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Theme 1: Emissions Management and Utilisation @9
State of the Art g

Carbon Capture

GHG emissions; Reduced GHG emissions Net-zero GHG emissions
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Figure 2. CCU using low-carbon energy is not just a delay in CO, emissions but can result in up to 50% emission reduction even when fossil CO; is

reused

Mertens, Styring et al., Carbon capture and utilization: More than hiding CO,, for some time, Joule (2023),
https://doi.org/10.1016/j.joule.2023.01.005



Theme 1: Emissions Management and Utilisation @a’\
~ State of the Art —

Carbon Capture- Current amine technology

Current capture is dominated by using amine as a solvent o JT o

(Shell, Chevron, Equinor). —

This has several problems: |

(1) Itis energy-inefficient regeneration and

(2) The captured CO, has to be utilised, with no current
large scale solutions in the UK

(3) Amines are unstable

CCCCC




Theme 1: Emissions Management and Utilisation @

Carbon Capture- FluRefin

Carbon capture and utilisation offers a pathway towards a
cyclical carbon economy wherein CO, emissions are recycled
as an alternative feedstock for chemical synthesis.

Flexible capture units with small footprint are required for
CO, capture in steel contexts, in contrast with amine-based
approaches that don’t tolerate shifting conditions.

Collaboration with AESSEAL has produced a trailer-based
automated capture unit at 40 times the original capture unit
scale that can continuously refine a 20% CO, stream to 80%
(suitable for liquid CO, production) at 100kg/day scale. It can
also operate off-grid for demonstration or remotely for site
testing.




Theme 1: Emissions Management and Utilisation @

Utilisation: Thermochemical conversion

o®®

ﬁtaly&
Focus is on conversion of CO, into value-added r§ Heat & .ﬁ

products, such as fuels. We shall be investigating *& Hydrogen
whether the 80% CO, capture unit output can be

directly converted into kerosene/aviation fuel using €8+ Hydrocarbons  Alcohols
iron-based catalysts and hydrogen as well as other ) 4
valuable products like ethanol and Dimethoxyethane Eﬂ

Fuels and Valuable chemicals




Theme 1: Emissions Management and Utilisation @

Utilisation: Electrochemical conversion

’H_ Basic principal of

@ electrochemical CO,

Electrolysers enable CO, valorisation under mild
conditions by use of ‘catalytic gas-diffusion electrodes’
(GDEs), yet technological challenges persist that limit
implementation: presently at TRL 2-3

reduction

Aims: ~ @E/ectrolyte flow
1. Improvement of catalyst selectivity toward ethylene €O, flow f PoRIsRagS
2. High CO, conversion rates of >300 mA cm | J
3. Enhanced operational lifetime and stability of GDEs 3 |
4. Electrolyser technology scale-up ..
GDE / '
cathode @ .




Theme 2: Zero Waste Steelmaking
Substitutes for Coke

 Ultra-fast, 20,000°C/s pyrolysis to study volatiles
released from different Non Fossil Fuel Carbon (FF-C)
sources

 Additionally, an ultra-fast thermal imaging system has
been developed and has been applied to different u*
ironmaking scenarios and produced some interesting T e

operando style data R —

« With project partners Tata Steel & British Steel, the
team have studied volatile matter for decarbonisation

1

* Validating the emissions from alternative sources is
essential for accreditation for fuel switching

Temperature regulated oven

Gas Chromatograph Mass Spectrometer

; T

Retention

Total lon Chromatogram Mass Spectra



Theme 2: Zero Waste Steelmaking \0\
~ Substitutes for Coke C’/
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eCoke is a biomass substitute Subcoal is a waste paper/plastic
Trials with Tata Steel, British Steel substitute (currently used by Voest
and Liberty Steel Alpine)

Recent work has shown that eCoke significantly reduces energy consumption as well as CO, footprint (Wang et al.,
Energy Conversion and Management 102 (2015) 217-226)



Theme 2: Zero Waste Steelmaking

Increased scrap use leads to increased levels of residual elements. Cu is a classic
example, which can lead to “hot shortness”, i.e. cracking during hot rolling and poor
product ductility




Theme 2: Zero Waste Steelmaking

Increased scrap use leads to increased levels of residual elements. Cu is a classic

example, which can lead to “hot shortness”, i.e. cracking during hot rolling and poor
product ductility
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In a free cutting steel, the Cu segregated to the MnS inclusions. These
increased with depth from the surface.



