

Digitization: Sustainable Approach to optimize Energy Efficiency in Chlor-Alkali

February 2024

(27 February 2024)

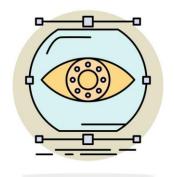
Agenda

- Digitization in Grasim
- Governing Principle
- Central Manufacturing Cockpit
- Circle of Digitization Excellence
- Used Cases

Grasim Chemical Overview

- In 1972, Grasim's chemicals business was set up to manufacture caustic soda for the company's VSF unit. Today, it is one of India's largest caustic soda producers and is a market leader in the chlor-alkali segment.
- Strong foothold (caustic soda capacity is 1,147 KTPA) in the industry and offers a wide range of products from chlorine derivatives (SBP, PAC, CSA, CPW, CaCl2, HSBP, CMS and AlCl,) to epoxy.

8 caustic soda manufacturing units across India

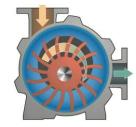

1,147 KTPA total caustic soda capacity

123 KTPA capacity epoxy plant

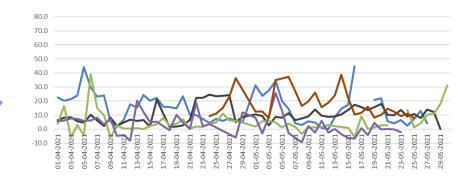
~1 million tonnes of caustic sales

Digitization

Improve & Optimize Plant operation


Visualize & Monitor Plant Insights Performance Assessment Data Analysis

Optimize the value of incoming data by collecting & analyzing the data Enable & informed team (management) to make quick and strategic decision Drive faster root cause analysis on daily basis & weekly basis to prepare action plan


Governing Principle

Governing Principle	Why
The 80/20 Way	Focus on Top 80% to derive the first wave of benefits
Golden Excellence	Define the best operating envelope of plant operations for energy and production using combination of sources like best achieved figures of past as reference, P&B, theoretical, licensor etc.
Compliance Management	Compliance with defined Norms in Real-Time
Energy Project Identification Management	Data driven decision making for Identification & Ranking of Capital Projects for Energy Improvement Outcome
Measuring Outcomes	Data driven tracking of Impact of Non-Compliance & Tracking of Energy Improvement Schemes

