

# AKXA TECH PVT. LTD.

# "Energy Efficiency Optimization by Reducing Process Fluctuations"

No/Low CAPEX approach for KPI improvement -Steel Plant Case Studies

www.akxatech.com contact@akxatech.com +91-9243209569

# About AKXA







Recognized as Innovative Product #startupindia

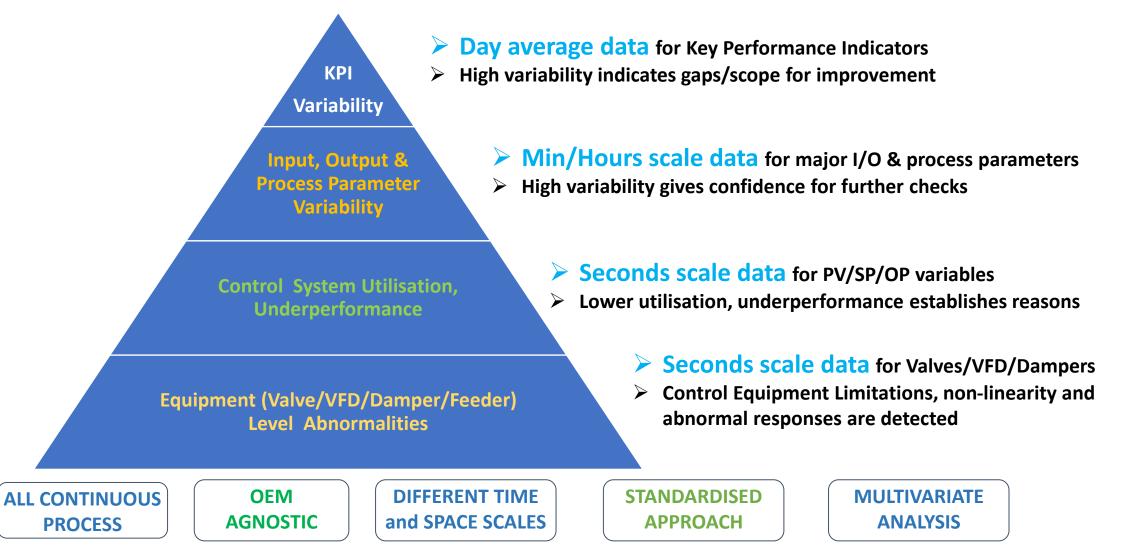
Approved by Gol (DIPP 2649)



Collaboration with IIT Madras

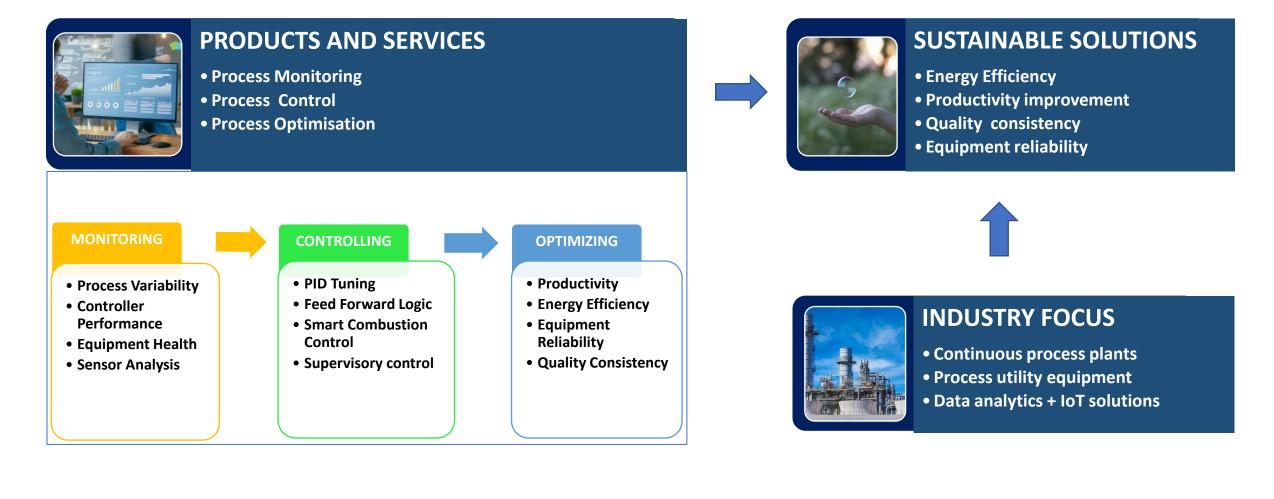


Promoted by (35+ yrs of Engg. Service)


