)*1000	
where 0.826 is specific heat	of 48 % CSL
Running hrs. per year	=7920 hr/yr
Saving in energy per year	= 366744 * 7920
	= 2904612480 Kcal/yr
Saving in steam in preheater	=366744/656
	= 559 kg/hr
Saving in steam per year = 5	59 * 7920
	= 4427763 Kg/yr
Saving in NG per year	=4427763 *0.082 (0.082 is ratio of NG to steam)
	= 363076 Nm3/Hr
Rate of NG = R	s.40/ Nm3

Saving in Rs. Per Year Investment in pipe line Payback period = 363076 * 40 = 14523040 Rs./Yr = Rs 1000000/-

= 9 months

GENERATE CHILLED WATER & PREHEAT BFW FROM 48% CSL @ 90'C

*Generate hot water thru existing Ni PHE & use it in VAM to Produce Chilled Water (10/15'C) *Raise hot water (BFW) temperature from 55'C to 80'C.

```
Calculation for a 300 TPD of 48% Lye is sold in the market
Lye volume at 48% = 300/0.48 = 625 m3/day or 26 m3/hr
Working days in a year = 350 days / year
Power rate = Rs 8.5 / kWh, Density of 48% Lye = 1.48 \text{ kg/m}, Cp = 0.826 \text{ kcal/kg'C}
                                                    = 26 x 1000 x1.48 x 0.826 x 10
Heat lost by 48% lye from 90'C to 80'C
                                                                 = 317844 kcal/hr
This is heat gained by the hot water flowing through the VAM 90/80 'C
Mass flow rate of hot water in VAM @ 95% HE eff. = 317844 \times 0.95/(1 \times 10)
                                                    = 30195.2 kg/hr say 30 m3/hr
Expected TR from 30 m3/hr 90/80 'C hot water VAM = 90 TR (7/12'C)
Expected cost of VAM @ Rs 33000 /TR = 30 lakhs
Cooling water needed for the VAM @ 1.27 m3/TR = 114 m3/hr for 6'C approach
Cooling Tower available (@6'C approach) = 26 \times 1000 \times 1.48 \times 0.826 \times (90-50) = 211 \text{ m}/hr
Heat gain by 80'C Lye to pre heat Boiler feed water from 55'C (e condensate) to 80'C
Heat in 48%Lye 80'C to 55 'C for storage & HE eff 95% = 317844 x (80-55) x 0.95/10
                                                                              = 754880 kcal/hr
The BFW available at 80'C = 754880 / (1x25) = 30 TPH
Load reduction in CT 211 - 114 = 97 \text{ m}3/\text{hr}
kW saved in CT = Pump + CT Fan (97/3600) x 40 x 9.81/(0.8x0.93) + 5 = 20 kW
kW in VAM = 5 \text{ kW}
Net kW saving @ 0.6 kW/TR for 90 TR = (90 \times 0.6 + 20.5) \times 24 \times 350 = 579600 \text{ kWh/yr}
Net Rs power saving@ Rs 8.5/kWh = 579600 x 8.5 = Rs. 49.27 lakhs/Yr
Coal Saved by BFW heating/yr = (Rs/kg 6/(6000 kcal/kg*0.9 (eff)) x 754880 x 24 x 350 = Rs 70.45 lakh/yr
```

Total Saving in VAM + BFW Heating in Rs = 120 Lakhs/yr Investment in VAM + PHE + pump & Piping insulations etc. = 30 + 20 + 40 = 90 Lakhs Payback Period = 9 Months

Mechanical Vapour Recompression(MVR)

Features and Benefits:

- Certified 100% droplet-free steam
 - Peace of mind for your products and processes
- Variable speed motor
 - o Efficiency
 - \circ $\;$ No energy losses with varying flow profiles
- Integrated de-superheating converting almost all compressor energy into extra steam
- Improved element design with minimal rotor backlash
 - o Improved efficiency lower running costs
- Complete installation with all connecting pipes
 - o Easy on-site installation
- Low-noise operation
 - \circ $\;$ High flexibility in noise-sensitive installations
- IP23-IP55 TEFC motor
 - Excellent dust protection
- Advanced electronic control
 - \circ Connection
 - \circ $\;$ Compatible with ES system for multiple compressors
- Superior rotor coating
 - \circ $\;$ Nickel coating for protection against corrosion
 - Walk-in capability resulting in minimal backlash

Mechanical Vapour Recompression(MVR)