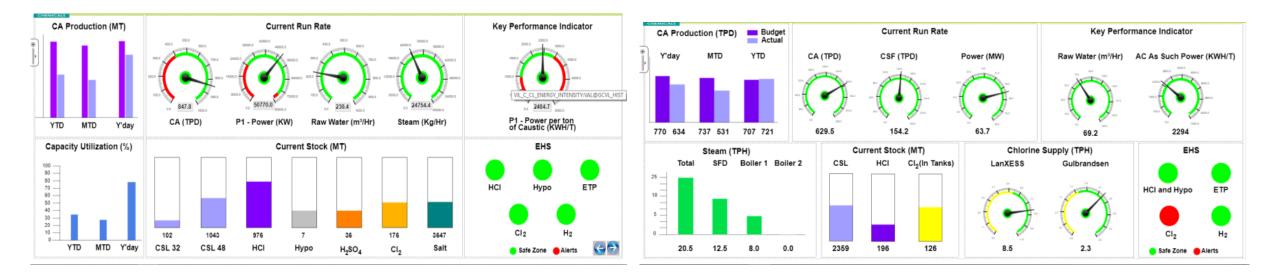
Benchmarking

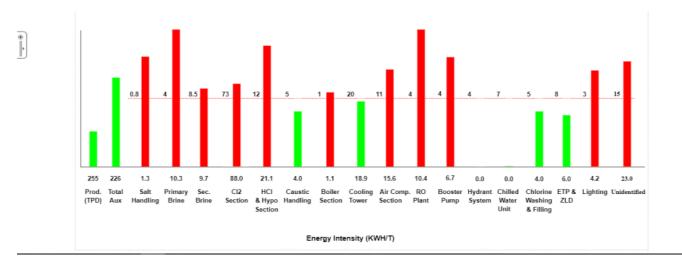
Chlorine compressors Battery

Actual Baseline/Exiting baseline

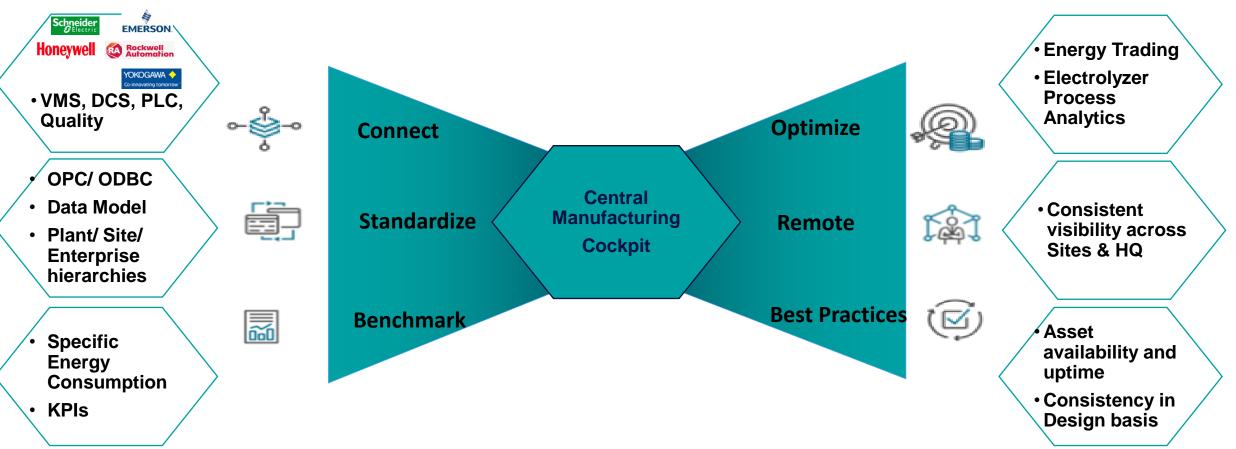
Gap Identification

Customize reporting and gap filling

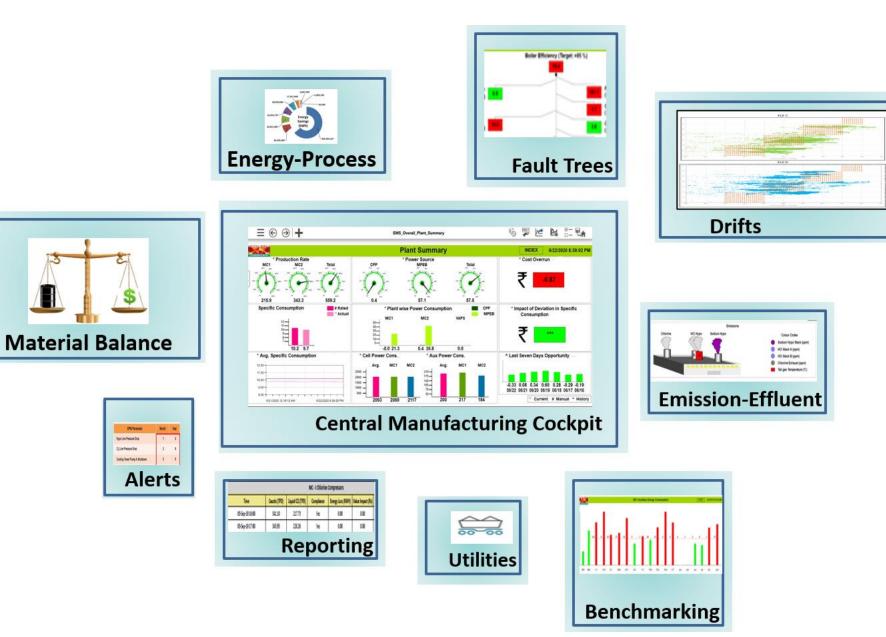

Benchmarking and established new baseline



Results review and continual improvement


Central Manufacturing Cockpit

Real time Visibility and drilldown by getting data from different DCS / PLC / Environmental Sensors and SAP


Solution structure

- Implement OPC across units.
- Implement AspenTech IP21 in each unit.
- Energy Management Dashboard
- Golden Batch (Cycle time, Material consumption, Process)

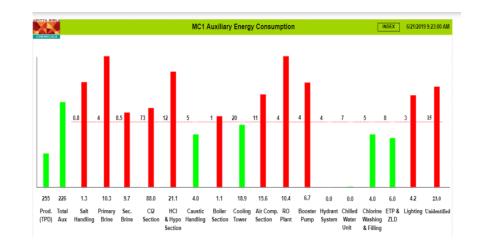
- Automate unit DPR and Reports.
- Integration of Sales information from SAP into IP21.
- Central Manufacturing Cockpit in SSRS.
- SPC