# **Key Focus Areas for Process Industry**






# Solution Approach

#### **:: FLUCTUATION AUDIT / ASSESSMENT APPROACH ::**



# **Products and Service Offerings**

### **Harnessing Data >> Extracting Knowledge >> Creating Value**



### INDUSTRIES / PROCESS PLANTS : we can contribute



Services and Automated Decision Support Tools for

**Productivity Optimisation, Energy Efficiency Enhancement and Quality Consistency** 

### CEMENT, MINERAL & METAL PROCESSING



### FERTILIZER & PESTICIDE, PHARMA



### PULP PROCESSING & PAPER / BOARDS



## GLASS & CERAMICS



#### POWER PLANTS CAPTIVE / CO-GEN



ANY CONTINUOUS PROCESS PLANT







### Significant contributions of AKXA – STEEL PLANT and Utilities



| AREA                         | ASSESSMENT / DIAGNOSIS & OPTIMISATION FOR                            | Expected BENEFITS                    |
|------------------------------|----------------------------------------------------------------------|--------------------------------------|
|                              | Raw Mix Feeding (Weigh Feeder Variability)                           | 10-25% reduction in fluctuations     |
| Kiln, PIG Iron,              | Coal/Coke Feeding variability                                        | Enhanced TPH / reduced Sp. Power     |
| SID, GMS                     | Kiln Outlet draft/temperature regulation                             | Quality Consistency                  |
| Section                      | Waste Heat Distribution System Variation                             | • 1% reduction in BFG flaring.       |
|                              | Feed Gas Temperature fluctuations.                                   |                                      |
|                              | • <b>Drum Level</b> fluctuation (Two or Three Element Operation).    | Stable Burning                       |
| Waste Heat<br>Recovery (CPP) | Zone wise (Attemptator) Temperature control                          | Higher Steam throughput              |
|                              | <ul> <li>Primary, Secondary Air and ID Fan operation.</li> </ul>     | Stable Emissions                     |
|                              | Boiler Feed Pump Operation.                                          |                                      |
| Turbine House                | Condensate Level regulation                                          | Lower Pressure shocks                |
| and Auxiliaries              | Steam pressure fluctuations                                          | Stable Levels                        |
|                              | Cooling Tower Flow/Pressure regulation.                              | Higher efficiency.                   |
|                              | Stiction in Fan Dampers, Actuators, Valves                           | Preventive Mentainance               |
| General                      | <ul> <li>Sluggishness in Weigh feeders, Solid Flow Meters</li> </ul> | Improved Equipment Efficiency & Life |
| Equipment                    | Abnormal VFD operation in motors                                     |                                      |
|                              | Refractory Management by AKXA Tech digitCHECK tool                   | Generates alarm in case of deviation |
| Refractory                   | Intensive Areas like Blast Furnace, CONARC FURNACE, STEEL            | Component Tracking & its location    |
| Management                   | LADLE, TORPEDOES,CAST HOUSE, HOT METAL LADLE etc.                    | Capture the equipment condition      |