Vent Steam quantity from CCU

NaOH Flake Production	250	MT/Day
NaOH Flake Production	10.4	MT/Hr
% concentration NaOH flake	98	%
Pre concentrator	48	%
Post Concentration	58	%
CP of NaOH	0.72	kcal/kg'C
Water evaporated		
water at 48% NaOH	1.083	kg/kg of NaOH
Water at 58% NaOH	0.724	kg/kg of NaOH
Water evaporated in making 48% to 58%	0.359	kg/kg of NaOH
Heat in vent steam	540	kcal/kg of steam
Heat needed to evaporate	194	kcal/kg of NaOH
Flaker		
Water at 58%	0.724	kg/kg of NaOH
Water at 98%	0.020	kg/kg of NaOH
Water quantity to be removed	0.704	kg w/kg of NaOH
Heat in vent steam	720	kcal/kg steam
Heat needed to evaporate	507	kcal/kg of NaOH
Net heat being vented	313	kcal/kg of NaOH
Steam Vented	0.434	kg/kg of NaOH
Steam temp @ venting	270	C
Steam temp after de-super heating	102	С
Steam vented super heated available for compression	4524	kg/hr
Cp of steam	0.4	kcal/kg'C
water needed to cool steam to 102'C	304033	kcal/hr
Water gty needed to de-superheat steam 270'C to 102'C	497	kg/hr
Total staam @102'C available for compression	5021	ka stoom /hr
IOTAL STEALL MATOR C AVAILANCE IOL COMPLESSION	JUZI	ng stedili/ill

Techno-Commercial Details

Actual Conditions	Value	UOM
Max steam flow rate	5021	kg/hr
Inlet steam Pressure	0	barg
inlet steam temp	102	с
De superheating during compression	502	kg/hr
Outlet steam flow	5523	kg/hr
Outlet pressure	4.5	bara
Outlet steam Temp	158	С
Electricity input	515	kW
Enthalpy of steam	656	kcal/kg
Net enthalpy gain in compressor	554.0	kcal/kg
СОР	6.91	kal/kcal
Electricity rate	8.5	Rs/kW
Steam rate	3	Rs/kg
Economics		
Saving in Steam	16570	Rs/hr
Input Power cost	4378	Rs/hr
Net Saving in Rs	12192	Rs/hr
Running Hrs	8000	Hrs/yr
Saving per year	97536794	Rs/yr
Net Saving per year by steam	0	
generation	9.75	Ks.Cr./Yr.
Expected Payback period	1.50 - 2	Years

BYE PASS PRV BY INDUCTION TURBINE 7 BAR STEAM TO 1.2 BAR Used for Brine heating during winter 7 TPH & Summer 4 TPH.

BACK GROUND INFORM	ATION			
Steam Parameters		Pressure	Temperature	Flow
Turbine Inle	t Parameters	8.0 kg/cm ²	175°C	7.0 tph
Extraction P	arameters	0.0 kg/cm ²	Nil	0.0 tph
Turbine Exh	aust Parameters	1.2 kg/cm ²	123°C	7.0 tph
Steam Turbine Configuration	n: Dual Entry Back Pressure ECT™ @ 12,000 r.p.m.	240 kW	IG based system	
Boiler Steam Header	Bypass Valve Back Pressure Steam Turbine	Electric Gener	Process Steam Header	

DESCRIPTION	VALUES	REMARKS	
BASIC ASSUMPTIONS :			
Electricity (kW-h) Generated through Turbine During winter	240 kW		
Number of Hours Turbine Running per Day	24 h		
Electricity (kW-h) Generated through Turbine per Day	5,760 kWh/day		
Number of Days Turbine Running During winter	90 Op. days/yr	3 Months	
Electricity units Generated through Turbine During winter	518,400 kWh		
Prevaling Electricity tariff ₹/KW-h	Rs. 7.00	Consideration	
Savings over Prevaling Electricity tariff During winter	₹ 3,628,800		
Steam Flow	7,000 kg/h		
Electricity (kW-h) Generated through Turbine During other months	120kW	<u> </u>	
Number of Hours Turbine Running per Day	24 h		
Electricity (kW-h) Generated through Turbine per Day	2,880 kWh/day		
Number of Days Turbine Running During Other months	270 Op. days/yr	9 Months	
Electricity units Generated through Turbine During other months	777,600 kWh		
Prevaling Electricity tariff ₹/KW-h	Rs. 7.00		
Savings over Prevaling Electricity tariff During winter	₹ 5,443,200		
Steam Flow	4,000 kg/h		
TOTAL SAVINGS	₹ 9,072,000		
ECONOMIC CONSIDERATION			
Capital Investment			
Basic price	78,50,000		
+ CGST @ 9%	Rs. 000,000	Refundable	
+ IGST @ 9%	Rs. 000,000	Refundable	
Total	78,50,000		
+ Transportation	Rs. 00,000		
+ Insurance	Rs. 0,000		
+ Supervison of E & C + Service Tax (18%)	Rs. 236,000		
Landed Equipment Cost	80,86,000		
+ Indicative Cost of Balance of Plant (Customer Scope) – Civil, etc	Rs. 750,000		
Total CAPEX for the Incidental Co-Gen	Rs. 8,836,000		
PAYBACK			
Gross Savings(Annual)	Rs. 9,072,000		
Total Estimated cost	Rs. 8,836,000		
Payback	0.97 Years		
Payback in Months	11.7 mths		