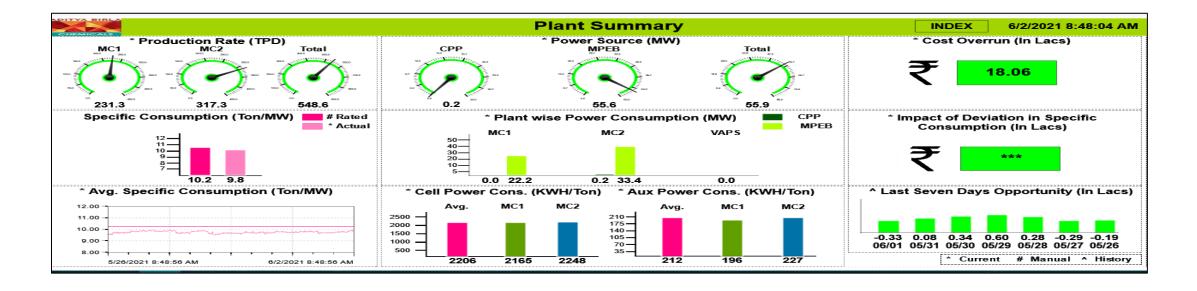
Circle of digitization excellence

Used case

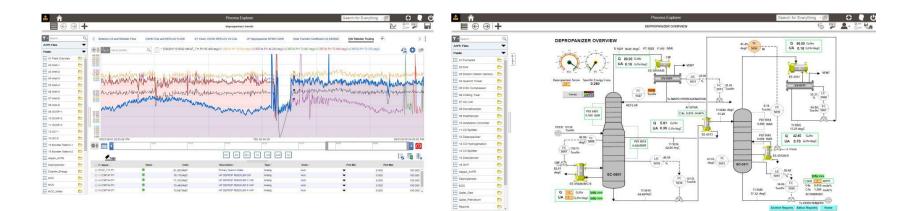
- **1.** Reduction in specific energy Consumption
- 2. Process KPI Control
- 3. Hydrogen Management
- 4. Process Analytics & control
- 5. Process Score card

Reduction in Specific Energy



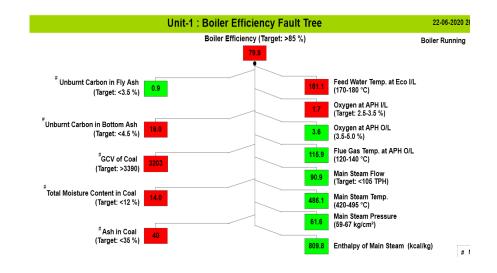

Specific Energy reduction per ton of Caustic or Chorine Plant operation

- 1. Auxiliary Power consumption-Caustic
- 2. Chlorine derivative power consumption
- 3. Captive power plant auxiliary power consumption


Reduction in Specific Energy

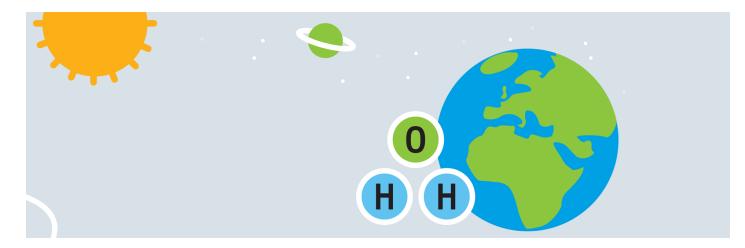
1	How	 Real time view of specific energy consumption Continuous internal & industry benchmarking Workflow and Escalation of significant deviation and potential lost opportunity
	What changed	Process Operators are able to identify the key area of improvement with significant deviations to act upon in real time.
3	Value	Cost savings - 4% reduction in aux power specific energy consumption

Process KPI control



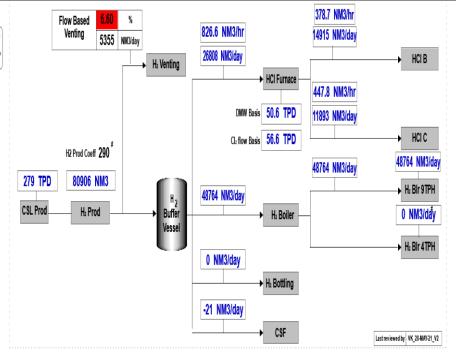
Process KPI Control Plant operation

- 1. Fast evaluation of performance
- 2. Enhance & new monitoring system which identified in gap analysis
- 3. Decrease reaction time to problems
- 4. Increase asset utilization & productivity