### IMPACT OF OPTIMakx <sup>®</sup> + deltAKX <sup>®</sup> INTERVENTION (no CAPEX required)

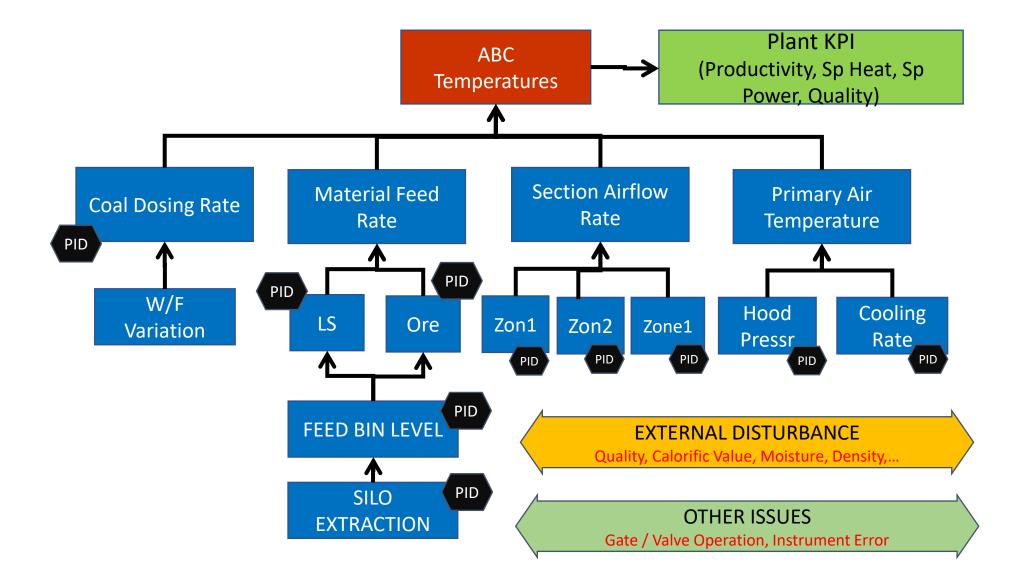


| SECTOR/AREA        |   | CASE ESTABLISHED                                                                                         | > | ΙΜΡΑϹΤ                                                        |  |
|--------------------|---|----------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------|--|
| Gas Mixing Station | > | Auto Utilisation increased to 100%<br>and COG, BFG and MG Pressure<br>variation reduced by more than 30% | > | 1% reduction in Flaring Gas<br>74,000 MJ/day ,~ USD 53,000/Yr |  |

| <b>POWER Plants</b> | $\overline{\}$ | 1% Reduction in Heat Rate  | $\overline{\ }$ | Fuel Saving Co-Gen Plant |  |
|---------------------|----------------|----------------------------|-----------------|--------------------------|--|
| /BOILER             |                | ~ Fuel consumed/Unit Power |                 | lower CO2 emission       |  |

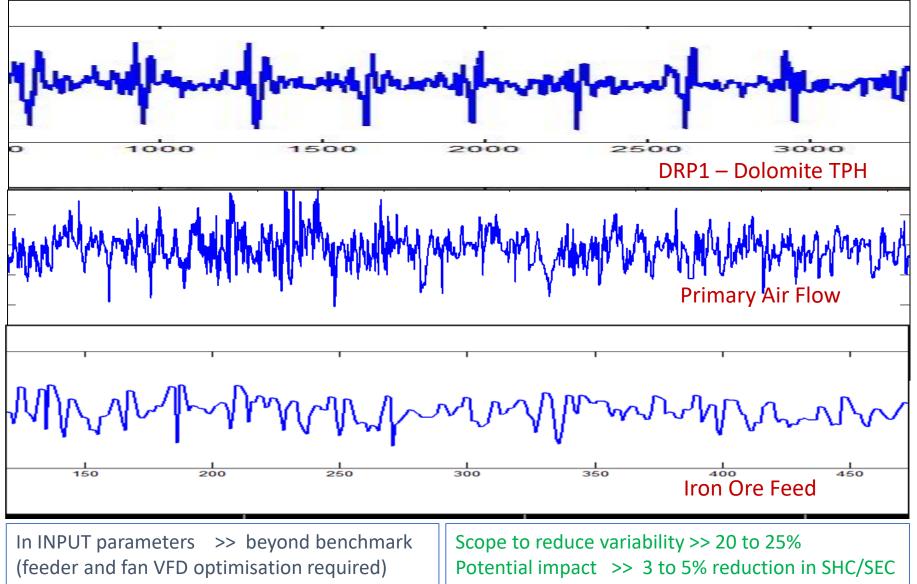
| $\overline{\}$ | Oxygen/Nitrogen | $\overline{\}$ | 4% increase in Purity       | $\overline{\ }$ | USD 2,00,000 /Yr Savings : |  |
|----------------|-----------------|----------------|-----------------------------|-----------------|----------------------------|--|
|                | Plants          |                | + Lower Utility consumption |                 | for 20 TPD gas plant       |  |

| <br>Compressors | 15% lower Electricity      | $\overline{\ }$ | ~ USD 20,000 /Yr for Typical |  |
|-----------------|----------------------------|-----------------|------------------------------|--|
| /VFD            | + Lower Pressure Variation |                 | 1000 CFM compressor          |  |


| <br>Process Plant | $\overline{\}$ | 25% Reduction in Process      | $\overline{\ }$ | 5 to 10% Energy Saving       | $\overline{\ }$ |
|-------------------|----------------|-------------------------------|-----------------|------------------------------|-----------------|
| CONTROLS          |                | Variability and Response Time |                 | @ Pay Back Period < ONE YEAR |                 |