LNG EXPANDER 80 BAR TO 20 BAR FOR GAS TURBINE POWER GENERATION POWER PLANT.

Some of the reputed suppliers of turbo expanders are as follows:

- 1. Honeywell,
- 2. LA TURBINE, USA,
- 3. Atlas Copco
- 4. Siemens
- 5. GE
- 6. LANGSON

LNG EXPANDER 80 BAR TO 20 BAR FOR GAS TURBINE POWER GENERATION POWER PLANT.

Presently, 2 stage expansion of LNG to 20 bar is as follows: 80/50 bar – thru a PRV under scope of LNG gas supplier (GAIL/RIL) 50/27 bar – internal to a DC 27/20 bar – PRV

Proposed: * Expander#1: 80 bar to 50 bar generating – 91 kW

* Expander#2 – 50 bar 30'C to 27 bar, 3 'C - -119 kW

* Total power Generation potential – 210 kW

* Reheat LNG after expander for process. Use cool effect in cooling water fed to a condensing steam turbine's condenser to get better vacuum & additional power

EXPLOIT TIME OF USE TARIFF HTP-1 IN GUJARAT TO SAVE ENERGY COST/MT

Power rebate during night hours - (10 pm to 6 am): Rs. 0.43/kWh Penalty (TOU) during peak time – (7 am to 11 am) & (6 pm to 10 pm): Rs. 0.85/kwh Normal tariff during 11 am till 6 pm – > 2500 kVA – Rs. 4.30/kWh Elect duty@ 15%

The impact of shifting Load from peak hrs to night hrs =(0.43 + 0.85)x1.15 =Rs. 1.472/kWh

Adopt the following strategy:

to have slightly higher Current Density during night hrs: CD = 4.2

Reduce CD during the peak hours: CD = 3.8

Run Normal CD during normal hours: CD = 4

Particular	UOM	Value	Value	Value	Remarks
Rectifier efficiency	%	96	96	96	
No of Elements	Nos	100	100	100	Assumed
Area of each element	M2	2.72	2.72	2.72	Membrane area
Current I	kA	10.88	10.34	11.42	
Current Density i	kA/m2	4	3.8	4.2	
TOU Time		Normal tariff (6 am to 7 am & 11 am to 6 PM)	TOU Penalty (7 am to 11 am & 6 pm to 10 PM)	Night concession (10 pm to 6 am)	
Elect. Tariff HTP-1, Gujarat	Rs/kWh	4.3	5.15	3.87	TOU Penalty 0.85/kwh, Night rebate -0.43/kwh
Ucell	V	3.288	3.24	3.33	Ucell = (Uo + k * i) v, Uo = 2.42v , k=0.217 v
Cell Efficiency	%	97	97	97	Assumed
DC Power	kW	2673	2624	2722	670*Cell Voltage/Cell Efficiency

POWER BILL WITHOUT TOU CONSIDERATION AT FIXED CD												
РРС	S r	Period	Penal ty Rs/k Wh	Applica ble Rate Rs/kWh	тои	Dur atio n Hrs	CD kA/m 3	Produc tion (32% CS lye) TON	DC Power consum ption kWh/T	Est. AC Power consumpti on kWh/T	Power Bill kWh/day	Power Bill Rs/day
	1	Peak Tariff	0.85	5.15	7 AM TO 11 AM	4	4	6.24	2673	2785	17365	89429
WITHOUT	2	Peak Tariff	0.85	5.15	6 PM TO 10 PM	4	4	6.24	2673	2785	17365	89429
TOU EXPLOITA	3	Night Tariff	-0.43	3.87	10 PM to 6 AM	8	4	12.47	2673	2785	34730	134404
TION AS AT	4	Normal Tariff	0	4.3	6 AM TO 7 AM	1	4	1.56	2673	2785	4341	18667
PRESENT	5	Normal Tariff	0	4.3	11 AM to 6 PM	7	4	10.91	2673	2785	30389	130671
	6	Total/ Average				24	4	37.41	13367	13924	104190	462601