Process KPI control

1 How	 One page real time view of factors which impact the KPI. Section wise critical reporting real time. Quick action on data flow management. Training and awareness session 					
2 What changed	 Delivery of real time view and sensitization of potential lost opportunity Capability to take immediate corrective course action. 					
	 Advance planning of asset utilization and combination.on in real time. 					
3 Value	 Operational excellence More data base discussions and gap identification 					

Hydrogen Management


Hydrogen Management

- 1. Optimal use of hydrogen in processes
- 2. Hydrogen balance for the plant
- 3. Line up bottling and compressor management
- 4. Generate more revenue

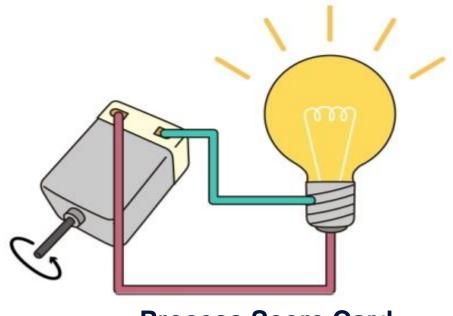
Hydrogen Management

1 How 2 What changed	 One page real time view of H2 generation, consumption(process, bottling) and venting; data sourced from multiple DCS/PLC systems Autonomous alerts to relevant engineer to take action with visibility on potential opportunity Feedback and response tracking on why a certain corrective action was not taken Delivery of Crisp actionable information to the process engineer. Created a pre-planned hydrogen management on particular load
	in real time.

Process Analytics & control

Process Analytics & control

- 1. Unit Operation wise KPI check
- 2. Historical Pattern Monitoring
- 3. Root cause and relative correction
- 4. Cost reduction
- 5. Monthly Audit to control the cost

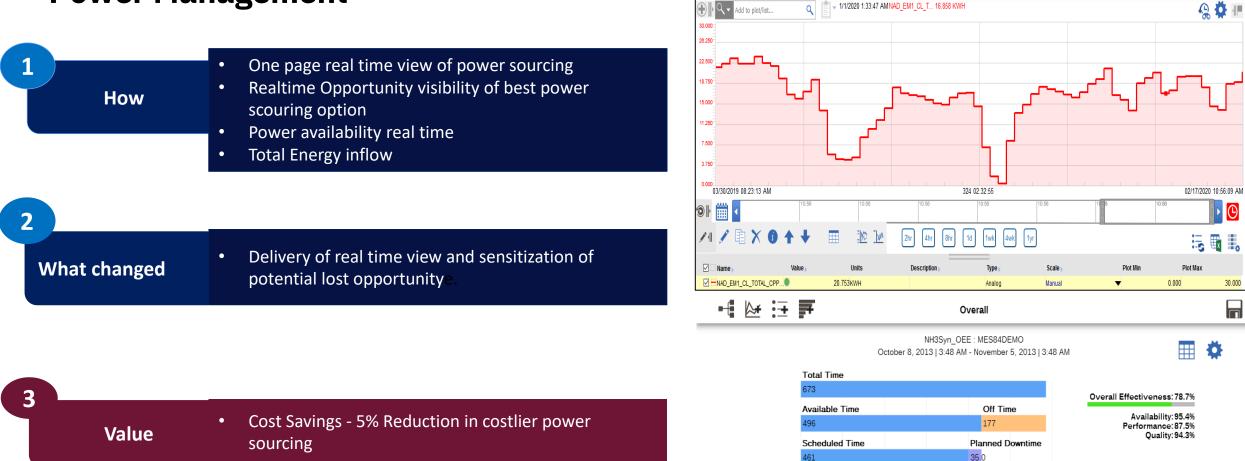

Process Analytics & control

1 How	identify significant proce	cs on contributing factors in	
2 What changed	 Capability to apply ad-ho data(2Yrs – 1 min freque Quick visual reasoning or 		
3 Value	• Operation Excellence	Analysis 6 XY chart of Brine flow (Y-Axis) and HCL FLow(X-axis)	