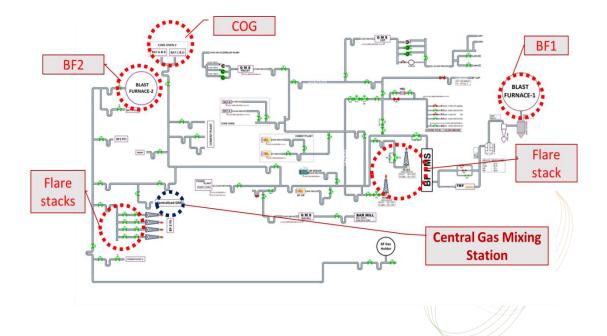


# **Case Studies**


# Plant Wide Fluctuations – Audit Work – Steel Sector






# Sample Variations in DRI (SID) section





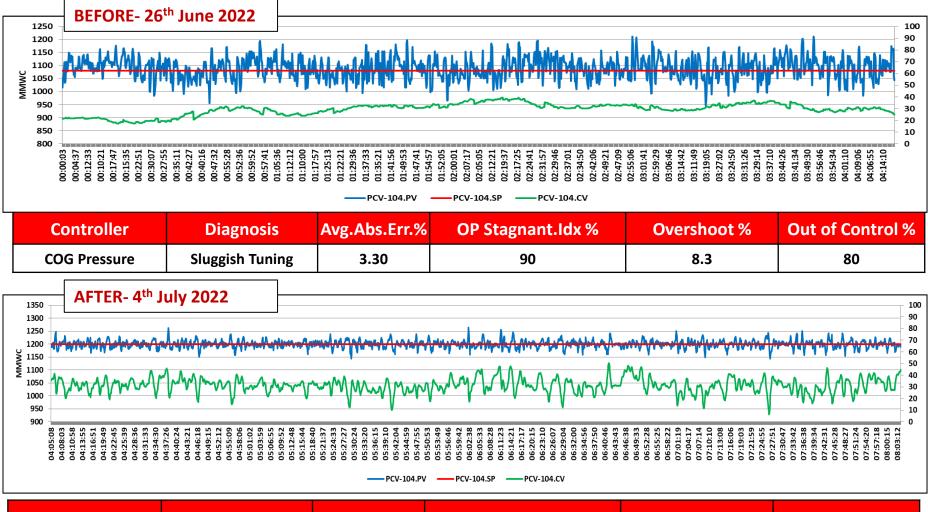
### Case Study 1: "Process Fluctuation Assessment and Control System Optimization Mixing Station at Steel Plant".

#### Steel Plant : BFG,COG and Gas Mixing Station Network



Input Disturbances to Central Gas Mixing Station>> which are coming from BF1 and <u>BF2</u>, Coke Oven Gas generation, BF1 and BF2 Stoves operation and BFG stacks Flaring.

#### TOOL Used: OPTIMakx<sup>®</sup> - PID (version 5.2) – off line assessment


#### **Overall Observation:**

- Abnormal Fluctuations : in all key variables (Blast Furnaces gas (BFG) pressure, Gas Mixing Station (GMS) flow, pressure, quality (Calorific Value.)
- Repeating Patterns : that can be assigned to identifiable root cause (BFG disturbances)
- Low AUTO Asset Utilisation : Key control loops are in MANUAL, responses are sluggish

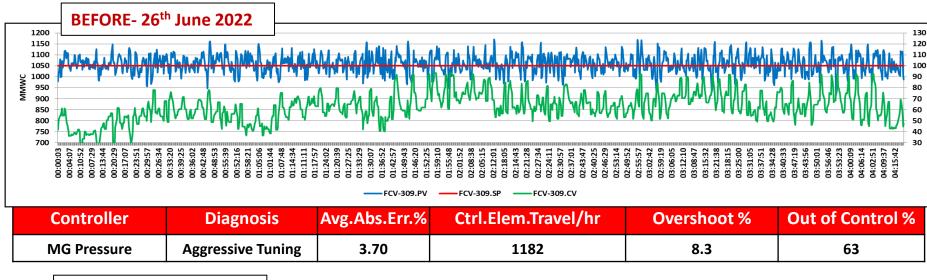
#### Actions Taken ::