Theme 2: Zero Waste Steelmaking @

There is remarkably little understanding of the role of residuals. There is particularly little
understanding on the role a combination of residuals. Is there scope for alloy additions which
reduce the negative effect of residuals?
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Cu segregated to cracks in a bend test. Cracking strongly depends on the Cu
content



Theme 3: Data Driven Innovation

The Digital Steel Innovation Hub
(DSIH) is a dynamic network that
provides industrial partners with the
opportunity to rapidly identify
promising data-driven innovations and
funding for further development.

= UK Digital Steel Innovation Hub T5 = Intelligent steelmaking
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Theme 3: Data Driven Innovation

The team’s work on Semantic Technologies has
developed a Common Reference Ontology for
Steelmaking (CROS) and Conceptualization of
Stream Reasoner to continuously query &

reasoning on real-time data.

There is the potential for the ontology to be
adopted as part of the specification for Digital

Material Passport

st >
. 3 X
Y o v 9%
Legend
. :-_—_-_-_-_- Dynamic Data
E l H TTTTTL Static Knowlodge Models
Domain Experts {7777 Reasoning Engines

* Condition Monitoring

*  Predictive Maintenance



Theme 3: Data Driven Innovation

The team has developed a novel Hybrid Modelling of
Blast Furnace for Silicon prediction, the model has
been validated using historical data (one year).

Estimation of the model error is shown to be at an

acceptable industry standard.

There is the potential for further trial (currently in
discussion with the industrial partner to establish a

good timeframe for plant trial)
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Theme 3: Data Driven Innovation

@

Process modelling approach has been
developed which combines physics-
based modelling with machine learning
(LHS) and rough zonal example of a blast
furnace stove (RHS). The model serves as
a template for further processes in the
“digital refinery”
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Theme 3: Data Driven Innovation "’I

LCA

Preliminary work has shown that combining biomasses
with existing materials such as coal and coke have the
potential to improve energy efficiency and reduce gaseous
emissions in ironmaking. However, there are concerns
about the viability of the supply chain for these new
materials, as well as the environmental impact of using
these biomasses, and so work needs to be carried out to
understand more about these factors

There are many ways to recover zinc from EAF dust, but
some of these recovery mechanisms may have a more
harmful environmental impact than using primary zinc, and
there are few (if any) large scale UK based facilities
available. Various recovery mechanisms have shown
promise at small scale, but there remain issues with the
viability of scaling up to meet demand.

Steelmaking Casting
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Theme 3: Data Driven Innovation "’I

The current volatility of key raw material
prices means that there is a need to

(i) identify mechanisms for the
recovery of expensive alloying
elements such as manganese and
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copper from BOS slag and - -
(i) increase the recyclability of some of 1”

the various refractory materials
used in steelmaking

QU 5=l (2AFT 4103 bR

(iii) understand more about the
environmental impact of using Lo S

Lol Elagd 00 TSRANE
-

. . Swrap n a
find & R Wl
ferroalloys in steelmakin i Sl L i
* T3 bor Frodutd 663 M1 Inyok 8.5 M
b I Wi seal FaF 2w | st Sowal Procued 0 Wt
ABamaive Seunsa Foundary vz Casting ciastimn Pndc e
of femp (¥iai RS 1K) Slesl Frodud Zesdng Casl Sl Froduct g
el 5225
Brake Suap Swap
Sieran (I Reytdal 3.3 ME Serap B9KE LishISasion 44 2 0
Heavr Secion: 3928 Kt |
S Eumiletlng 520 Feail 12,0114
- Liculd Steet DEC: ILERE
en Ligusd Etael EAF. €70 MY [ERETTE TR | I
Sactl il End Procts

v v A Connuus CastinoAlcom 1
W0M 200M S00KE | el 26 e Caid AN s,



Theme 4: Smart Low Energy Production @

Insulation (Refractories) Heating
1538°C > Steelmaking v > a. (A3) > (Re)Heating (Radiant)
©
c
©
£
)
@]
Thermoelectric (Surfaces) Thermochemical (Gases)
Net-shaped & integrated Inter-seasonal & mobile

Utilisation

Aims and objectives

Develop as multiscale ex-situ structural
characterisation approach for refractories.

Improve understanding of structure-property
relations in carbon bonded refractories.

Develop robust, cost effective Sn-Se thermoelectric
materials / devices for integration into refractory
linings.

Build UK academic skill base in the field of
refractories.