ELE A

Process Drift (temp & Current)

Power Management



Process Score Card

- 1. Identify gaps
- 2. Minimize fluctuation
- 3. Maximize production
- 4. Optimal range of operation

				Proces	ss Score Ca	rd		02-JU						
#	Process Parameter	UOM		Unit1		Unit 2								
1	Unit Load	MW		26.4			18.2							
2	Runnung Hours	Hours		8.0		8.0								
	PLF	%		88.0			60.0							
4	Aux Power	%		10.5			11.5							
5	Net KPI Score	%		79			86							
#	Process Parameter	иом	Range	Actual Parameters	Score (Actual/Target)	Range	Actual Parameters	Score (Actual/Target)						
1	MS Inlet Temp - Boiler	°C	485 (480 to 490)	493.5	0/5	540 (535 to 545)	538.5	5/5						
2	MS Press - Boiler	kg/cm ²	66 (64 to 67)	68.1	0/5	109 (107 to 110)	109.4	5/5						
3	SPM in flue gas	mg/Nm ^a	<100 (20 to 100)	77.0	5/5	<100 (20 to 100)	43.2	5/5						
4	Condenser vacuum	kg/cm ²	-0.9 (-0.890 to -0.915)	-0.900	5/5	-0.905 (-0.890 to -0.915)	-0.900	5/5						
5	Steam to CAP Temp	°C	185 (175 to 195)	189.4	5/5	185 (175 to 195)	189.4	5/5						
6	Steam to CAP press	kg/cm ²	10 (9.5 to 12.5)	11.2	5/5	10 (9.5 to 12.5)	11.2	5/5						
7	Economiser Feed water Inlet Temp	°C	180 (165 to 182)	167.1	5/5	235 (230 to 240)	215.1	0/5						
	Bed Temp	°C	890 (850 to 910)	883.4	5/5	855 (825 to 880)	846.7	5/5						
	Furnace Press	mmWC	- 30 (- 40 to - 15)	-35.7	5/5	- 15 (- 35 to - 5)	-17.9	5/5						
	Generator Winding Temp	°C	95 (30 to 105)	89.0	5/5	85 (30 to 100)	69.8	5/5						
	Specific steam consumption		4.1 (3.5 to 4.25)	4.1	5/5	4.85 (4 to 4.95)	4.8	5/5						
	Primary Air Temp after APH	°C	255 (240 to 270)	222.3	0/5	205 (200 to 225)	179.3	0/5						
	Secondary Air Temp after APH	°C	260 (240 to 275)	250.8	5/5	215 (200 to 240)	224.6	5/5						
	Oxygen level in Flue gas	%	4 (2.5 to 5)	3.2	5/5	3.5 (2.5 to 4.5)	2.9	5/5						
	CW I/L Temp	°C	33 (20 to 36)	39.5	2/2	35 (20 to 36)	31.6	2/2						
	CW outlet Temp	°C	42.4 (22 to 44)	53.2	2/2	42 (23 to 43)	40.5	2/2						
	Flue gas exit Temp	°C	145 (120 to 145)	133.8	2/2	140 (120 to 145)	124.1	2/2						
	Unburnt in bottom Ash#	%	4 (0 to 6)	0.5	2/2	4 (0 to 5)	0.3	2/2						
	Unburnt in fly Ash#	%	1.6 (0 to 2.5)	3.9	0/2	1.5 (0 to 2.5)	0.9	2/2						
	Sp Power Consumption (CHP)		2 (0 to 2.5)	0.0		2 (0 to 2.5)	4.4	4/4						
	Sp Power Consumption (Boiler)		16 (0 to 17)	15.0	4/4	17 (0 to 18)	16.3	4/4						
	Sp Power Consumption (Turbine)		23 (0 to 25)	25.0	4/4	31 (0 to 32.5)	30.3	4/4						
	Sp Power Consumption (ESP)		1.8 (0 to 2)	1.0	4/4	1.1 (0 to 1.2)	1.5	0/4						
24	Sp Power Consumption (Comp)	kWh/MW	5.2 (0 to 6)	8.0	0/4	6 (0 to 6.5)	0.6	4/4						