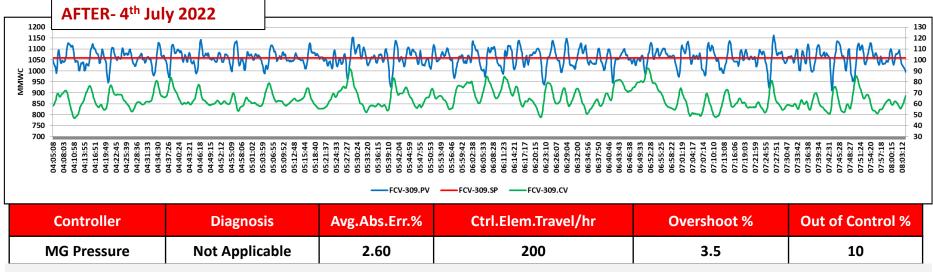
- Taking all critical PID loops in AUTO mode
- Data collection (PV/SP/OP) using digitEYES tool 1 sec interval for 14 hrs.
- Root cause assessment for PID abnormality (using different measures like controller error, output stagnation index, out of control %, control element travel index etc using OPTIMakx)
- Detection of issues like PID tuning, control valve sluggishness, external disturbance –etc
- PID tuning activity for optimising AUTO PID performance
- PV filter implementation to avoid external disturbances coming from BF gas input
- Remote monitoring and Review of PID performance for sustenance
- Suggested Feed Forward logic for further optimisation of the system

### Central Gas Mixing Station – Coke Oven Gas Pressure control performance KXX



| Controller   | Diagnosis      | Avg.Abs.Err.% | OP Stagnant.Idx % | Overshoot % | Out of Control % |
|--------------|----------------|---------------|-------------------|-------------|------------------|
| COG Pressure | Not Applicable | 0.50          | 10                | 1.5         | 0                |

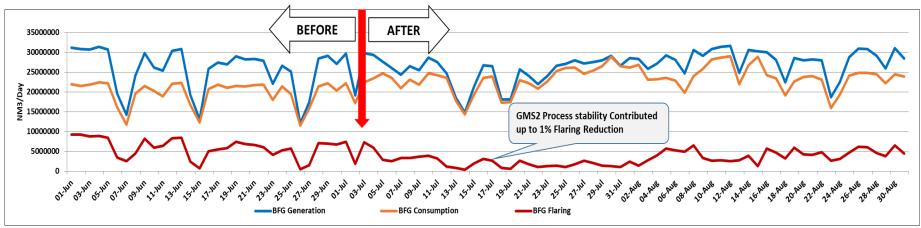

>> Auto Utilisation increased to 100%


>> Coke Oven Gas Pressure variation improved by more than 80% from the Base Case.

IMPACT: Better Process Stability, Consistent Mixed gas pressure and CV

### Gas Mixing Station - Mixed Gas Pressure control performance








- >> Auto Utilisation increased to 100%
- >> Mixed Gas Pressure controller Performance Improved by more than 30%
- >> Control Valve (2100 mm) Movement Reduced more than 80%
- >> IMPACT: \* Process Stability for optimum down stream operation, Improved Control Valve Health

#### **Overall Impact**





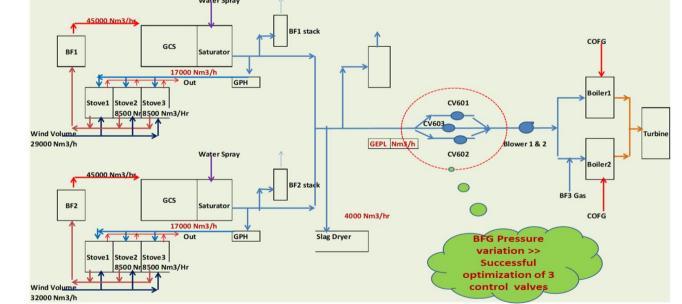
| Overall Plant KPI Data   |             |                                             |              |                        |                                 |              |  |  |
|--------------------------|-------------|---------------------------------------------|--------------|------------------------|---------------------------------|--------------|--|--|
|                          | BEFORE      | (6 <sup>st</sup> June to 26 <sup>th</sup> J | une,2022)    | AFTER (3 <sup>rd</sup> | July to 22 <sup>nd</sup> July,2 | 2022 )       |  |  |
| Flaring Results          | Average     | Std. Dev                                    | Variability% | Average                | Std. Dev                        | Variability% |  |  |
| BFG Generation(NM3/day)  | 2,44,14,202 | 5637820                                     | 23.09        | 2,40,51,670            | 42,29,464                       | 17.58        |  |  |
| BFG Consumption(NM3/day) | 1,91,71,809 | 3497058                                     | 18.24        | 2,14,10,109            | 29,88,186                       | 13.96        |  |  |
| BFG Flaring(NM3/day)     | 52,42,393   |                                             |              | 26,41,562              |                                 |              |  |  |