Improve steel re-heating efficiency.

Develop robust, energy efficient thermochemical
heat storage materials suitable for steel production
processes.



Theme 4: Smart Low Energy Production

@

Refractories contain high carbon
contents to prevent thermal stress
and reduce corrosion

New refractory material being
developed with Vesuvius

Focus upon recycling of refractory
materials and on-line diagnostics [

#507/1013

C 12611 W 13582

Potential to deliver multi-£m
savings for individual steelmaking
facilities

Control

#519/1013
C 11169 W 8647

Oxidised




Theme 4: Smart Low Energy Production @’l\

Next generation refractories

X-ray u-CT 3D volume analysis,
investigating effects of mixing
processes on fibre distribution in
refractory materials from Vesuvius, a)
standard; b) intensive.

Even the most complex 3D microstructures can be fully quantified



Theme 4: Smart Low Energy Production @a’\

MESH - Thermochemical Heat Storage N~

» Develop materials to harvest waste heat energy within
selected temp ranges

* Optimise heat capture and reutilisation with lab scale reactors

* Model system energy flows from industry to determine

efficiency, capacity and impact, both ecologically and
economically.
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Thermal energy (heat) is stored by passing hot air over the Active Material, creating a
chemical reaction that locks the energy into the material. The reverse reaction is
exothermical, meaning that heat is released, and is instigated by passing humid air over the

material. This is being developed for industrial gas waste streams. Port Talbot steel energy
flow review targeted ranges of 50-200°C and 600-800°C.



Theme 4: Smart Low Energy Production @9
- Targeted Thermo-electrics ~

* Novel net-shape printing method designed & proven on N&P-
type Sn-Se materials (Fig.7.).

* High temperature stable cementitious binders created with
minimal efficiency penalties.

* ECR (Burton) has progressed to consider earth abundant P&N
type Half Heusler economically scalable material options.

B Sk

Thermo-Electric Generators (TEGS)
*Develop affordable printed / castable earth

abundant TEGs
sIntegrate these devices for integration into

refractory linings

DI, I PPy
SbTe electrodes
SbTe clectrodes
N
;
o 0y (5 7 "
- > I

Burton et al. Adv. Mater. 2022, 34, 2108183

Novel casting method for thermoelectric legs (SnSe pictured)



Theme 5: New Processes for New Products @;\
Sensors \’/

Design, build and install an EM sensor array
into a furnace-run-out table, and carry out
modelling and experimental studies to link
sensor signal to magnetic properties and
microstructures for specific complex
geometry steel products (such as wire/rod
and narrow strip). To develop an improved
fundamental understanding of the link

between magnetic signals and
microstructure as a function of temperature FE model of sensor array

FE model has been
validated against samples
of known magnetic
properties

Hot steel passing above sensor

A four-EM sensor head array system has been designed,
built and installed in the lab furnace-roller table




Theme 5: New Processes for New Products @a’\
Sensors ) g

@700 deg C

—o—650 deg €
+—420 deg C
365 deg €

A: EBSD of deformed steel after 3mins 700°C, limited recovery, initiation of recrystallisation, B: As A after
30mins, with some recrystallisation, C: Full recrystallisation after 210mins.

EM sensor signal monitoring these changes, showing progress of recrystallisation and how much slower
the process is at 650°C compared to 700°C.



Theme 5: New Processes for New Products @a’\
Late Stage Differentiation

Complex processing- an opportunity to control propertie

Homogenise/solution
treatment

Austenite area per unit volume
effects ferrite grain size, Ms/Mf and
) martensite lath thickness

s as required

Complex interactions of solute
redistribution, austenite reversion
and carbide formation
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Theme 5: New Processes for New Products @,\
Late-Stage Differentiation \’/

Crystal
orientation

= 2pm; [PF; Step=7 rm; Grd633x520

Phase distribution (red
is austenite, blue is
ferrite)

Super 13Cr steel. Complex mixture of
martensite, reverted austenite and carbide




Theme 5: New Processes for New Products

0.2% Proof Strength (MPa)
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Theme 5: New Processes for New Products @
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Theme 5: New Processes for New Products \0’

New RAFM Steel Nt

Stage 1 Stage2 Stage 3 Heat treatment
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The new understanding allowed the design of a new thermomechanical process route for an existing
reduced activation ferrite/martensite (RAFM) steel which has greatly improved mechanical properties



SUSTAIN Phase 2
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