Power Management

Plotlist

Cell House Optimizer

1 How	Analysing AC KWH/MT of each electrolyser and suggesting the Power consumption per MT of CSL production	e best combination of Load on each ele	ectrolyser for least Specific Cell
2 What changed	Load distribution amongst battery of Electrolyser was a human decision which is now recommended by the optimizer to set optimum load on each electrolyser.	Load, kA 16.00 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00 A B C D E F G	CD, kA/m2 6.00 5.00 4.00 2.00 1.00
3 Value	The difference in AC power consumption per MT CSL is around 0.32% for same production.	1-Jul-20 Base Load 12.32 11.12 8.98 11.28 8.55 9.04 11.04 1-Jul-20 Opt Load 10.82 9.62 7.62 9.92 7.62 11.42 13.46 I-Jul-20 Opt Load 10.82 9.62 T.62 11.42 13.46 I-Jul-20 Opt Load I-Jul-20 Opt Load II-VI-20 Opt Load AC Power / Ton 2200	0.00 A B C D E F G 1-Jul-20 Base CD 4.53 4.09 3.30 4.15 3.14 3.32 4.06 1-Jul-20 Opt CD 3.98 3.54 2.80 3.65 2.80 4.20 4.95 1-Jul-20 Opt CD Production, MTD 90.00 80.00
		2150 2100 2050 2000 1950 1850 A B C D E F G	80.00 70.00 60.00 50.00 40.00 20.00 10.00 A B C D E F G