| Centralised GMS KPI Data |           |                    |              |           |                    |              |                       |               |  |  |
|--------------------------|-----------|--------------------|--------------|-----------|--------------------|--------------|-----------------------|---------------|--|--|
| Productivity             | BEF       | ORE (6st June to 2 | 6thJune)     | AFT       | ER (3rd July to 22 | line and an  |                       |               |  |  |
| Improved                 | Average   | Std. Devi          | Variability% | Average   | Std. Dev           | Variability% | Impact on<br>Gas Vol. | %<br>Increase |  |  |
| BFG (Nm3/day)            | 15,91,717 | 203885             | 12.81        | 16,14,578 | 1,93,209           | 11.97        | 22860                 | 1.44          |  |  |
| COG (Nm3/day)            | 9,64,416  | 125583             | 13.02        | 9,80,361  | 1,04,012           | 10.61        | 15945                 | 1.65          |  |  |
| Total MG(Nm3/day)        | 25,56,134 | 323441             | 12.65        | 25,94,939 | 2,89,089           | 11.14        | 38805                 | 1.52          |  |  |

**Overall IMPACT of Optimization activity (long term effect : ~20 days operation).** 

>> PRDUCTIVITY :: Net increase of additional <u>22,860 Nm3/day</u> usage in GMS (+1.44%)

>> RECOVERY :: ~1% reduction in Flaring Gas (heat savings) = 74,000 MJ/day >> Rs. 44 Lakh/Yr (@3.24 MJ/Nm3 calorific value for BF gas, 250 day/year operation, @ price 0.24 Rs/MJ heat equivalent fuel)


# Case Study 2: "Process Fluctuation Assessment and Control System Optimization of Blass Furnace Gas Pressure at Steel Plant".

**ISSUE:** Continuous fluctuations of BFG line pressure in GEPL line with Variability of 23%.

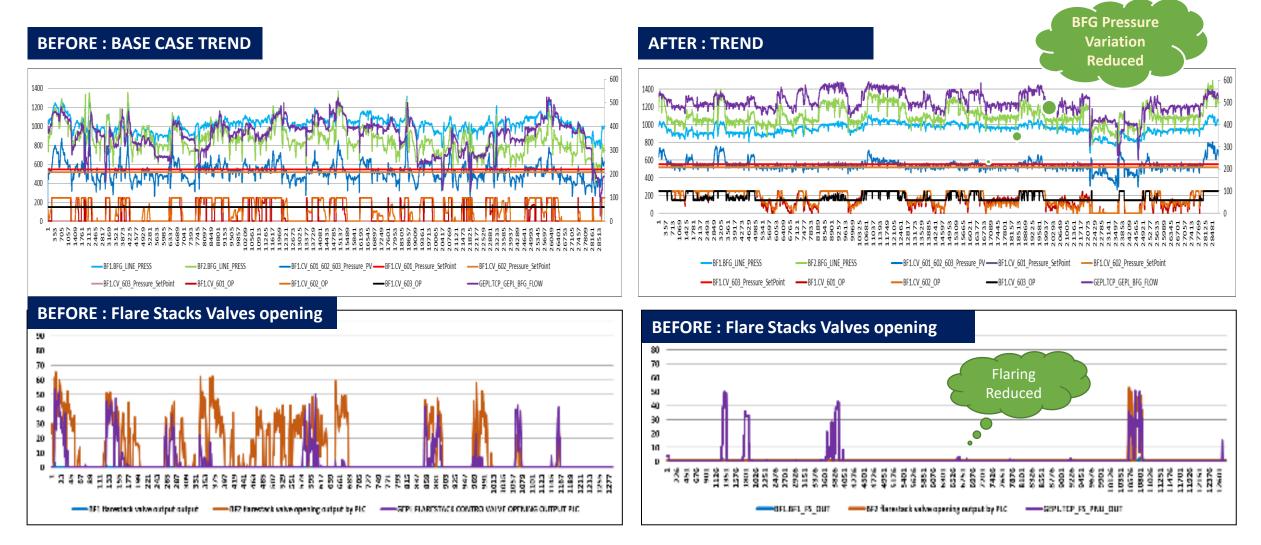
Data Collection : New Tags were configured in MES system for collect second scale process variable data from BF1, BF2, GEPL and CV 601,602,603 operations.