POWER BILL WITH TOU EXPLOITATION												
РРС	Sr	Period	Penalt y Rs/k Wh	Applicable Rate Rs/kWh	TOU	Dur atio n Hrs	CD kA/m 2	Prodn. 32% CS Lye Ton/da y	DC Power consum ption kWh/T	Est. AC Power consumptio n kWh/T	Power Bill kWh/day	Power Bill Rs/day
	1	Peak Tariff	0.85	5.15	7 AM TO 11 AM	4	3.8	5.92	2624	2734	16193	83396
	2	Peak Tariff	0.85	5.15	6 PM TO 10 PM	4	3.8	5.92	2624	2734	16193	83396
WITH TOU	3	Night Tariff	-0.43	3.87	10 PM to 6 AM	8	4.2	13.09	2722	2836	37134	143709
ION	4	Normal Tariff	0	4.3	6 AM TO 7 AM	1	4	1.56	2673	2785	4341	18667
	5	Normal Tariff	0	4.3	11 AM to 6 PM	7	4	10.91	2673	2785	30389	130671
	6	Total/ Average				24	4	37.41	13318	13873	104251	459840

Savings/Year > Rs. 10 lakhs , with Zero investment only by adjusting CD according to TOU TOU

COMPONENTS OF PUMP WHICH CAN IMPACT PERFORMANCE AND EFFICIENCY

AGEING & OTHER EFFECTS ON PUMP PERFORMANCE & COATING TO IMPROVE EFFICIENCY

PUMP EFFICIENCY AND CRITICAL IMPACT POINTS

% Efficiency

UPGRADING AND PROTECTING PUMP WETTING PARTS BY SPECIAL COATING GUARANTEED EFFICIENCY IMPROVEMENT

PUMP COATING OBJECTIVE

- Increase Capacity (Q, H)
- Decrease Life Cycle Costs
- Increase MTBF
- Increase Pump Efficiency
- Decrease Power Consumption

(Normally after coating, the flow increases. So adjust it to the baseline to compare power saving)

- Reduced Vibration & Noise
- Decrease Maintenance

PROCEDURE FOR PUMP COATING

- Establish base line: Measure Flow, Head, Density before coating & calculate Pump Efficiency ή_p % = {Q(m/s).H(m).p(kg/m3).g(m/sec2)/(1000.kW_{in}. ή_m)}.100
- Q- Ultrasonic flow meter (TTD/Doppler)
- H Total Head (Pump Discharge Head Suction Head)
- kW_{in} = Power input to motor (1.732 x V x I x Pf or kW)
- Dismantle Pump* Sand-blast wetted parts (5 bar comp air at site) – Coating (Primary & Final) – Dry Coat – Balance Impeller – Reassemble Pump* – Measure (Q, H, kW)
- Establish Final Efficiency %

(A min. 5% Improvement in Efficiency is Guaranteed for old pumps > 3 years) *Dismantling & Reassembly is in client's scope

Two pumps coating in a day is possible & one day for drying & balancing

Cooling Tower No.1 (HCI) Pump No. D performance

- 41

Particulars	Before Coating	After Coating(07.07.2022)	28.12.2022
Flow (m3/Hr)	1212	1650	. 1672
Suction Pr. (Mtr)	1	1	1.1
Disc. Pr. (Kg/Cm2)	3.75	3.75	3.95
Power (KW)	213.8	213.8	213.23
Motor Efficiency(%)	95	95	95
Pump Efficiency(%)	59	81	86

Cooling Tower No.1 (HCI) Pump No. B performance (Baseline data)

Particulars	Before Coating (28.12.2022)		
Flow (m3/Hr)	1216		
Suction Pr. (Mtr)	1		
Disc. Pr. (Kg/Cm2)	. 3.95		
Power (KW)	223.		
Motor Efficiency(%)	95		
Pump Efficiency(%)	60.19		

P N PATEL Sr. M (P)

HKEAJAPATI Mgr. (E)

V K PATEL Mgr. (M)

SOM DERASHRI SIPL

IMPROVED TRANSMISSION SYSTEM SANDWITCHED MULTILAYERED FLAT BELT FOR GUARANTEED 5% ENERGY SAVING

Guaranteed Power Saver & Longer Life than 'V' Belts

Advantages :

- Principals having over two decades of experience in belting.
- Imported high strength oriented polyamide core.
- Expertise in conversion packages for individual application of OEMs.
- Flat belts and pulley for wide range of applications.
- Safe and secured transmission.
- High accuracy in rotational speed.
- Excellent driving properties.