 I-Jul-20 Base ACPower/Ton
 2086
 2057
 2134
 2009
 2100
 2089
 2097

 I-Jul-20 Opt ACPower/Ton
 2045
 2014
 2076
 1974
 2062
 2184
 2170

1-Jul-20 Base ACPower/Ton
1-Jul-20 Opt ACPower/Ton

■ 1-Jul-20 Base Production 50.62 46.65 36.51 47.56 51.05 56.58 65.69

1-Jul-20 Opt Production 44.44 40.34 30.96 41.81 45.46 71.49 80.15

1-Jul-20 Base Production
1-Jul-20 Opt Production

Daily Basis Automated Reporting system

1	How		 Daily generation of Automated performance reports of different sections across different DCA units 															
2	What changed	 Capability way. 	to take cor	rective	course	actions	on are	ea of ir	mprov	rement	in a fo	cusse	d					
3	Value	Operational e	xcellence															
⊟ 5						nce_Summa		t_v5 [Read	l-Only] - E	Excel	5							
Paste	Copy * Format Painter	Formulas Data 2 $A^* A^* = =$ $2^{\bullet} \cdot A^* = =$	= • •	Wrap Tex	t	General	o do ୭ €.00		rmatting -			E Insert	Delete For	rmat	AutoSum Fill - Clear -	▼ Z▼ Sort & Filter ▼	Find & Select +	A Share
Clip B2	v : × √ f _x	F 2	Alignme	nt	F2r	Nun	mber	E3		Styles			Cells		E	diting		
02																		
A A	Central Manufacturing Cod	c kpit Grasim Chemical Di	vision	F	G	н	1	J	К	L	м	N	0	Р	Q	R	s	т
3	Date Range:-	30-De	-22 28-Jan-23	† I														
1	RKT - Phase 1&2 Chlorine Compressor Utili Parameters	zation Std./F	ef. Average	27-Jan-23	26-Jan-23	25-Jan-23 2	4 120 22	22.120.22	22 120 22	21 120 22	20.120.22	10 120 22		Figures a 17-Jan-23	are Previous 3 16-Jan-23			es & the dat
5	Phase 1&2 Avg. CSL Production (TPD)	Stuly	195.06	5 191.34	183.75	116.99	155.37	198.37	205.45		205.46	205.42		204.91		204.98	204.95	198.86
7	Phase 1&2 CL2(gas) Production at Cell House	(prod*0.8875) (TPD)	173.11	169.82	163.08	103.82	137.89	176.05	182.34		182.35	182.31		181.85		181.92	181.89	176.48
	Phase 1&2 wet Cl2 (gas) consumed by HCL (TP Phase 1&2 CL2(gas) for Compression (TPD)	- UI	24.03	21.27 148.55	20.13 142.95	20.04	22.24	25.87 150.18	26.96 155.38		26.62 155.73	27.25		25.69 156.17		25.88 156.04	25.48 156.41	25.47 151.02
0	Available Run Capacity of Compressors (TPD)		75.11	76	76	50.56	76	76	76	76	75.84	76	76	76	5 76	76	76	75.96
1	Suction pressure (MMWC)	Uhde 130			1246.2	1240.4	1226.22	1323.4	1397.56		1397.69	1398.85		1396.53		1374.93 3 47	1379.63	1391.9
3	Discharge pressure (Bar) Temperature of Inlet Chlorine (DEG C)	2.9-3.4 17-20	3.38	3.42	3.32	2.68	2.84	3.37	3.5 24.93	24.09	3.45	3.45 23.17	23.15	23.35		3.47 25.08	3.47	3.51 24.36
4	Temperature of inlet Sulphuric Acid (DEG C)	24 - 28	21.36	5 25.52	25.73	23.58	23.54	23.4	22.85	21.03	19.65	19.67	19.75	20.22	2 21.91	23.64	22.94	21.97
5	Actual Power Consumed (KWh)	105-110	4265.16		4124.38 188.1	2499 165.7	3786.75	4328.5 197.6	4485 204.45		4470.62 205.33	4474.75 204.02		4480.25 205.48		4472.62 205.32	4476.88 205.81	4499.12 198.82
7	Compressor Loading Ratio (%) Specific Power Consumed(per ton of Cl2) (KWI		198.11		27.41	28.34	31.1	27.38	204.45		205.33	204.02		205.48		205.32	205.81	28.3
8	Actual Efficiency of the Compressor (%)	34%	49.65		49.27	47.66	43.42	49.32	49.25	49.1	49.52	49.26		49.55		49.6	49.67	47.72
9	PKT Bhaco 2 Chloring Commences thill	ion																
1	RKT - Phase 3 Chlorine Compressor Utilizat Phase-3 Avg. CSL Production (TPD)		156.37	148.24	144.18	97.49	112.59	166.36	171.68	171.86	125.8	171.74	171.71	171.57	7 171.57	171.63	171.74	125.72
2	Phase-3 CL2(gas) Production at Cell House (Pr	rod*0.8875) (TPD)	139.18		127.96	86.52	99.92	147.65	152.36		111.65	152.42		152.27		152.32	152.42	111.58
3	Phase-3 CL2(gas) Consumed by HCL (TPD)		14.15	5 13.69	13.9	13.38	13.4	13.43	13.91	14.5	14.88	15.24	14.81	14.51		14.31	14.95	14.59
4	Phase-3 CL2(gas) for Compression (TPD)		125.04		114.06	73.14	86.52	134.21	138.45		96.77	137.19		137.76		138.01	137.48	96.99
5	Available Run Capacity of Compressors (TPD) Suction pressure (MMWC)	Uhde 180	171.76 0-200 1513.99		150 1612.04	150 1611.25	1578.95	175 1499.39	175 1500.23	174.88	174.72 1500	175	1500.05	175		175 1499.83	175	174.9 1499.54
7	Discharge pressure (Bar)	2.9-3.4	3.42		3.36	2.7	2.86	3.41	3.54	3.53	3.5	3.49		3.52		3.52	3.51	3.55
8	Temperature of Inlet Chlorine (DEG C)	17-20	18.83	19.6	19.76	20.16	19.8	19.52	19.36		18.29	18.19	17.89	18.31	18.69	19.72	19.84	19.39
9				29.92	28.96	28.1	28.14	28.65	28.41	27.44	26.21	26.3	26.32	26.66	5 27.48	28.81	28.59	27.98
-	Temperature of inlet Sulphuric Acid (DEG C)	24-28	27.18							-								
0	Actual Power Consumed (KWh)		7793.57	6631.75	6566.75	6163	6612.75	7954.5	8027.5		7996.75	8009		8054.25		8028.5	8018	8052.25
0	Actual Power Consumed (KWh) Compressor Loading Ratio (%)	105-110	7793.57	6631.75	6566.75 76.04	6163 48.76	6612.75 55.08	7954.5	8027.5 79.11	78.92	55.39	78.39	78.61	78.72	2 79.16	8028.5 78.86		8052.25 55.45
0 1 A Ready	Actual Power Consumed (KWh) Compressor Loading Ratio (%)		7793.57	6631.75	6566.75	6163	6612.75 55.08	7954.5	8027.5	78.92	55.39		78.61		··· (+)	8028.5	8018	8052.25

⊕ Type here to search
 ■

ENG 28-01-2023

口…)

Mayank Shukla (Head –Operations) Grasim Industries Limited (Indian Rayon, Veraval)