Data Analysis : Preliminary analysis is done establish the variability in key process input and effect variables (GEPL pressure) and valve operations. Reasons for higher variations are diagnosed

#### Before Case Data Assessment and Observations:



- Valve Saturation + Manual Mode Issue >> It was observed that most of the time CV601 and CV602 are getting saturated and the biggest valve CV603 is fixed at 60% in manual mode.
- This builds up the GEPL line pressure and ultimately leads to Flaring as the pressure increases specially during higher gas input from BF1 and BF2 sections.

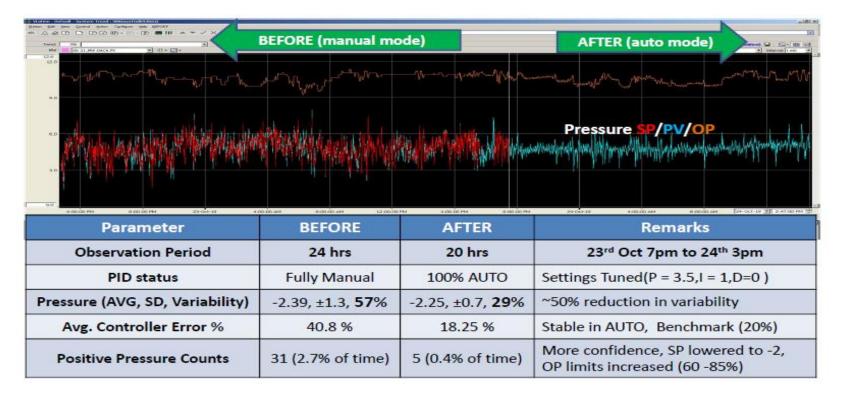

Action Taken : New Logic implemented for CV 603 AUTO operation, All three loops CV601.CV602 and CV603 optimized.

#### **RESULT**:

- After Clearance from Vedanta Team for full load operation of the Power plant on 3<sup>rd</sup> February 2021 performance was observed during GEPL BFG supplying to Power Plant1 with plant running on full load up to 26MW with GEPL flow of 48700 Nm3/Hr.
- Overall GEPL BFG pressure variability has reduced by 41.4%.

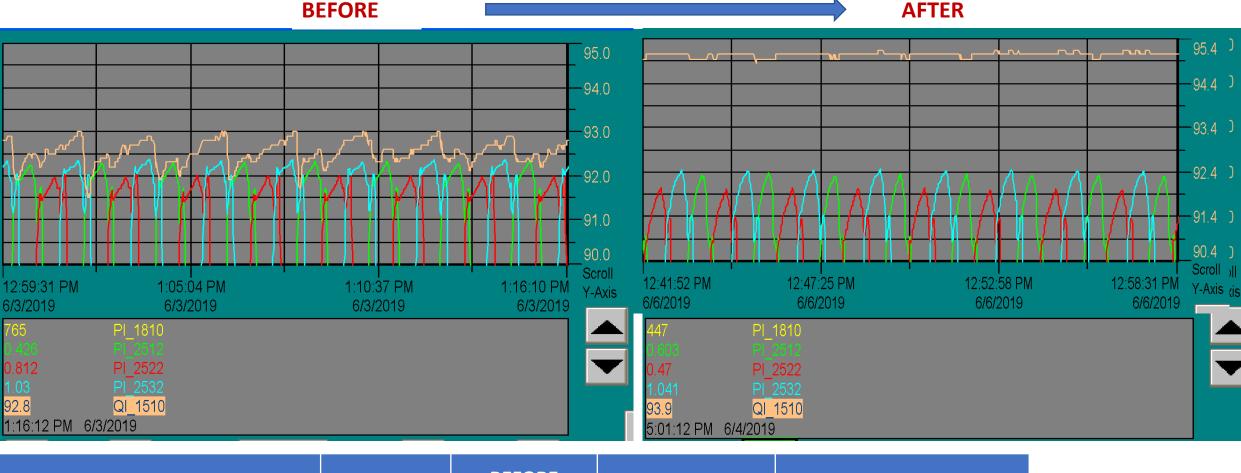
(Base case BFG line pressure Variability was 23% >> reduced to 13.46%)