SANDWICH MULTILAYERED FLAT BELT WITH CROWNED PULLEYS DRIVE SYSTEM

V BELT DRIVE SYSTEM WITH V GROOVED PULLEYS & MULTIPLE BELTS

V Belt vs SyGuru Sandwich Flat Belt & Crowned pulleys

	-

Sr No.	Parameters	V Belt	SyGuru Flat Belt
1	Friction Loss	Wedging-in - Wedging-out in V groove @ 4 times RPM (1500x 4 = 6000 /minute)	Grips Crowned Pulley
2	Bending Loss	6000 times around the pulleys with thick cross section & number of belts	Thinner Cross-Section has significantly less Bending loss
3	Braking Action	Each belt has different Liner Speed (∏.D.N) as the V groove have different depths (No QC check) thus, a narrower V groove has higher belt 'D' making that belt run faster & other with low linear speed (Dangling) V belt which also imparts a breaking action resulting in Higher kW.	No differential speed as only one belt runs
4	Uneven Tension	Highest D belt takes maximum load & wears out faster & higher Slip.	Constant speed due to special MOC & lesser Slip
5	Short Life	With multiple belts only fastest running belt takes total load & results early breakdown	Guaranteed higher life compared to V belt
6	Higher Maintenance Cost	Multiple replacement & whole set is to be replaced not just the broken belt	Longer Life & Maintenance free
7	Black particle generation	Friction & wedging action results in Black particle generation in environment - unacceptable in pharma & food industry	No Black/Foreign Particle Generation eliminating chances of contamination
8	ENERGY SAVING	Higher Energy Consumption	Energy Efficient 5%+/- 2%

SYGURU FLAT BELTS EFFICIENCY COMPARED TO V BELTS

- FLAT BELT η %:
 HIGHER AT ALL LOADS
 - UNIFORM OVER LARGE RANGE
 - 3% TO 5% HIGHER AT
 FULL LOADS

Sr.No.			Energy Consumed kW		%
	Company Name	Equipment Name	V-Belt Drive	SyGuru Flat Belt Drive	Saving
1	Spic Pharmaceuticals	Kirloskar Ammonia comp.	114.5	106.1	7.2
2	IPCL, BARODA	IR Compressor 75 Kw	62.5	60.3	5.5
3	Titan Industries, Hosur	K.G. Khosla Comp.	29.0	27.3	5.7
4	Indian Oil Corpn. Belgaum	IR Air Compressor	32.0	29.0	9.4
5	Spic Pharma, Coddalore	IR Compressor 75 Kw	65	61	6.2
6	India Cement Ltd., Dalvoi	Rotary Blower 30 Kw	21.3	19.8	7
7	United Beweries, Kerala	Kirloskar Ammonia comp. 75 Kw	57	52	8.7
8	Titan Industries (Jewellary)	Kirloskar Compressor	33.41	31.3	6
9	Hindustan Coca cola Beverages, B'lore	irloskar Amonia comp	75.7	68.5	9.5
10	Reliance (RIL, Naroda)	Gas Compressor	70	65	8
11	TVS Suzuki Ltd.	K.G.Khosla Comp	81	74.4	8
12	Wokhardt Limited, Ankleshwar	Roots Blower 50 HP	33	31	6
13	DCM Shriram Alkali & Chemicals, Jhagadia	Ref. Compressor	160	152	5
14	NCPL, BHARUCH	Roos Blower	37	34.0	8
15	ATUL Limited, Ankleshwar	Air Compressor	50	47	6
16	Grasim Industries, Nagda	Ref. Compressor 100 HP	63.8	61.2	4
17	Aventis Cropscience India Ltd. Ank.	Reactor, 7.5 HP	4.8	4.6	4
18	Cadila Pharmaceuticals,Ank	Ref. Compressor 75 Kw	63.8	60.6	5
19	IPCA Laboratories Ltd. Ratlam	Multi Mill, 3 HP	1.9	1.8	6
20	Gujarat Guardian Ltd, Ankleshwar	Belt Supplied for Air comp.	75	71	5
21	Jubillent Organosis, Savli	Ref. Compressor	65	60	7.6
22	RIL, Baroda	Ref. Compressor	30	28	7
23	Surya Roshni, Gwalior	Flex Blower	98	92	6.5

SOM DERASHRI

SyGuru Innovators Pvt. Ltd., BARODA

info@syguruace.com, 9824079910

ENERGY CONSERVATION OUR GIFT TO NEXT GENERATION A STEP TOWARDS NET ZERO