### Before/After BFG Line pressure controllers and Flare Stacks Valves performance Trefasion




Continuous Operation of Control valves 601,602 and 603 as per New logic reduced the BFG pressure Variability to 13.46 % (from Base Case of 23%)

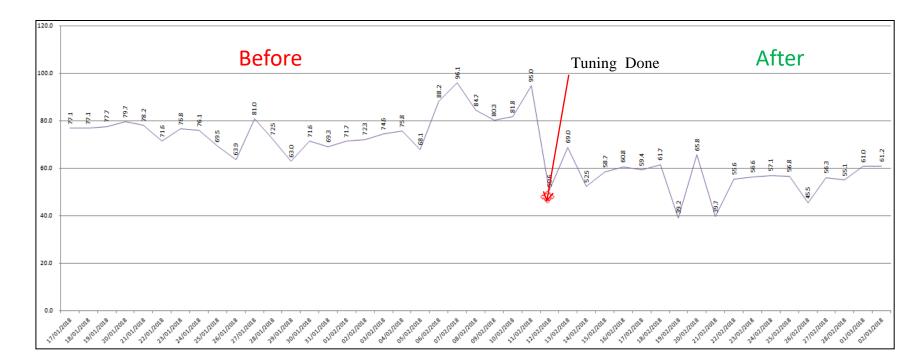
## Case Study 3 – Boiler Operation : Optimization




- Boiler draft control AUTO optimisation
- Excess oxygen regulation optimisation
- Steam pressure variability reduction



- 8% reduction AUXILIARY POWER
- Upto 15 kCal/unit heat rate reduction


### Case Study 4: Oxygen Plant Trouble Shooting : O<sub>2</sub> Purity Improvement



| Impact / Benefit                           | Units                 | BEFORE<br>(base Case) | AFTER<br>(>90 days avg.) | REMARKS        |  |  |  |
|--------------------------------------------|-----------------------|-----------------------|--------------------------|----------------|--|--|--|
| Average Oxygen Gas purity                  | %                     | 92.5                  | 95.2                     | 93.5 Required  |  |  |  |
| External Liquid O <sub>2</sub> consumption | Nm <sup>3</sup> / day | 4400                  | 800                      | >85% reduction |  |  |  |
| Nearly Rs. 50.000/day saving. ZERO CAPEX   |                       |                       |                          |                |  |  |  |

# Case Study 5 – Effect of VFD setting Optimization for Compressor

#### Day average Motor Load (kW) (Before & After) : trend over 1 month



#### 17% Lower kW @ 90 kW compressor >> 300-350 units/day

(SIMILAR OUTCOMES ARE POSSIBLE WITH ALL MAJOR VFD Drives in the Plant VFD with Fans, Blowers, Pumps - etc)

### OPTIMakx – usage / commercial options

TRAINING (on site, customized workshops, offsite at IITs)

AUDIT SERVICES (site visit, benchmarking, scope identification)

**ONE TIME OPTIMIZATION** (OTO – OPTIMakx Diagnosis, Fluctuation Mitigation)

**ANNUAL CONTRACT** (continuous improvement, assured benefits)

SUBSCRIPTION (SAS mode, Remote Access, IoT based Alerts)

**PRODUCT** (Portable Device, onSite Installation, Corporate Licensing)

**CASE SPECIFIC PROJECTS** (Troubleshooting, Optimisation, WCM, Industry 4.0, Virtual Sensors, Early Warning Systems, Predictive Models)



### **THANK YOU**

#### "Give us chance

#### to bring the BENEFITS of INNOVATIVE CONCEPT and DATA ANALYTICS TECHNOLOGY to your PROCESS PLANT.."



#### CONTACT:

Dr. Raghuraj K. Rao Head - Technical Services email : raghuraj.rao@akxatech.com Call : +91-9243209569 Mr. Nagesh Nayak Business Development Head nagesh.nayak@akxatech.com +91- 9320266009 Mr. Bhairu Lohar Sr.Manager- Technical Services bhairu.lohar@akxatech.com +91- 8446439797

Corporate Office : Plot 122 / 1&2, Shinoli (BK), Tal. Chandgad, Dist. Kolhapur, Maharashtra, INDIA – 416 508